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ABSTRACT
 

This project seeks to present the basic approach to
 

teaching the Calculus using concepts from Nonstandard
 

Analysis, as developed in the text, "Elementary Calculus, An
 

Infinitesimal Approach", by Jerome Keisler. In this first
 

part of the project the elementary development of an
 

extended number system called the Hyperreals is discussed.
 

The Hyperreals, which contain infinitesimal and infinite
 

numbers, are developed and it is shown how these numbers are
 

used to replace limits in Calculus computations. This
 

replacement of the limit concept is one of the foundations
 

of Keisler's approach. The introduction to the Hyperreals
 

in this section is limited and emphasis is placed on how
 

they are used in the instruction Of the Calculus. For the
 

teaching of entry-level Calculus, no real understanding of
 

the theory supporting the Hyperreals is needed.
 

The second half of this project develops the basics of
 

Nonstandard Analysis, including the theory of ultrafilters,
 

and the formal construction of the Hyperreals. Major
 

theorems, definitions and axioms are presented. Proofs,
 

generally using direct ultrafilter manipulations, are given
 

in detail. The Transfer Principle is discussed briefly and
 

examples are presented.
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CHAPTER 1: INTRODUCTION
 

When I discovered the Calculus text written by Jerome
 

Keisler, I thought it would be interesting to learn more
 

about using new methods in some basic Calculus problems. As
 

a student and tutor I had always found that some students
 

had a very difficult time comprehending and using the theory
 

of limits. In Keisler's text an extended number system
 

called the "Hyperreals" is used. The Hyperreals are the
 

Reals with the added quantities of infinitesimal and
 

infinite numbers. By using the Hyperreals, limit
 

computations become simple calculations within this extended
 

set of numbers, thereby reducing the complexity of learning
 

the Calculus for many students.
 

For my purposes, which were to get an underlying
 

understanding of the background behind the Calculus text,
 

there was no need to delve too deeply into the major theory
 

of Nonstandard Analysis. Therefore I studied only the first
 

chapter, "Infinitesimals and the Calculus", in the text "An
 

Introduction to Nonstandard Real Analysis" by A. E. Hurd
 

and P. A. Loeb. This gave a basic ba:ckground to the
 

development of the Hyperreals, their construction as an
 

extension of the Real numbers, and the formal language and
 

simple methods used to do some standard proofs.
 



The Nonstandard Analysis approach is more of an
 

inhuitive cdmputational approach as compared to the theory
 

of liiniits, or the 8,5 (epsilon^ delta) methods, taught in
 

colleges today. Unfortunately sometimes the more rigorous
 

8,5 theory is only touched on in a most cursory manner, if
 

at all. Most all teaching of the Calculus at the beginning
 

level is taught on an intuitive basis, however for some
 

students it isn't intuitive at all. So if instructors are
 

using an approach where they are not developing the theory,
 

then they might as well teach using concepts which are a
 

little easier to understand. The good thing is that this
 

nonstandard approach also makes the limit concept a little
 

more understandable since in the nonstandard approach
 

"limit" computations work virtually the same as computations
 

in the conventional or traditional methods. Note that the
 

theory of limits is still taught in the Keisler text, though
 

not until after derivatives are covered.
 

Another reason I was interested in the Nonstandard
 

Analysis approach is that I feel that it is closer to the
 

idea of "infinitely small numbers" [1] that Leibniz had in
 

mind. When Leibniz was developing the Calculus
 

(conGurrently with Newton), he used a conceptual convenience
 

which he referred to as "infinitely small numbers" [1] to
 

allow him to manipulate what we refer to as limits without
 

the complexity required by 8,5 (epsilon, delta) method.
 



which was not developed until the 1,800's* Neither he nor
 

anyone else was abl© to provid© 3- solid theoretical basis
 

for these "infinitesimals" because at the time Leibniz was
 

discovering the Calculus there still was some question as to
 

the appropriate level of rigor which should be required of
 

mathematics. The form for proofs and notation to be used
 

were still in the process of being standardized. Although
 

mathematicians were in agreement that this was necessary to
 

comprehend each other's works, the work was not yet
 

complete. Specifically, they had not at that time developed
 

all the necessary mathematics for Leibniz to be able to
 

explain precisely enough these infinitesimals and their
 

appropriateness for the Calculus. In fact Leibniz' idea of
 

infinitesimals caused a stir with one of the outstanding
 

philosophers of the day. Bishop George Berkeley, who wrote;
 

"And what are these same evanescent increments?
 
They are neither finite quantities, nor quantities
 
infinitely small, nor yet nothing. May we not call
 
them the ghosts of departed quantities?" [2]
 

It was not until I960 that Abraham Robinson discovered
 

the means to provide a solid foundation for Nonstandard
 

Analysis, and through this the concept and structure of
 

infinitesimals were thoroughly established.
 



CHAPTER 2; THE HYPERREAL NUMBER SYSTEM
 

One of the student's greatest difficulties is
 

conceptualizing what a "very small" number or "approaching a
 

value" means and whether or not that number is "small"
 

enough to disregard. So in the nonstahdard approach we help
 

them by defining a new set of numbers, an extension to the
 

Reals, called Hyperrealsv The Hyperreals is the set of the
 

Real numbers to which have beeh added infinitesimals
 

(infinitely small numbers) and infinites (infinitely large
 

numbers). Infinitesimals will be denoted by Ax,Ay,&,d, the
 

infinites by and the set of the Hyperreals by .
 

STRUCTURE OF THE HYPERREALS
 

We begin building the Hyperreals, conceptually, by
 

adding these infinitesimals to the Reals, somewhat like
 

adding a decimal fraction to a whole number. This generates
 

a collection of Hyperreal numbers infinitely close to each
 

element in the Reals. This is reminiscent of the "fuzzy
 

ball" idea that each Real number is surrounded by numbers
 

that are really close in value. In this model however only
 

one Real number is in each fuzzy ball. In the text Keisler
 

uses an infinitesimal microscope to show this idea.
 



s >0,infinitesimal
 

_Negative Positive^
 
■>-3 -2 -1 0 1 2 3 infinite
infinite
 

1/8 1/s

Iimiiitesimai
 

l/e 1/s +1 microscope 1/8 1/8 +1
 

Infinite Infinite
 
telescope telescope
 

Figure 1: The Hyperreal Line [3] 

We conceptually generate the infinites by taking 

reciprocais of the infinitesimals. The Hyperreals are said 

to be closed under addition, subtraction, multiplication and 

division, allowing the student to compute with this extended 

set of numbers exactly as they would with the Real numbers. 

But this conceptual introduction will only take the 

student so far, so more formal definitions of what these 

Hyperreal numbers are and how they relate are provided. The 

most important definitions the student must learn relate 

directly or indirectly to infinitesimals. 

Generally; 

i) A number S is said to be infinitely small or 

infinitesimal if for every positive a an element 



of the Reals, -a<&<a. The only Real number
 

that is infinitesimal is zero.
 

ii) 	If a,h E.^ and a— is infinitesimal then
 

This is read a is infinitely close to b.
 

The Hyperreal numbers infinitely close to 0 are
 

infinitesimal, denoted by These are the
 

only infinitesimals.
 

iii) 	If C is infinitesimal and is positive then -C is
 

negative infinitesimal, ̂  is infinite and
 
positive, and -—is infinite and negative. A
 

8
 

Hyperreal number that is not infinite is called a
 

finite number.
 

Once we have identified what infinitesimals and
 

infinites are, we need to know that we can compute with
 

these new numbers in some reasonable way if the Hyperreals
 

are going to be useful to us in the study of the Calculus.
 

Three basic principles which establish the relationship
 

between the Reals and the Hyperreals form the basis of the
 

Calculus as developed in Keisler's textbook.
 



 i 1 CHAPTER 3: THREE BASIC PRINCIPLES
 

The three basic principles on which Keisler relies for
 

his development of the Calculus are the Extension Principle,
 

the Transfer Principle and the Standard Parts Principle. In
 

Hurd and Loeb, we should note, these results are actually
 

presented as theorems. Presentation of these principles
 

essentially as axioms allows Keisler to use the PPwer they
 

provide without the burden of detailed technical development
 

or justification. Requiring such technical development
 

would defeat the purpose of using the nonstandard approach
 

to teach the Calculus and do little to enhance student
 

understanding.
 

THE EXTENSION PRINCIPLE
 

The Extension Principle tells us that the Real numbers
 

are a natural and proper subset of the Hyperreals/ and it
 

extends all Real functions to the Hyperreal numbers.
 

I: Extension Principle
 

a) 	 the Real numbers form a subset of the Hyperreal
 

numbers, and the order relation X <y for the Real
 

numbers is a subset of the order relation for 
*

.
 

In other words the Real line is a part of the
 

Hyperreal line.
 



b) there exists an 8 in such that S>0 but
 

S<a for all QE:
 

c) for every Real function of one or more
 

variables we are given a corresponding Hyperreal
 

function / of the same number of variables. J
 

is called the natural extension of f.
 

From this we formulate a more precise description of
 

infinitesimals.
 

Definition: A Hyperreal number b is said to be:
 

Positive Infinitesimal Lt b is positive but less than
 

every positive real number.
 

Negative Infinitesimal if b Ls negative but greater
 

than every negative Real number.
 

Infinitesimal if is either positive infinitesimal,
 

negative infinitesimal, or 0.
 

Negative Positive 
Infinitesimal ✓— Infinitesimal 

-3 -2 -I 0 I 2 3
 

Figure 2: The Infinitesimals [3]
 



Then we do the same for the infinite numbers.
 

Definition: A Hyperreal number b is said to be:
 

Finite if b Ls between two Real numbers.
 

Positive Infinite if b is greater than every Real
 

number.
 

Negative Infinite if b is less than every Real number.
 

Infinite if^ is either positive infinite or negative
 

infinite.
 

100 100 100
 

100
-1/s
 

—V —Y
Y
 

Negative Finite Positive
 

infinite infinite
 

Figure 3: The Finites and Infinites [3]
 

The definitions for finite, infinite and infinitesimal
 

numbers given above are stated in terms of comparisons to
 

Real numbers. Usually when we are working with Hyperreal
 

numbers it is more convenient to compare to other
 

Hyperreals. The following theorem allows us to do this.
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Theorem:
 

i) Every Hyperreal number which is between two
 

infinitesimals is infinitesimal.
 

ii) Every Hyperreal number which is between two finite
 

Hyperreal numbers is finite.
 

iii) Every Hyperreal number which is greater than some
 

positive infinite number is positive infinite.
 

iv) Every Hyperreal number which is less than some
 

negative infinite number is negative infinite.
 

These results are easy to prove. For instance,
 

consider ii).
 

Proof of ii):
 

Let with and a,C finite.
 

To show Z) finite, i.e. 3 Real such that r<b<S.
 

Since a,C finite, 3 Real such that Tj <a< and
 

3 ̂2,^2 such that r2<C<S2­

Set r= min(ri,r2) and 5= max(51,52), then
 

r<ri<a<b<C<S2<S. Thus r<Z)<5 with r,5 Real.
 

Therefore b is finite.
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THE TRANSFER PRINCIPLE
 

The Transfer Principle states essentially that
 

computations with, and properties of, the Hyperreal numbers
 

are identical to those of the Real numbers.
 

Principle II; Transfer Principle
 

Every Real statement that holds for one or more
 

particular Real function holds for the Hyperreal
 

natural extensions of these functions.
 

The transfer principle basically states that everything
 

we do with the Reals -- the rules, functions and operations
 

-- we also can do in the Hyperreals, and they behave the way
 

we expect them to.
 

Definition: Real Statement
 

A combination of equations or inequalities about Real
 

expressions and statements specifying whether a Real
 

expression is defined or undefined.
 

Specifically a Real statement involves real variables
 

and particular Real functions.
 

11
 



Examples of Real Statements:
 

1) Associative laws for addition and multiplication
 

2) Distributive law
 

3) Properties of equality
 

4) The fact that division by zero is not defined
 

5) Additive inverses exist
 

6) Multiplicative inverses exist for non-zero elements
 

7) Properties of inequalities
 

8) Additive and multiplicative identities exist
 

9) Algebraic and trigonometric identities
 

Each of these statements transfers to an equivalent
 

statement which holds for the Hyperrealsi
 

Generally, any statement which you can say is true for
 

all Real numbers is also true for all Hyperreal numbers,
 

with an appropriate interpretation. For instance, the
 

statement that — l=(a+l)(a —l) holds true for all Real
 

numbers a. Therefore it also holds true if a is any
 

Hyperreal number. No change in the interpretation of the
 

statement appeared to be necessary, but we did in fact have
 

to remember that 1 is both a Real and a Hyperreal number.
 

We treat 1 as a Real number when interpreting the Real
 

statements and as a Hyperreal number when interpreting the
 

transferred (Hyperreal) statements.
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For the stateiaent, "It then — exists as a Real
 
a- .; ■ ■■ 

number," we have to make a more explicit adjustment in our
 

interpretation of the statement when we transfer it to the
 

Hyperreals. The transferred statement should be, "It a
 

then ̂ exists as a Hyperreal number." Though this seems
 

obvious and trivial, it shows that being too casual in our
 

handling of the Transfer Principle can lead to an error.
 

A good example is the Archimedean Principle; "For every
 

Real a there exists an integers such t-haX. a <n." If we
 

are not careful, an incorrect transfer of this statement
 

which we might generate could be: "For every Hyperreal a
 

there exists an integer 71 such that a <71." Clearly this is
 

not true because each positive infinite number is larger
 

tha;n any integer, since all integers are Real numbers. The
 

correct transfer would be: "For every Hyperreal a there
 

exists a Hyperinteger 77 such that Cl<n." The specific
 

definition of Hyperinteger requires the precise construction
 

of the Hyperreals from Hurd and Loeb and thus will be
 

deferred until this is presented later in this document.
 

In Hurd and Loeb, the definition of the formal language
 

which we must use to describe the Transfer Principle and the
 

statements to which it applies is rather complicated to
 

construct and understand, but it essentially says the same
 

thing. Fortunately the language itself helps us avoid
 

simple errors in using the Transfer Principle. By learning
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and using the foirmal language, transferring statemehts and
 

interpreting the results becomes a Straight-forward process.
 

The Transfer Principle basically states that everything
 

we do with the Reals, be it rules, functions, or operations,
 

behave the way we expect them to in the Hyperreals.
 

HYPERREAL ARITHMETIC
 

The arithmetic operation rules for the Hyperreals are
 

the same as for the Reals with a few added details and
 

special cases.
 

Rules for Infinitesimal, Finite, and Infinite Numbers
 

Assume that 8,6 are infinitesimals; b,C are Hyperreal
 

numbers that are finite but not infinitesimal; and H,K are
 

infinite Hyperreal numbers.
 

i) Real numbers:
 

The only infinitesimal Real number is 0
 

Every real number is finite.
 

ii) Negatives:
 

-S is infinitesimal
 

is finite but not infinitesimal
 

-H is infinite
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iii) 	Reciprocals:
 

If 85^0, ̂ is infinite
 
1- ■
 
is finite but not infinitesimal
 

^ is infinitesimal
 

iv) 	Sums:';:
 

8+6 is infinitesimal
 

6+8 is finite but not infinitesimal
 

6+c is finite (possibly infinitesimal)
 

H +£. and H +6 are infinite
 

v) 	 Products:
 

8*6 and 6 *8 are infinitesimal
 

6 *c is finite but not infinitesimal
 

H 'b 	and *11 are infinite
 

vi) 	Quotients:
 

8 8 b
 
T'>~rT and -fT are infinitesimal

b^H H
 

b
 
— is finite but not infinitesimal
 
c
 

bH H
 
—	 and are infinite, provided that 8 0
 

vii) Roots:
 

If S>0, is infinitesimal
 

If 6 > 0,^is finite but not infinitesimal
 

If H >0, a/H is infinite
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There are four combinations which are not covered above
 

because they may result in a variety of different answers
 

depending on the relative "size" of the values being
 

combined. Since we can not say for sure what the actual
 

"size" of the answer will be without additional information
 

about the numbers themselves, we refer to these combinations
 

as "indeterminate forms". The four indeterminate forms are
 

Hz and H+K. The following table illustrates how
 

examples of each of these combinations can generate results
 

which are infinitesimal, finite or infinite.
 

Figure 4: Indeterminate Forms of Various Values
 

Indeterminate Infinitesimal Finite Infinite
 
Form (Equal to 1)
 

5 T B
 

K JL. K 7/2
 
K H H
 

J~f• —1— M•-1- 1
Hz if H ^ "H
 

H+x:,; , ^ h+h
 

So far we have discussed cbmputations with the
 

Hyperreals, but for these computations to be helpful to us
 

in the Galculus we have to be able to get answers which are
 

Real numbers. Generally the answer we need is the Real
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number closest to the Hyperreal number which is the result
 

of our computations. Finding the appropriate Real number,
 

and even knowing that such exists, involves a concept called
 

the Standard Part of a number.
 

STANDARD PARTS
 

To define the Real number we are looking for, we need
 

to define what it means to be "infinitely close" to a
 

number.
 

Definition: Infinitely Close
 

Two Hyperreal numbers and C are said to be infinitelv
 

close to each other, in symbols b^C, if their
 

difference b—C is infinitesimal.
 

Numbers which are infinitely close to each other
 

satisfy certain properties, as described below.
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Properties of Hyperreals:
 

1) 	 If S is infinitesimal then +S
 

(b is infinitely close to b+Z because
 

6—(Z?+s)=-fS is infinitesimal)
 

2) 	 b is infinitesimal if and only if «0
 

(this notation is used to indicate that Z> is
 

infinitesimal)
 

3) 	 If and C are real and b^C t-hen b=C
 

{b—C is real and infinitesimal, hence 0)
 

Theorem:
 

Let a, and C be Hyperreal numbers.
 

■i)', ■ ■■ ■ ■■
 

ii) Tt a ̂ b f then b a
 

iii) If £? « and b ̂  C then a ̂  C
 

Theorem: 

Assume b«C
 

i) If «0 then so is C
 

xi) If is finite then so is C
 

lix) If b is infinite then so is C
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For convenience Real numbers are sometimes called
 

"standard" numbers while Hyperreal numbers that are not Real
 

are "nonstandard" numbers. This then leads us naturally to
 

calling the Real number that is infinitely close t.o b the
 

"standard part" otb.
 

Definition: Standard Part
 

Let b be a finite Hyperreal number. The standard part
 

ofb, denoted by St(^), is the Real number which is
 

infinitely close to Z?. Infinite Hyperreal numbers do
 

not have standard parts.
 

Example: If b=a+Gf QE.R, then st(^)= <af
 

Principle III: Standard Part Principle
 

Every finite Hyperreal number is infinitely close to
 

exactly one Real number.
 

1) st(Z)) is Real
 

2) b=St(/))+£ for some S
 

3) If b is Real then b-Si{b)
 

19
 



Theorem:
 

Let a and b be finite Hyperreal numbers. Then:
 

i) st(-a)=-st(a)
 

ii) st(a+Z))= st(a)+ st(Z>)
 

iii) st(a-Z>)= st(a)- st(Z?)
 

iv) st(a•^)= st(a)• st(Z))
 

V) If st(^)5^0, then st(a/Z>)= st(a)/st(z>)
 

vi) st(a")=(st(a))"
 
vii) If a>0, then =^St(a)
 

viii) If a<bf then St(<3f) < St(Z))
 

Note: Even Lt a <b, St(cSf) may equal St(Z>)
 

Examples of Proofs of the Properties:
 

Given: r,S are Real numbers, and 8,5 are infinitesimals
 

a=f+s and b=5+6
 

Property (i): St(—a)= —St(a)
 

Proof: St(—a)=
 

st(-(r+s))=
 

st(-r+(-8))=
 

-r=
 

-st(a)= -st(<3r)
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Property (ii): St(a+^)= St(£?)+St(&)
 

Proof: St(a+Z>)=
 

St((r+8)+(^+6))=
 

st(r+^+s+5)=
 

st((r+5)+(s+8))=
 

eR «0
 

r+s=
 

st(a)+st(Z?)= st(a)+st(^)
 

Exeimples of Computations Using Standard Parts:
 

Example 1:
 

Compute the standard part of 2+8+381
 

St(2+8+38^)
 

=St(2)+St(8)+St(38 )̂
 

=2+0+st(3)-st(8^)
 

=2+0+3-0
 

=2 , . ■ 

Example 2:
 

St((4+8)2+A/^
 
=St((4+8)^)+st(V%)
 
=(st(4+8)f+st(V9)-st(V^
 

=4^+3-0 - , „
 

=16
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CHAPTER 4; NONSTANDARD CiLLCULUS
 

STANDARD PARTS AND LIMITS
 

Many students have difficulty with limits. The
 

nonstandard approach allows us to dd the Calculus as a
 

computational exercise with a new set of numbers instead of
 

having to understand what limits are all about.
 

Yet the algebra involved is virtually identical and the
 

rules for taking standard parts are the same as those for
 

taking limits.
 

If you consider the fdllowing example, you should
 

recognize the similarity between standard parts and limits.
 

In fact, taking standard parts replaces the operation of
 

taking limits in the Calculus as we shall see.
 

Example Comparing Rules for Standard Parts and Limits:
 

Standard Parts Limits
 

st(a +fr)=st(c)+st(6)\ Urn[/(x)+g(x)]= //ra /(x)+ lim g{x)
 
x-^a x^a
 

After getting a basic understanding of how standard
 

parts computations go, when the students learn about limits,
 

and even the 8,6 method, they will already have an
 

understanding of the computations involved and should even
 

have an intuitive idea of how limits behave.
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differentiation, OR "LOOK MA, NO LIMITS!"
 

One of the most interesting aspects of the Keisler text
 

is that Differentiation and Derivatives are introduced by
 

using standard parts instead of limits. This, I feel, is
 

what gives students the edge to a better understanding. Of
 

course "limits" are introduced in the next chapter of
 

Keisler's text, but only after a student has had the
 

opportunity to do some work with derivatives by using
 

standard parts.
 

SLOPE OF A LINE
 

The motivating diagrams and definitions for slope of a
 

curve and derivative of a function used by Keisler are
 

virtually identical to the traditional development, with the
 

exception that limits are replaced by standard parts.
 

5 is said to be the slope of f at a if
 
^/(a+Ax)-/(a)^


5= St for every infinitesimal Ax^0
 
Ax y
 

Infinitesimal microscope makes idea of slope of tangent
 

line intuitive.
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Ax
 

hyperreal
 

straightline
 
f(a+Ax)-f(a)
 

(a+Ax)
 
y=tw
 

Figure 5; Slope of a Line [3]
 

As in the traditional method, there are several ways
 

the slope of f at a can fail to exist. The details often
 

look quite a bit different, though.
 

The following are all the possibilities that can occur
 

when computing slopes.
 

1) 	 The slope of f at a exists if the ratio
 

^ f{a + Ax)— f(a)^
 
is finite and has the same
 

V Aa: y
 

standard part for all infinitesimal Ax ̂ 0
 

a)
 
It has value S=St
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2) The slope ot f at a can fail to exist in any of
 

four ways:
 

a) /(a) is undefined.
 

b) fia+Ax) is undefined for some Ax ̂ 0
 

f(a-\-Ax)—fia)
 
c) The term — is infinite for
 

some Ax 5!^ 0
 

f{a+Ax)— f{a)

d) The term -—^ has different
 

■ Ax 

standard parts for different Ax 0 

The following are examples for the cases listed above
 

of how computations of slopes can fail.
 

Example a): Slope of fiX) doesn't exist for —
 

Example b); fia+Ax) is undefined for some infinitesimal
 

Ax 0. The construction necessary for this example relies
 

on a much more detailed knowledge of how functions transfer
 

into the nonstandard domain. Because of this, it is not
 

covered in Keisler and is not likely to be presented in a
 

Calculus course. This will be covered in detail during the
 

more formal discussion of nonstandard analysis as presented
 

in Kurd and Loeb.
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f(n 4- —f
 
iExample G): The term is infinite for some
 

Ax
 

infinitesimal Ax 9^0
 

'5 if x>l
 

'''-3ifx<7
 

then 5^=̂ =0
 
■ Ax-'-': ' - ^.r/Ax 

If Ax<0 then . . -^ I': - infinite
 

f{a+Ax)-f(x)

Example d): The term has different
 

Ax
 

standard parts for different infinitesimals Ax 9^= 0
 

/(x)=|x|
 

Formula for slope at <2=0,
 
/(0+At)-/(0) /(Ax)-(O) |Ax|
 

Ax Ax Ax
 

. - lAxI Ax . 
Case 1: Ax>0, ■—^ = — =1 

Ax Ax 

^ lAxl -Ax .
Case 2: Ax<0, ^ ^ = =-1 

Ax Ax 

DERIVATIVES 

Once the slope of a line is defined, the definition of 

the derivative is exactly the same as in the traditional 

'method. 
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Definition:
 

Let f be a real function of one variable. The
 

derivative of f Ls the new function whose value at
 

X is the slope of f at X
 

■ ffix + Ax)— fix)^
f'fx) = St — wherever the slope exists
 

V Ax J
 

f'(x) is undefined at X if the slope of f does not
 

exist at X
 

For a given point Q, the slope of at Q and the
 

derivative of f at Q are the same.
 

If we write A>'=/(x+Ax)-/(x), we can identify as
 

a real function of two variables X and Ax.
 

The transfer principle implies that this equation also
 

determines A^ as a Hyperreal function of the same two
 

variables.
 

Ay is called the increment of y.
 

Sometimes we write y'=jf'ix} so that
 

takes the form y =st —
 
vAx
 

Whichever form we choose to use, with the nonstandard
 

approach, differentiation becomes a simple computation.
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Example: Compare finding the derivative of f{x)=^ using

■ Ji/ ' 

the limit concept to using standard parts,
 

Standard Parts
Using Limits
 

-m=lim =
 

l/(x+/?)-l/x Ay l/(x+At)-l/x
Ai lim
 
h Ax ~ Ax
(k X h-^0
 

x-(x+Ax)
x-(x+h)

lim j) ,,{
l^^^xh(x+h) x(x'+Ax)Ax
 

-Ax
-h _
 
= lim
^^Qxhipc+h) x(x+Ax)Ax
 

-1 . ■ ■ ■ - lim
h-^Qxix+h) x(x+Ax)
 

i 1 ^
 
Stf̂ l=St
 
\Ax x(x*+At)
 

1
-1
 

x(x+0) st(x:)st(x+Ax)
 

fi^y =
 
X'X
 

X
 

Note that the algebra involved in the two different
 

approaches is virtually identical. The only real difference
 

is a conceptual one; the real question is will the student
 

handle limits or standard parts more easily? Clearly the
 

answer to this is somewhat dependent on the specific
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student, but it is known that limits cause some students
 

difficulty* Perhaps other students would grasp limits, but
 

have difficulty with standard parts. This would seem
 

Unlikely, but it may still happen. Until more classes are
 

taught using the nohstandard approach, though, we will not
 

be able to answer ttxis question.
 

DERIVATIVES OF SIN AND COS
 

The computation of derivatives of the transcendental
 

functions is another challenge which is made easier by use
 

of the nonstandard method.
 

Many students have a very difficult time accepting that
 

the derivative of the sin(jc) is the COS(r), even after seeing
 

the proof, because of two things: i) it is non-intuitive,
 

and ii) it relies on the use of the Pinching Theorem, which
 

involves an interesting property of limits which makes
 

little sense unless you understand limits, which many of the
 

students don't.
 

The nonstandard approach addressed both of these
 

problems. It provides a nice, intuition-supporting image
 

for why the derivative of the sin(ji:) is the COS(j[:) and, when
 

you finally get around to the proof, it eliminates the need
 

for the Pinching Theorem.
 

29
 



COS
 

sinO
 
A0
 

s n
 

cos
 

Figure 6; Derivatives of Sin(x) Under Microscope [3]
 

By looking at the above drawing, through the
 

infinitesimal microscope one can see that by increasing 0 by
 

an infinitesimal amount, one moves an infinitesimal distance
 

from point A to point B. In doing this, AsinG is a small
 

positive value and AcosG is a small negative value. Thus
 

we get COS0=^^^=^sinG and sinG=~^^Q^^=-^COS0, which are
 

exactly the results we want.
 

If we desire, though, we can still do the complete
 

proof. Like the traditional method, the key element of the
 

proof that ^sin(x)-cos(x) is the result that;
 

st(^)=1 analogous to //7w(^^)=l
 
e-^oV ' ■ 
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The same geometrical area comparison is used to prove

gt^sin0j for any infinitesimal 0, as is used in the
 

traditional approach. The difference is in the nonstandard
 

method a simple standard parts computation i6 used, while
 

the traditional method relies on the use of the Pinchirig
 

Theorem. The inequality involves the areas of a nested
 

sequence of objects, a triangle, a pie slice, and another
 

triangle, determined by the same angle 0.
 

, ■ y . 

D
 

B
 

tan0 
s n
 

□ A
 

O G
 

Figure 7; Diagram for the Geometric Inequality [3] 

31 



 

.Proof..: ■ 

Area(triangle OAB)<Area(pie slice OAB)<Area(triangle OAD)
 
OA*BC<^*0* <^;OA*AD
 

^^•BC<|*e<^*AD (OA=r=l)
 

^ BC<0<AD
 

sin0 <0<tan0
 

• \ 1 < 0 <: 1­
^^ sin0 COS0
 

1> si^> COS0
 

taking standard parts with 0 infinitesimal
 

(linear ordering is preseryed)
 

—> st(l)>st(^^)> st(cos0
 
COS0 is continuous by definition, so
 

st(cos0)=cos(st(0))=cos0= 1
 

l >st(2i|ft)> i ■;
 
—> st(^'^) = 1 for any infinitesimal 0
 

As we have come to expect, the algebra for the proof is 

identical to the traditional method. The primary difference 

is that we did not need the Pinching Theorem (see below) to 

complete the proof. In the nonstandard method, the Pinching 

Theorem is an automatic result of the linear ordering 

properties of the Hyperreal number system. 
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Theorem: Pinching Theorem
 

Given /(;c)<g(;v)</2(jc) on an interval around C
 

if lim f(x)=lim h(x)=L ^ then Urn g{x)=L
 
X— x->c x->c
 

This Theorem is often stated and used in Calculus texts
 

when computing the derivatives of the trigonometric
 

functions, but rarely, if ever, is it proven in these texts.
 

Instead it is treated as if it were intuitively
 

obvious, which it probably is to people well versed in the
 

theory of limits, but to many students it is not. These
 

students often will find it easier and more understandable
 

to do a simple computation using the rules of the Hyperreals
 

than to even learn where to begin in applying the Pinching
 

Theorem.
 

DIFFERENTIALS AND INCREMENT THEOREM
 

One of the nice, and reassuring, things about the
 

nonstandard approach to the Calculus is that all of the
 

properties and applications of the derivative are unchanged
 

from the traditional approach. This makes it relatively
 

easy for instructors experienced in teaching using the
 

traditional approach to understand, accept and teach the
 

Calculus using the nonstandard method. In some cases, the
 

computational natujre of the nonstandard approach makes it
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easier to understand not only the theory, but also the
 

applications of the derivative.
 

One area of application of derivatives which has been
 

difficult for some students to understand using the
 

traditional method of teaching the Calculus is
 

differentials. As with limits, the nonstandard method makes
 

differentials a more intuitive, computational effort thus
 

making them easier to understand and manipulate.
 

a b) 7^
 

dy
 

Ix)
 
(a y)
 

f(x)
 

(a,b)
 

Figure 8; Differentials
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Theorem: Increment Theorem
 

1,et y=f{x^- Suppose f'ix^ exists at a certain point
 

X, and At is infinitesimal. Then A_y is infinitesimal,
 

and Ay=/'(x)Ax+sAt for some infinitesimal £ / which
 

depends on X and Ax.
 

Proof: 	 .
 

Case I: Ax=0	. In this case. Ay=/'(x)Ax=0,
 

and we put 8=0
 

Case 2: At5^0 i Then^«/'(t), so for some
 
infinitesimal £, 	 ^
 

Multiplying both sides by Av,we get,
 

Ay=/'(x)Ax+£At
 

That is, the increment theorem provides us with a
 

method for finding a good approximation of the change in the
 

value of the function for small changes in the value of the
 

variable. Intuitively, we can see that if Ax, an
 

infinitesimal, is conceptually "very small"> then £At, the
 

product of infinitesimals, is "extremely small" or "very
 

small compared to Ax". Even though the "very small change
 

in X generates only a "very small" change in y, since we
 

only want an approximation, it seems justifiable that we
 

ignore the "extremely small" product-of-infinitesimals term.
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In doing so, though, we must remember that our computations
 

not actually use infinitesimals and thus can only give
 

us a good approximation if the change in X is kept as small
 

as possible.
 

Example of Differentials
 

Find an approximation for /(4.01), where /(;v:)= •
 

, X=4, /(x)=V4=2, and Ax =0.01 , so
 
2\X
 

Ay=/'(x)Ax=^(0.01)=0.0025
 
and then y=yQ+A_y=2+0.0025=2.0025
 

(Note: y= 2.00249843945 by the calculator)
 

Notice that except for the nonstandard analysis style
 

used in the statement of the Increment Theorem, as usual
 

differentials are manipulated the same way as in the
 

traditional method. The advantage of the nonstandard method
 

to the student is that it provides a solid, intuitive basis
 

for this computation.
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CHAPTER 5: FOUNDATIONS OF NONSTANDARD ANALYSIS
 

The Hyperreal number system can help students learn and
 

understand the Calculus without relying on a deep, technical
 

understanding of why they work (or even real proof that such
 

things as infinitesimals exist).
 

Unfortunately new methods are usually not adopted by
 

the mathematical community just because "they seem to work".
 

This is why a more rigorous development of the Calculus than
 

Leibniz's was pursued, Abraham Robinson's development of
 

infinitesimals in the I960's finally provided the rigorous
 

foundation for infinitesimals and the Hyperreals that
 

allowed their use in the teaching of the Calculus, and
 

mathematics generally, to be seriously considered.
 

FILTERS AND ULTRAFILTERS
 

In order to understand the construction of the
 

Hyperreal number system, it is necessary to establish some
 

basic definitions and methods related to filters and
 

ultrafliters.
 

To begin with we heed to understand what an ultrafliter
 

is, and more importantly what a free ultrafilter might be.
 

For it is with free ultrafilters that we build the extension
 

to the Reals called the Hyperreals which is the basis for
 

Nonstandard Analysis.
 

First we must start with the definition of a filter.
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Definition: Filter
 

Let I be a nonempty set. A filter on I is a nonempty
 

collection U of subsets of 1 having the following
 

properties.
 

i) :0m '
 

ii) AeZI and BeZL^AnBeZl
 

iii) A eZI and Aq^B=> BeU
 

A filter is an ultrafilter if
 

iv) 	for any subset ̂  of I either AeU ox its
 

Compliment ^e'Zi (but not both)
 

By conditions i) and ii), an ultrafilter cannot contain
 

both A and A'^, since if both were elements of U, then by
 

ii), Ar\A^EZlf hut Ar^A^=0f which contradicts i).
 

A filter therefore is closed under the operations of
 

intersection and "supersetting", and does not contain the
 

empty set. An ultrafilter has the additional property that
 

either a set or its complement is always an element of the
 

ultrafilter.
 

An alternate and equivalent definition for an
 

ultrafilter is a maximal filter.
 

Definition: Maximal Filter
 

a filter F on I is maximal if whenever G is a filter
 

on 1 and FczG —>F=G [3]
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Proposition: A filter F on I is maximal if and only if for
 

every subset of 7 either^ or J^=I— AeF
 

Proof:
 

=> Suppose either Ae^F or A^eF \/AcI
 

Let G be some filter containing F, G'^F, and suppose
 

BeG and B^F then B^ eF but since G'^F then B^eG.
 

BeG and B^ eG implies Br\B^eG, But Br\B^=0, by
 

definition, which implies 0eG, a contradiction to G being
 

a filter. Therefore there is no filter G properly
 

containing 7?. Thus 7^ is maximal.
 

^ Suppose 7^ is a maximal filter on 7 and A ^F
 

'To'':show;'''^; eF:
 

Suppose \fBEF Ar^B^0
 

Let G ={X^F.Ar\HQX for some 77 G7^}
 

HeG V77gF since 77c77, therefore F(^G
 

A eG since Ar^HcA
 

Therefore F is a proper subset of G
 

Check properties of filters:
 

i) 0^G by construction, Ar^H^0 \/HeF
 

ii) Pick Gj,G2sG. Then 377[,772 sF9^P»77[cGj
 

, arid A
 

T!hen A0^ n(AnH2)cGjnG2
 

since Hi0H2^F, therefore GinG2eG
 

iii) Pick GjgG, GjcG2. Then BTfj gFbA077jcGj
 

Since GjCG2/ Ar\Hi^G2 and hence G2eG
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Therefore G is a filter. This contradicts our
 

assumption that is a maximal filter, therefore the
 

assumption of this case cannot occur.
 

since the previous case failed, 3B E.F3Ar\B=^0. This
 

implies B<^Ac, which implies vlc &F, which is exactly what
 

we wanted to show.
 

Definition: Fixed Ultrafilter
 

An ultrafilter ̂ is principal or fixed if
 

Ax elA VB x <sB
 

Fox: each X £/, then, there is a fixed ultrafilter
 

={/^c I\x eB}
 

We will call X the aeneratinq element of the fixed
 

ultrafilter U.
 

Some collections of sets may satisfy some but not all
 

of the conditions to be a filter (or ultrafilter), so one
 

must be careful to verify the conditions accurately.
 

Given the set iS'={l,2,3}, its power set is
 

P(S)={0,{1},{2},{3},{1,2},{1,3},{2,3K{1,2,3}}
 

Clearly P(<S), the power set of S, satisfies the
 

intersection (ii) and superset (iii) conditions for a
 

filter. It even satisfies the maximal condition for an
 

ultrafilter (though not the mutual exclusiveness result).
 

But it does contain the empty set. The empty set is a
 

subset of every set, so it is an element of the power set.
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therefore the power set of a set is not a filter (and thus
 

is certainly not an ultrafilter).
 

Let/={a, and consider the sets of subsets of /;
 

Claim that Aand B are filters on /.
 

Check the properties for A:
 

i) A does not contain the empty set 

ii) Intersection of two elements of A is still an 

element of A, e.g. {a,Z>,c}P* ={a,c}EA 

iii) If a set is an element of A and that set is
 

contained in a larger set then the larger set is
 

also cbntained in A. That is,
 

I={a,b,C,d^ and let
 

a={^,c} and J3={a,^,c}
 

Obviously pZD(X and /ZDPZ)OC
 

and since Ot eA
 

■/..P/eA ■ 

By exhaustively checking all possible combinations, it 

can be verified that all the conditions hold, A is a filter 

on I. The set B is also a filter by the same properties, in 

fact it is a maximal filter or ultrafilter onIby; 

iv) B is a fixed ultrafilter since every set contains 

the element C. 
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Fixed ultrafliters are of limited interest to us since
 

they generate nothing new in our construction of the
 

Hyperreals. Our construction requires the use of free
 

ultrafliters. Free ultrafliters contain the Frechet Filter.
 

FRECHET FILTER
 

The Frechet Filter (5^j) is a special filter defined on
 

infihite sets. It is also called the cofinite filter and it
 

is defined by:
 

jFi={^c/:/— is finite}
 

The Frechet filter is a large collection of infinite
 

sets. The base set must be infinite or the Frechet
 

"filter" is not a filter at all, since if I is finite then
 

contains the null set (since it is cofinite) and thus is
 

not a 	filter.
 

Proposition:
 

— — A is finite} is a filter if I infinite
 

Proof:
 

By definition of jFj, I is an infinite set.
 

i) 	 Suppose then 7-0=7 would be finite which
 

would contradict the condition that 7 is infinite.
 

ii) 	Let^ and 5£^7}
 

To show Ar\B
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(i.e., show that the intersection of the sets^ and B
 

in is itself an element of^j)
 

By DeMorgan's Laws ^ i^A r\ Bi)^
 

Qo{I-A)Kj{I-B)=I-{AnB)
 

finite finite finite
 

(Ap>B)^ is finite and Ar\B
 

iii) If AeS-\ SLiid I"^B"^A
 

To show i? sjTi
 

:63>4— but is finite
 

is finite which satisfies definition of an
 

element of the Frechet filter
 

Examples of Elements of !Bi on N
 

Let C={all primes less than 100}, C is finite and
 

D=N—Ce^Ti. D is one element of the Frechet filter.
 

Other examples of elements of the Frechet filter
 

N for each k eN
 

A? -{1,2,3}
 

N —{all numbers between 4 million and 5 billion which
 

contain no 3's in their decimal form}
 

N —{all non-prime numbers with less than 487 digits}
 

N —{all specific natural numbers humans have ever
 

spoken or written}
 

43
 



An ultrafilter U on I which contains the Frechet
 

filter is called free. A free ultrafilter cannot contain
 

any finite set yl, since then would be cofinite and hence
 

in and then ylo^4*^ =0 would be in U, contradicting the
 

first property of filters. Note that the Frechet filter is
 

not an ultrafilter itself since we can always construct a
 

set such that both yl and yl'^ are infinite. Thus
 

neither A nor is an element of !Fi- For example/ any
 

ultrafilter on iV would have to contain either the Set of
 

even numbers or the set of odd numbers, but not both since
 

they are complements in iV, but neither set is in
 

Theorem '
 

If is an ultrafilter on /, I infinite, then is
 

free if and only if 'Z/ not fixed at any X G/ 

■ ■Proot: ', ' ­

=> U free —> not fixed 

Suppose free and fixed at X g7, 
: \€/;=i.e 


In specific {x} e^^ =Zl
 
But if Zl is free —> it contains the Frechet filter 

contains /-{x} 

contains {;v} n ̂  -{■^} = 0/ a contradiction to the 

first property of filters. 

44 



 

 

<= Zl not fixed free
 

To show if not fixed —>■ contains jFi 

Pick arbitrary A g 

is finite, i.e., 

Not fixed -> Vxe/ 3AxEZ13X^Ax 

Consider f] 
n 

A^ = A, A eZI, A A 
­

. ' 
AqA->A eU 

Zl contains jFj 

Zl is free 

We have yet to prove that free ultrafilters exist. 

These, however, are the important ultrafilters for our 

construction. 

THE ULTRAFILTER AXIOM 

In order to obtain an understanding of ultrafilters one 

needs to learn some of the mathematics supporting and 

proving the Ultrafilter Axiom. Zorn's Lemma, which is a 

variation of the Axiom of Choice, will be used in the proof 

of the Ultrafilter Axiom. Zorn's Lemma involves the idea of 

a partially ordered set and related concepts as described 

below. 
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Defini'bion:
 

A partially ordered set is a pair (X,<), where X is a
 

nonempty set and < is a binary relation on X which is
 

i) reflexive, i.e., for all XsX
 

ii) antisymmetric, i.e., if X^y and y<X then X — y
 

iii) transitive, i.e., if X<y and y<Z then X <Z
 

A subset C of X is a chain if for all X,y gC either
 

X<_y or y<X, The element X is an upper bound for a subset
 

B<^X if b<,X for all BgE. An element MeX is maximal
 

if, for any X eX, m<X implies X=m .
 

Zorn's Lemma
 

Let (X,<) be a partially ordered set. If each chain in
 

X has an upper bound then X has at least one maximal
 

element.
 

Zorn' s lemma is equivalent to the Axiom of Choice and
 

both can be used to prove the Ultrafilter Axiom but the
 

preferred proof is the one that uses Zorn's Lemma.
 

Ultrafliter Axiom
 

If F is a filter on / then there is an ultrafilter Zl
 

on I containing F.
 

46
 



Proof:
 

Ak 	 As.
 

Let F be the set of all filters which contain F, F is
 
As
 

nonelnpty since FgF. Be partially order F Joy inclusion;
 

i.e., Lt A,B gF then we say that 5 if Xe^ implies
 

XsB. It is easy to check that < is a partial ordering on
 
As
 

F.
 

Now let C be a chain in F. To show that C has an upper
 

bound consider F=yCCCe C). Then C<F for all C<C.
 

Also F is a filter.
 

Check Properties of Filters
 

i) 0^C for any C so 0^[JC.
 

ii) 	If X,YeF then XeQand YeC2 for some Q and
 

C2 in C. Since C is a chain, we may assume
 

without loss of generality that Cj<C2, and so
 

X,YeC2 and XnYEQcF^YeF.
 

iii) If X gF and XcY then
 

3Gi3XeCi->YeCi ̂ YgF.
 

As
 

By Zorn's Lemma F has a maximal element, call it F^^^
 
As
 

which both contains F, by construction of F, and is an
 

ultrafilter because maximal filter.
 

Once 	we have the Ultrafilter Axiom, we can construct
 

free 	ultrafilters on any infinite set.
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Theorem:
 

Free ultrafliters exist on any infinite set I.
 

Proof:
 

Since / is infinite, construct the Frechet filter
 

on I. By the Ultrafliter Axiom, there exists a maximal
 

filter containing is the desired free
 

ultrafilter.
 

For our construction of the Hyperreals we use the
 

naturals numbers as the base set for our ultrafilter.
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CHAPTER 6: CONSTRUCTING THE HYPEHREAL NUMBERS
 

The construction of the Hyperreals, denoted is
 

similar to the construction of the Reais from the rational
 

numbers by means of equivalence classes of Cauchy sequences.
 

To begin the construction, let N denote the natural
 

numbers, R denote the Reals, and R denote the set of all
 

sequences of Real numbers indexed by N.
 

Each element in R is of the form > — r2,r3,...), where
 

/}• eR V/. For convenience we will denote r2,r3j. by (r^).
 

Operations of addition, ©/ and multiplicatidn, can be
 

defined on R as follows:
 

Defihition:
 

If and S— are elements of R, We define
 

r0s^{ri+Si) and =
 

It is clear that (R,©,®) is a commutative ring with an
 

identity (l,!)...) and a zero (O,0,...) (where 1 and 0 are the
 

unit and zero in R.
 

For instance, to verify that the operations are
 

distributive:
 

Let r==(/-), = t=
 

However, the ring is not a field. For example,
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(l,0,1> 0,1,...)®(o,1,0,1,0,...)=(o,0,0,...), so the product of
 

nonzero elements can be zero. This problem can be
 
/V '
 

eliminated by introducing an equivalence relation on R and
 

defining operations and relations +, *, and < on the
 

resulting set, R, of equivalence classes which make
 

,+,•,<) into a linearly Ordered field.
 

THE HYPERREAL BTUMBERS
 

The elements of the nonstandard or the Hyperreal
 

numbers are equiyalence classes of the elements of R
 

relative to the equivalence relation defined below.
 

Definition:
 

If r= a.nd S= are in R, then r=5 if and only if
 

{/ eN'.ri=si\&U, where U is some free ultrafilter on
 

N. We then say that almost everywhere (a.e.).
 

Since Ls a free ultrafilter, not just a Frechet
 

filter, note that (1^^=(^SiY a.e. does not mean simply fj ̂ Si
 

for only a finite number of ;'s. This is a common error.
 

Certainly two sequences that differ at only a finite number
 

of places are alwavs equivalent under =. In fact, for
 

convenience, when comparing sequences one can always
 

disregard any finite number of terms at the start of the
 

sequence as long as you ignore the same number of terms for
 

both (all) sequences being compared.
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Sequences which are the same at only a finite number of
 

places are never equivalent under =. Sequences which are
 

the same at an infinite number of indices and also different
 

at an infinite number of indices mav or mav not be
 

equivalent under =, depending on the ultrafilter. [2]
 

For example is equivalent to either
 

(1,14,1,...) or (2,2,2,2,...), depending on whether Zl contains
 

the set of odd numbers or the set of even numbers,
 

respectively.
 

Lemma:
 

■ ■ ' /V 

The relation = is an equivalence relation on R
 

Proof:
 

We need to show that the relation = is reflexive
 

(r=r), symmetric (if r=S then S=r), and transitive (if
 

r=S and ( then r=().
 

i) To show r=T is trivial since
 

[i eN:rj=ri}=N eZl
 

ii) To show if r=S then S=r
 

{ieN:rj=Sj}={ieN:Si=ri}
 

So if one is an element of Zl, both are.
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iii) 	To show if r=5 and S=t then r=t
 

If 	 Ui=[i EN:ri=Si},
 

U2={i ^NlSj=tj}f and
 

U3={i eN:rj=tj}
 

r=S^UiEtl and S=t->U2etl
 

Then Uir\U2^U, and since
 

Uir\U2={}eNiVj=s^
 

therefore U^eU and r=t
 

Definition:
 

Let R denote the set of all the equivalence class of
 

R induced by =. The equivalence class containing n
 

particular sequence 5—^^ is denoted by [s] or S.
 

Thus if r=S in R then r=[r]=[5']=S.
 

Please note that two sequences can have the same limit
 

as i approaches infinity and not be equivalent.
 

For example, is not equivalent to (0,0,0,^^*)
 

since 1/ eN',\=q\=0 , though lim 7=0= Um 0.
 
^	 /->oo /^oo
 

Thd ^ divided into disjoint subsets called
 

equivalence classes by =. Each equivalence class consists
 

of al1 sequences equivalent to any given sequence in the
 

class.
 

Thus r and S are in the same equivalence class iff
 

r=S. [HL 5]
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One of the difficulties with free ultrafilters is that
 

you cannot completely determine which infinite sets with
 

infinite complements are in the ultrafilter. For instance,
 

how does one know, for a given ultrafilter U on N, whether
 

the set of odd numbers or the set of even numbers is xn Ul
 

One of these sets must be in U, since these sets are
 

complements, yet ultrafilters on exist for either case.
 

Fortunately this really does not matter. The ability
 

to identify the exact equivalence class that one of these
 

"borderline" sequences belongs to is generally irrelevant.
 
- ' ' ■ /V ' ' 

We just need to know that every sequence in R belongs to
 

some equivalent class so that = actually satisfies the
 

definition for an equivalence relation on N.. This is why
 

we caiKnot use just the Frechet filter to construct the
 

Hyperreals. We heed a. structure which satisfies the mutual
 

exclusivity property which characterizes an ultrafilter.
 

OPERATIONS AND FIELD STRUGTURE
 

We define the arithmetic operations and inequalities on
 

the Hyperreal numbers as follows;
 

Definition:
 

Let **"[('/•)] ̂ nd Then:
 
i) r+S=[(rj-|-s^)], i.e., [r]+[s]=[r©s]
 
ii) rvS=[(rySj)], i.e., [r]*[s]=[r0s]
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iii) r<s(s>r) if and only if {z SN:q <s^} sZl, and
 

r<s(s>r) if arid only if r<S or r=S. The
 

structure is denoted by
 

with the operations defined this way/ we can proceed to
 

prove that the Hyperreal number system is a linearly ordered
 

field.
 

Theorem:
 

The structure is a linearly ordered field.
 

Proof:
 

It is ea&y to prove that is a commutative ring with
 

unit. We will prove some of the properties as examplesi
 

To show that multiplication is associative
 

(r-s)•t= r-(s-1)
 

~ associative property of Reals
 

=r-(s-t) QED
 

To Show that addition is commutative
 

r+s =s+r
 

=[{';■+«()] 
commutative property of Reals 
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To show that multiplicative identity exists
 

Define; 1=
 

=[(?j)] multiplicatiye identity of Reals
 

■ -r' . ••o '.QED 

Clearly the prdofs are similar for commutative property
 

of multiplication, associative property of addition,
 

distributive property and the additive inverse.
 

To complete the proof that is a linearly ordered
 

field we need to prove additionally that every nonzero
 

element in R has a multiplicative inverse and that the
 

field is ordered.
 

To show that if 1*9^0 then there is an element r ̂ 
 

in R such that r-1'"* =1.
 

Suppose that « Then {i E N'.T} —0} and
 

so {/e A^:^- 0} e'Zi by the fourth property of filters. Define
 

r , where^ ^ if 0, and =0 if 7J =0.
 

Then r*f ^'^ — 1 if ^- ^0, and ^••^=0 if
 

rj=0, so {i eN'.rj -Fi eN'.rj ^0}eU.
 

Therefore r-r~^ —1
 

Finally we must show that 5^ is a linearly ordered
 

field with the ordering given by <. We say that an element
 

r of R is positive if r>0.
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We must show that;
 

i) the sum of two positive elements is positive
 

ii) the product of two positive elements is positive
 

iii) Law of Trichotomy
 

By positive element we mean r>0, where 0= ,
 

that is r>0 if and only if {/ e NiTj >O}eII
 

The first two properties are easy to prove and follow
 

directly from some of the previous sections.
 

To show, for example, that the sum of two positive
 

elements is positive, pick r,S €R with r>0 and S>0. That
 

is Ui={/E NiTi >6}efl and Uj={/' eNlSf > O}E%1.
 
To show r+s>0, i.e., {i E Nir^+Si>6}eU.
 

Clearly on Uir\U2, fj and are both positive, so by the
 

properties of the Reals,^+ >0 on Uif^U2- But
 

={/ eN:r^+ >0}3\i eNiv^ > 0,^,- >0}=I/jnU29
 
So, since Uir\U2 ^Uf
 

Therefore r+S>0.
 

On the other hand, to prove the Law of Trichotomy we
 

use the following theorem.
 

Theorem: Selection Theorem
 

Let Zl be an ultrafilter on 1, be a finite
 

number of subsets of /, with AjO Aj —0 for i^J and
 

U4(r</^«)=/.
 

Then one and only one of the sets Aj is in U.
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i.e. A^l = [}Aj=I, and
 
■ i=\ 

A^ nAj=0 V/^J
 

-> 3!/34"
 

Proof:
 

Suppose there is no A^ ̂ AA,
 

Since an ultrafilter then e U \fi.
 

This would imply that 0^4^)^
 
/=1
 

/ \C
 
n i _\ ( n \
 

Then H(4^/~ {}Ai \ =I^=Q)e.U.

i=l V/=l J
 

But this would contradict %1 being an filter.
 

Therefore 3i3Aij E .
 

Now suppose Ai,Aje 11, i^J. Then 4 =0e'Zi ^ again
 

a contradiction to 11 being a filter.
 

Therefore 31/34S^/.
 

Proof of 	the Law of Trichotomy:
 

(i.e. if r eR then r<0,r=0, or r>0)
 

Fix 11 on 	N
 

Define 	 Ui=[i eNirf <0}
 

1/2={/ eNirj=0}
 
t/3={/6JV:^ >0}
 

Clearly Uj^N V/
 

By Law of Trichotomy for the Reals, every >• satisfies
 
3 .
 

one, and 	only one, of these conditions. Thus [JUi=N and
 
■ ■ . /=! 

Ujr^Uj=0 for j'
 

By the previous theorem, then 3!/34 •
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Therefore either r<0,r=0, or r>0 depending on
 

whether t/j, Uji or U^, respectively, is an element of .
 

So far all of this development could have been done
 

whether the ultrafliter selected was free or fixed. We
 

would like to understand why the use of a free ultrafliter
 

is required. As we will see, using a fixed ultrafliter will
 

generate nothing new beyond the standard Real numbers. To
 

see why, it is necessary to better understand how the Real
 

numbers themselves appear in the Hyperreals.
 

EMBEDDING MAP
 

The Reals can be embedded in the Hyperreals using what
 

is called the embedding map. As we did earlier for the
 

multiplicative identity 1= and zero
 

o=[(o)]=[(o,0.0,...)], in general we will associate a Real
 
number r with the equivalerice class in the
 

Hyperreals.
 

Definition:
 

If rsRf we define *(r)=*r, where *r= eR
 

Thus if r=*r= for some TGi? and S—[(5,)] then
 
r=S if and only if [i eN'.Si=r}eU. in many of our examples,
 

though, the terms of the sequences we use are all different/
 

thus at most one teimi of such a sequence could match a given
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Real number, forcing the sequence to be different than any
 

embedded Real number.
 

For example, S= is not equal to any
 

embedded Real number T=*r=[(r,r,r,...)] with r Gi? since
 
{/e =r}, has at most one member and thus cannot possibly
 

be an element of any free ultrafliter.
 

Theorem:
 

The mapping * is an order-preserving isomorphism of R
 

into R.
 

Proof:
 

The mapping * is 1-1, for if *r=*5" then
 

[(r,r,...)]=[(^,5',...)] and so r=S. It is a trivial matter to
 

show that * preserves the field and order properties.
 

For example, the mapping preserves addition,
 

[{r,r,..)]+[(5,5,..)]=[{r+^,r+^^ *(r H-^)=*r+%.
 

And also preserves ordering: If r<.S' then <*5
 

Considei: [i e Nirf <Si}=[i eN:r<s}=NeZl
 

Hence *r<*S. QED
 

For convenience we will occasionally use r for both the
 

Real number and its embedded Hyperreal value.
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Definition; standard Number
 

The image of the set of Real numbers under the
 

embedding map, is called the set of standard numbers.
 

Any Hyperreal number which is not a standard number, if
 

any, is called a non-standard number.
 

The term "nonstandard Real numbers" is already being
 

used for the entire set of Hyperreal numbers. Now we are
 

defining the term "nonstandard number" to mean a Hyperreal
 

number which is hot "standard". Since these terms are so
 

similar, we must be careful to distinguish between the two
 

forms when used.
 

This brings us back to the notion pf an ultrafilter.
 

We can only build the extension of the Reals called the
 

Hyperreals by using a free ultrafilter.
 

Fixed ultrafliters, "generated" by a single element,
 

are inadequate for the construction of Hyperreals because
 

comparing arbitrary sequences reduces to comparing them on
 

the single element of each sequence which corresponds to the
 

generating element of the ultrafilter.
 

If the ultrafilter on N is U=Uj,={A^N:kEA},
 

r=[(/;•)] and S=[(5-)] then r=S if and only if because
 
A=[i eN:rj <Si}eZl}^ if and only if keA.
 

for each r gR because^e{/ gJV:/J
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Thus, using the same sequences as in an earlier
 

example, if the generating element. A:, for the fixed
 

ultrafilter is odd, then is equal to
 

[(l,!,!,!?—)]/ otherwise it is equal to [<[2,2,2j2,..,)j.
 

For another example, consider the fixed ultrafilter
 

^73={yiC7V:3e yl} (i.e. =3). The sequences r=
 

and S^[(l3,10,7,4,...^j are equal because {i ENlTj=^j={3},
 
(^3=53 —7) and {3}6^73. r i^^^^ equal to t=[(7,10,7,10,
 
because {/€ ={3,6}£^73 and S=t because
 

{/e ={2,3}€773. In fact r=S=t=*7. The important
 

thing to notice is that every sequence in a given
 

equivalence class relative to *7/3 must have the same value
 

in the third element of the sequence. So,
 

V=[(;r,0,1.9,73,...)]=*(1.9)— 5,-N/2,1.9,4e^,...^j=W, no matter what
 
the other terms are, because |iGiV: at least contains
 
the index 3, and thus is an element of 773.
 

Therefore, for fixed ultrafilters, = is simply a
 

mapping from R to R, the Real numbers, and every element
 

of the new "Hyperreals" we are trying to construct would in
 

fact be equal to some embedded Real number, i.e. we have
 

gained nothing. Hence the requirement that we use a free
 

ultrafilter for this construction.
 

But do we actually gain something by using a free
 

ultrafilter? The answer, of course, must be yes or this has
 

all been a waste of time. But we already have shown that
 

1 1 .
 
s= is not equal to any embedded Real number and
1.2.3.­
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thus must be in some liew equivalence class. Therefore the
 

Hyperreal numbers are a proper superset of the (embedded)
 

Real numbers.
 

In fact, S is our first non-trivial example of what we
 

call infinitesimal numbers.
 

The definitions of infinite, finite, and infinitesimal
 

numbers in Hurd and Loeb are equivalent to those given in
 

Keisler, but are now described in terms of their absolute
 

values in comparison to Real numbers.
 

The definition of absolute value for the Hyperreals is
 

identical to that for the Reals.
 

Definition: Absolute Value
 

If r eR, then the absolute value of r, denoted by |r[,
 

is defined as follows:
 

r if r>0
 

r = 0 if r —0
 

-r if r<0
 

By the Law of Trichotomy, the absolute value of every
 

Hyperreal number is defined. Often one will be manipulating
 

a specific Hyperreal number, usually represented in the
 

equivalence class as a sequence which is the result of a
 

specific computation, or a sequence which is simply
 

convenient. In such a case the following result is helpful.
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Theorem:
 

If then jr|=
 

Proof:
 

Pick r eR and define Ui,U2 and t/3 as in the proof of
 

the Law of Trichotomy. Exactly one of these sets is in Zl .
 

Which one determines whether r <0, r=0, or r>0,
 

respectively.
 

?=[(|^i|)].
 
To show |r|=r: .
 

Case 1: r<0 i.e., Ui&ZL
 

|r|= —r=r if and only if Ui={/ G N'.—r^ — |}e .
 

But U\=UiUU2, U^eU,
 

Therefore |r|=f.
 

Case 2: r=0, i.e., U2
 

|r|=0=r if and only if U2=^{i ^N:0=\ri'^ GU.
 

But C/^ — .
 

Therefore |r|i= r.
 

Case 3: r>0, i.e., f/3 E.U
 

|r|=r=r if and only if 6^3={/'eiV";/}=|/-|}e/Zi.
 
But Z./3 =U2 , f/3 , f/3cIJ2, ,
 

Therefore |r|=F.
 

Since all possible cases verify, the theorem is true.
 

We now use absolute values to define the concepts of
 

infinite, finite, and infinitesimal numbers.
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Definition:
 

i) A number seR is infinite if «<|s| for all
 

standard natural numbers 77.
 

ii) A number S gR is finite if |s|<77 for all standard
 

natural numbers 77.
 

iii) A number SGR is infinitesimal if |s|<-^ for all
 

standard natural numbers 77.
 

To verify that S ^ is infinitesimal, we
 

need to show that |s|< —, for all standard natural numbers 77,

I I n
 

First, notice that |s|=S since all terms of S are positive.
 

Now pick neN. Clearly all but the first 77 terms of the
 

sequence S= are less than i.e.,{/GiVly<^} is
 

cofinite and thus in U. Therefore S=|s|<-^, ^HeN, and S
 

satisfies the definition of an infinitesimal.
 

Similarly we can create infinite and finite Hyperreal
 

numbers. s'^-(l,2,3,4,...) is an infinite Hyperreal number
 

since {iEN:i>n} is cofinite for any 77g// and thus in Zl.
 

Finally pick TeR, r 9^= 0, so then r+S, is a finite
 

(*(r-lKr+s<(r+l)), non-Real, non-infinitesimal Hyperreal
 

number.
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NATURAL EXTENSIONS OF SETS
 

If Ac.R, then we can construct a "Hyper-extension" to
 

A in the same way we constructed the Hyperreals from the
 

Reals.
 

Define A= 'Let Zl he a free
 

ultrafilter on TV and construct the set A of equivalence
 

classes of A reiative to the equ relation =(= is
 
/V w ^\
 

defined on A because Ac
 

The properties of A are dependent on the properties
 

of A, but clearly, Ac*A relative to the same embedding map
 

we used before. Further *A is a subset of R and can be
 
jjc
 

embedded using the obvious "identity" mapping f; A^R,
 
where we read on the left side of the
 

/V
 

equation as equivalence classes of elements of A and on the
 

right side as equivalence classes of elements of R. That
 

is to say, the equivalence classes "look" the same, they are
 

representeble by the same elementary sequences involving
 

only elements of A, but the sequences in the equivalence
 

classes of the form [(^/)] R can contain values from R — A
 

(just not too many of them).
 

r=^^^-)j ER is equal to some element E A if and
 

only if [i eNirj eA}eZl, i.e., if {t}) is in A a.e.
 

Thus if any finite number of elements of a sequence (riY
 

in an equivalence class A can be from outside the set A^
 

and even some infinite collections of elements could be if
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the complement of the set of indices of the elements not in
 

A is in {i.e,, {ieN:rj€AYeUor [i eN'.rj ^A} .
 
For example, if A is the set 7,0,7, then
 

[(-3,49,-3,49,...)]e *A if and only if the set of even natural
 

numbers is in 11.
 

As long as A is infinite, *A is a proper superset of
 
A since we can Construct a seguence (^?j,i72?'^3'**'') that
 
ai^ajVi^J. Then (d^)is not in the equivalence class
 
*(6)=[(&,Z>,Z?,.i.)] for any ̂ eA becahse {/ e =b} can have at
 
most One element and thus this set is not in *7/.
 

If A is finite *A gives us nothing new. To show this,
 

let A-{aj,...,a„}, or,- ^ajYi^j, and consider the sequence
 
I^\,b2,b2,j..)={bk\ eTV. Define Ui={k e =a,}
 

n
 

for each /=1,.,.,«. Then UA,=A since every value in the
 
/=1
 

sequence must b^ one of the Cli, and T/y Uj=0 V/ j by
 

construction since Ctj^OjA/i^j.
 

By the Selection Theorem then exactly one of the
 

U- EU. That is every sequence (^>j^) is in the equivalence
 

class *(ay) for some a,eA. Thus no new elements are
 

created.
 

There are two Specific subsets of whose Hyper-


extensions are of interest to us. These sets are the
 

Natural numbers, N, and the Rational numbers, As we
 

have shown before with the Reals, the Hyper-extension of a
 

set has many of the properties of the original set.
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Thus, *N, the set of Hypernatural numbers, is closed
 

under addition and multiplication/ but there are no additive
 

or multiplicative inverses. Unlike R, jV contains no
 

infinitesimals, since iV contains no values near 0. All the
 

finite values in *N- are actually (images of) natural
 

numbers. Yet does contain infinite values, though of
 

course only positive infinites. Clearly, for instance,
 

[(1,2,3,4,...)]f is an infinite in *N.
 
The set of Hyperrational numbers, Q, inherits the
 

field structure of^. In addition, Q contains
 

infinitesimals, infinites and non-trivial finite values. An
 

exampla of a Hyperrational number is r= (ijy?^?"^)...) / '^^4ch
 

is also one of our examples of an infinitesimal. Also note
 

that all Hypernaturals are also Hyperrationals since N <^Q­

Proofs for each of the properties of the Hyperrationals
 

and Hypernaturals can be constructed by explicit handling of
 

sequences and ultrafilters, or they can be verified by
 

application of the Transfer Principle as we shall
 

demonstrate in the next chapter. Since we have already
 

provided several examples of direct verification of smaller
 

properties for the Reals, we will not repeat this exercise
 

here.
 

The complement of the Hyperrationals, is a set we
 

would like to call the Hyperirrationals. But the ^
 

Hyperirrationals should be Fortunately(^ ^
 
as we can see from the following result.
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Proposition:
 

If Aci?,(*Af=
 

Proof:
 

Let r
 

Then r^ *A, but this is true
 

■o-{/eArrjt eAj^'Zi 
•0'{/ eA:r^ eAY^ZI
 
<r^[i eNii'i^ ^A}etl
 

re fA'^Y , QED 

The Hyperirrationals also include finites, infinites, 
and infinitesimals. For instance, 

infinitesimal Hyperrational. 

NATURAL EXTENSIONS OF FUNCTIONS 

The natural extension y, of a Real function f,
 
evaluated at the Hyperreal value r =[(^)], is determined by
 
finding the equivalence class of the sequence obtained by
 
evaluating / at each of the That is to say:
 
VW =[(/(n)»/fe)»/(''3)'-V is defined at r if 
{/'€ is defined , i.e., if (/(^•)) is defined a.e. 
If satisfies this rule for being defined, we ignore the 
elements of the sequence where is undefined in 

determining the appropriate equivalence class. 
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Example 1:
 

/ X fx if X <3
 

^W=|3if,^3
 
If r=[(1,2,3,4,5,...)] then
 

"/(f)=[(/(l)./(2)./(3)./W,/(5)v..)]
 
=[(1,2,3,3,3,...)]=*3=3, since the sequence is
 

identically 3 at all but the first two positions,
 

If S=[(-1,-2,-3,-4,...)] then
 
*/W=[(/(-l)./(-2),/(-3),/(-4),...)]
 

=[(-1,-2,-3,-4,...)]=s
 

2;
 

/(x)=sin(7i:-x)
 

If r=[(1,2,3,4,...)] then
 
*/(r)=[(sin(7u),sin(2x),sin(37t),...)]
 

^ ^ ^i(o;o,o,o,...)]=*o=0
 
If t~ ~ then
 

= sin(7c), sm(27i),...^
 
=[(1,0,-1,0,1,0,-1,...)]
 

1 =0,1 or —1/ depending on whether
 

{2k:k ̂ N},{Ak-3'.k &N} or {Ak-hk is in U
 
If S=r"^ ̂ [^1,4,1,1,...)] then
 

sin(7c),sinf̂ J,sinf̂ j,sin^^),..
s =
 

n 1 ■̂  ■ ■ 0, since /i>Msin^=0.9 r 9 »•'
 
0^0
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This relationship between sequences with limit 0 and
 

infinitesimals can be shown with the following proposition.
 

If 8=^(5^)] and lint Si =^, using the traditional
 
7->bo
 

definition of limits, then 8 is infinitesimal.
 

Proof;
 

7/w 5i=0 -> V ^>0,3« -G|=|5,|<8 V/>«.
 
/->-00
 

Pick an arbitrary A:677 and let then
 

3«e77 \/i>n.
 

^{ieN:\si\<^}eZl VkeN,
 

since each such set is cofinite.
 

.".8 is infinitesimal.
 

The converse though is not necessarily true because of
 

the nature of ultrafliters. As we discussed earlier, if
 

8=[(0,1,0,1,0,1,...)] and t=[(1,0,1,0,1,0,...)] either 8=0, i.e., is
 

infinitesimal or t=0, i.e., is infinitesimal (but not both)
 

depending on whether *11 contains the set of odd numbers or
 
the set of even numbers, respectively. But both /zm and
 

/_>.oo
 

Urn ti are undefined because both {5^} and have two
 
/->00
 

accumulation points (O and l).
 

Thus, just because a sequence is infinitesimal, it does
 

not necessarily have a limit in the traditional sense (at
 

best we might be able to say a sequence which is
 

infinitesinial has a limit a.e.).
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Perhaps a more interesting case is a classic example of
 

a (very) discontinuous function.
 

Example 3;
 

,. Tl if x eQ 

[0 if X 

If r= [(?■)] gR then ; 
V(r)= 
This sequence will be 1 whenever Vf is Rational and 0 

when 1/ is Irrational. Thus */(r) =*l=l if {/ e e^}G'Zi, 
that is, if r is Hyperrational. Otherwise /(r) = 0 = 0, 
since then {/' eNlVi eg}''={/ ^Q}^U, and T is then 
Hyperirrational. 
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CHAPTER 7: THE TRANSFER PRINCIPLE
 

The Transfer Principle provides us with a direct/
 

straight-forward mechanism for identifying what properties
 

of the Real numbers also hold true in the Hyperreals. Use
 

of the Transfer Principle eliminates the need to resort to
 

examining specific sets of indices where explicitly defined
 

sequences satisfy the desired properties.
 

In many cases applying the Transfer Principle is
 

quick and easy. The down side is that a relatively
 

restrictive formal language must be used.
 

THE FORM^ LANGUAGE
 

For purposes of obtaining an understanding of the
 

Transfer Principle it is necessary to introduce some
 

elements of symbolic logic for relational systems. These
 

are referred to as simple languages called L§ and they are
 

used to work with the properties of relations and functions
 

that are extended from the Reals. For our purposes it will
 

not be necessary to define the formal language completely.
 

Except for a few peculiar details, much of the language is
 

actually relatively easy to read, though as is usually the
 

ca.se with new languages, it is harder to learn to write.
 

One of the first things to note is that the names of
 

most objects, such as sets, relations or functions, are
 

underlined* This is used to indicate that we are in fact
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referring to the object in our language, not actually
 

manipulating the object itself.
 

When we apply the Transfer Principle, the names of each
 

of these objects will be further appended by adding a star,
 

to indicate that we are referring to the nonstandard
 

extension of the object in question.
 

The notation R{x) states that X is an element of the
 

Reals. The lower bar indicates the "name" of the Reals in
 

this simple sentencei This is an example of wtiat could be
 

called "metamathematics", meaning that it describes the
 

mathematics, it does not actually manipulate mathematical
 

objects.
 

Many of the usual logic symbols apply: A (and), —>
 

(implies), and V (for all). None of these symbols are
 

underlined or starred since they are part of the language,
 

not the mathematics being described. The standard
 

arithmetic or linear ordering symbols also are not
 

underlined or "starred" since they have exactly analogous
 

meanings in both the Reals and the Hyperreals. Further, if
 

necessary, it is easy to determine which operation we would
 

be referring to ih any specific situation.
 

However there is no use of the symbol 3 (there
 

exists). The symbols V (or) and —i (not) are also not
 

available for use in the simple language. One can get
 

around these restrictions by creative use of the language,
 

e.g., "not" can be replaced by set complements and "or" can
 

be replaced by multiple statements. "There exists" is
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replaced by the use of Skolem functions. Imposing these
 

limitations helps to make the proof of the "simple" form of
 

the Transfer Principle possible to understand for people new
 

to this area of study.
 

This does not mean that the proof is easy to explain.
 

The proof involves a detailed dissection of interpreting
 

true statements about the Real numbers, expressed in the
 

formal language, to determine whether they will be true
 

"almost everywhere" in the Hyperreals. Since the
 

presentatioh of the complete proof would add little to the
 

reader's uhderstanciing of how nonstandard Analysis can be
 

used to teach entry-level Calculus, the proof|not be
 

presented. Instead we will focus on examples of how Real
 

statements are constructed in the formal language and how
 

they are transferred to and interpreted in the Hyperreals.
 

SIMPLE SENTENCES
 

The Transfer Principle relies on the use of simple
 

statements, or sentences as they are called in Hurd and
 

Loeb, expressed in our formal language.
 

Our first example of a simple sentence is;
 

(Vj^)(V^KVz)[R{x)aR(^y)aR{z) x •{y+z)=x- y+x ­

Technically this is to be read "For all for all y,
 

and for all Z, if X is an element of the set called the Real
 

numbers, and y is an element of the set called the Real
 

numbers, and Z is an element of the set called the Real
 

numbers, then X•(_y+z)-x-y+x-z".
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More reasonably this would be read "For all Real
 

numbers X, and Z, X-(}>-hz)=X-y+JC-Z"
 

Another example of a Real Statement might be the
 

Closure Rule for addition of Rationai numbers, i.e., if
 

p,gEQ, then p+geg.
 

This can be formally written as:
 

(Va:)(V;;)[g(x> A2(7)̂ g(x+;/)]
 

SKOLEM FUNCTIONS
 

Hurd and Loeb refer to Skolem functions as a "technical
 

artifice" which is used to replace the phrase "there
 

exists", ugually denoted 3. One of the examples they use
 

is, "For each nonzero in there ekists a JV in such
 

that JC-y=l". In standard mathematical notation this could
 

be written:
 

Vxei?
 

This statement can be interpreted to assert that there
 

is a function, call it VJ/, of one variable whose domain is
 

the set of nonzero Reals, which satisfies X-l|/(x)=l, so that
 

V|/(x)=x~ .
 

We can combine the statements xeR and into a
 

single statement by defining —{o}={o} and then
 

stating XeRq. Also note that the definition of
 

is an example of the methods which allows
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us to avoid using an "or" statement, i.e., 0 is the same
 

as "X<0 or JC>0."
 

Using such notatiori we translate our Real statement
 

into the formal language of nonstandard analysis as follows:
 

(Va-)[^q(x)-> X'ii/(x)=l]
 

In this case the function \|/ is an example of a Skolem
 

function. Another, more complicated example of the use of
 

Skolem functions involves the Archimedean Principle.
 

One variation of the Archimedean Principle states that
 

for each Real X there is a positive integer (i.e., a natural
 

number) such that:
 

\/x eR 3m eN3x<m
 

This transfers into our formal language as:
 

Note that \j/(x) operates here as a selector function
 

since may different values of \|/(x) could be chosen for each
 

X. For example, if \|/(x) satisfies the given conditions,
 

then so does Vl/2(x)=\|/(x)+/7,for any fixed YI eN, and
 

l|/3(x)=W - V}/(x), for any fixed n E N. Any one of these
 

functions, and many more> would have adequately served the
 

purpose here.
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THE TRANSFER PRINCIPLE
 

The Transfer Principle is a basic assertion that any
 

statement in the Reals, whether a function or a relation can
 

be transferred to the Hyperreals.
 

Basically what happens is that a Real statement is
 

translated into a simple sentence and then the Transfer
 

Principle is applied. Notatipnally this essentially amounts
 

to starring the names of the sets, functions and relations
 

used. Conceptually, though, we are actually replacing the
 

original Real sets, functions, and relations with their
 

nonstandard extensions, the detailed construction of which
 

we have already presented. The fact that the mechanical
 

process of transferring Real statements to obtain their
 

Hyperreal equivalents is so easy is what makes the Transfer
 

Principle powerful.
 

The fact is that you must correctly express the desired
 

Real statement(s) in an awkward, formal language, and then
 

interpret the transferred statement(s) correctly, is what
 

makes the process Sometimes difficult and/or tricky.
 

The formal statement of the Transfer Principle, as
 

presented in Kurd and Loeb, is as follows;
 

Theorem: Transfer Principle 

If is a simple sentence in L<^ language of the 

Reals) which is true in Then (|) is true in J'(^ . 

[2]
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The use of 
n 

and here is a continuation of
 

notation from the fitst section in which the Transfer
 

Principle was initiaXly introduced. and denote the
 

Reals a;nd the Hyperreals respectively< Proof is beyond
 

scope of this paper and is not needed for understanding the
 

basic principles described here.
 

Example 1; Distribufive Property
 

"s/XjyyZE R-^x-{y+z)=X'y+x-z
 

Written in the formal language is:
 

(Vji:)(Vj)(Yz)[R{x)aR{y)aR(^z)—^X•(^y+z)— X•y+X•zj
 

The transferred statement is;
 

(Vx)(V3;)(Vz) *R{x)a*R(^y)A*R(z'^ —> x •{y+z)=x -j;+x•z
 

Example 2: Closure Rule for Addition of Rationals
 

If /7,gEg> then /?+
 

This can be formally written as:
 

(Vx)(Vg)[g{x:)A ->0(x
 
The transferred statement is:
 

(Vx)(Vg) Q(x)A Q{y)-^ Q{x+y)
 

This says, in brief, that if X and JV are Hyperrational
 

numbers, then their sum is also a Hyperrational number.
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Example 3; Existence of Multiplicative Inverses
 

3y GR3X-y=l
 

Written in the formal language is;
 

(Vx)[^q{x)-> X•l|/(:y)=l]
 
The transferred statement is:
 

(Vx)[*^q(x)-> X*l|/(x)=ij
 
Kq here is the set of non-zero Hyperreal numbers since
 

the only Hyperreal: number that cannot be represented using
 

elements of ^^'^self. The transferred statement,
 

then, is formally read, "For every X, if X is an element of
 

the non-zero, Hyperreal numbers then X times the value of
 

the function Vj/, the Hyperreal extension of the Real
 

function V|/, evaluated at X equals 1."
 

Example 4: Archimedean Principle
 

\/x eR 3m eN3x <m
 

Written in the formal language is:
 

(Vx)[^(x)-» iV^ll/(x)^ A X <^(x)^^ ^
 
The transferred statement is:
 

(Vx)|*^(x)-»*iV^*^(x)^A x<*y(x)j
 
This transferred statement is read "For every X, if X
 

is an element of the Hyperreals, then the values of the
 

Hyperreal function y(x)is a Hypernatural number and X is
 
sjc ■ 

less than the value of
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STANDARD PART
 

In order to introduce the next section we need to
 

introduce two important equivalence relations on R and the
 

associated notions of monad and galaxy. Monads are of
 

special importance for two reasons; for the nonstandard
 

treatment of conveigence and continuity, and also because
 

Leibniz discussed monads as being the indivisibles essential
 

to the understandihg of his development of the Calculus.
 

Definition:
 

Let X and y be numbers in .
 

i) X and y are near or infinitesimallv close if X — y
 

is infinitesimal. We write X « . The monad of X
 

is the set = ix®)/}.
 

ii) X and J are finitelv close if X — y is finite. We
 

write X^_y. The qalaxv of X is the set
 

G{x)^{ye^^:x=y}:
 

The monadic and galactic structure of is easily
 

visualized. Clearly m(0) is the set of infinitesimals and
 

G(0) is the set of finite numbers. It follows that any two
 

monads m(x) and m(y) axe either equal (if X is infinitely
 

close to i.e., X«JV ) or disjoint (if X is not infinitely
 

close to y). Specifically the monad of any infinitesimal is
 

still }fl(0). The relation is an equivalence relation on
 

. An analogous statement can be said for two galaxies
 

G(x) and G(>') are either equal (if X=y is finite) or
 

disjoint. The monad of any finite number, specifically any
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Real number, is the same as G(0). The relation = is also
 

an equivalence relation on_^n*.
 

Examples of Monads and Galaxies:
 

: Infinitesimals (elements of m{6))
 

=;(0,0,0,...>]=[(0)]=0
 

1 ii1
 

Sn 


Si- I* •- « «•«
 

2 	3 4
 

52=[(-0.4,0.04,-0.004,0.0004...)]=|^^(4)(-0.iy^
 
53	=[(0.14159...,0.04159...,0.00159..., ...)]
 
=[(all but the first / digits of 7l)j
 

Finites (elements of G(0))
 

ti =[(6.92,6.92,6.92,...)]=[(6.92)]=6.92
 
t2 =[(3,3.1,3.14,3.141,...)]=[(the first i digits of 7c)]
 

t2 «7C-> t2 em{n)
 

—
 +7
 

t3 «e—> t3 em{e)
 

Infinites (elements of G(o)^)
 

ui =[(1,2,3,...)]=[(/)]
 

U2=[(1,-20,300,-4000,50000,...)]= ('(-10)'"'
 
U3 	 =
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Other Examples of Monads and Galaxies
 

Elements of 7w(—S)
 

Vl= ■(-8)] =-8 
■(-7,-7i,-7f,-7i ...)]= Vi+SiV2=
 

V3 =[(-8.4,-7.96,-8.004,-7.9996,...)]-Vi+ S2 

Elements of /w(u|)

wi=[(2,2j^3|,4|>...}]-«i+Si
 
W2 =[{1.14159.:.,2.04159...,3.00159..., ...)]=Ui+ S3
 

Elements of (j(ui) 
: Ui =[(1,2,3,...)] 7 

Pi =[(101,102,103,104,...)]= Ui+100 
P2 =[(4,5.1,6.14,7.141,8.1415,,..)]= Ui+t2V 

P2 «Ui+7C-»P2 e/«(ui+7c) 
Also, p^=Ui+r,rei^ 

p,=Ui+s, ssG(o) 

similar to our previous development, if S = [(^^)] and 
Urn Si = L eR, using the traditional definition of limits, 

i-^co 

then S »L, or equivalently, S &m{L). 
To see this, consider S—L = [(5,-— L)]. Then 

lim isi -L) = 0 / and thu^s by the earlier result, [(5^- - 7/)]»0. 
/^OO 

This means S—L «0, hence S « 7/ and sem(L). 

We are now prepared to present a formal definition of 

the Standard Part of a Hyperreal number. 
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Theorem:
 

If p e is finite, there is a unique standard Real
 

number r eJ? with p »r; i.e., every finite number is
 

near a unique standard number.
 

Proof:
 

Let ̂ ={xei?:p<x} and 5={x e i?:x< p}
 

Since is finite, there exists a standard number S
 

such that -5'<p<5. It follows that B is nonempty and
 

has an upper bound. Let r be the least upper bound of
 

5 (the existence of r is assured by the completeness of
 

R). For each S>0 in jR, (r+8)G v4 and (r-8)G5, so
 

r-8<p<r-l-8, and hence jr-p|<8. It follows that
 
r«p. If ri«p then |ri-r|<lri-p|+|p-r|<28 for each
 
standard S>0, whence QED [2]
 

Definition:
 

If p G is finite, the unique standard number r ER
 

such that p«r is called the standard part of p and is
 

denoted by St(p). This defines a map St:G(0)—>R called
 

the standard part map.
 

Clearly st maps G(0) onto R since St(r)=r when T G i?.
 

That the map also preserves algebraic structure is shown by
 

the following theorem. [3]
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Theorem:
 

The map St is an order-preserving homomorphism of G(0)
 

onto R.
 

i) st(i:±y)=st(x)±st(;/)
 

ii) st(x•>-)=St(x)•St(i')
 
X 1 st(x) .
 

iii) st if st(;^)^0
 

iv) st(x)<st(i^) if x<y
 

Proof:
 

Let x=r+s and y=s+d
 

St(x->^)= St(x)-St(7)
 

st((r+s)-(5+5))=
 

st(r-5+r-5+5-5+s-6)=
 

st(r•5)+st(r•8)+st(5'•e)+st(s•5)=
 

r-5'+0+0+0=
 

r-s= st(x)-st(>')
 

QED
 

Note, the St(r-5') is r-S, because the product of real
 

numbers is a real number, however, the product of teal
 

numbers and infinitesimals is infinitesimal and so is the
 

product of infinitesimals, the Standard Part to those
 

products is 0. Therefore St(r-6), st(5-s) and St(5*s) are 0.
 

The development in Hurd and Loeb is as described in the
 

first section of this paper. For the purposes of this
 

discourse we need to restate the fact that Real numbers are
 

sometimes called "standard" numbers while Hyperreal numbers
 

that are not Real are "nonstandard" numbers, hence
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Nonstandard Analysis. The Standard Part of a number is the
 

Real number which is infinitely close to some Hyperreal
 

number Infinite Hyperreal numbers do not have standard
 

parts. This then leads us to calling the Real number that
 

is infinitely close to ̂  the "standard part" ot b.
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CHAPTER 8: CONCLUSIONS
 

As we have seen, the primary advantages of the
 

nonstandard method of teaching the Calculus is that it
 

provides the student with a more intuitive, conceptual
 

approach to the subject. The results are the same and the
 

algebra is virtually identical to the traditional limit
 

based method, so instructors can easily make the transition
 

in instruction to using the nonstandard method. Though
 

covered later in the course and less heavily depended upon,
 

limits are still taught, so no critical background is
 

missing for students who choose to go on in their
 

mathematics education. On the contrary, having been exposed
 

to the nonstandard method may enhance the students'
 

intuition about limits and provide them with another
 

intellectual tool with which to solve other types of
 

problems.
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