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ABSTRACT

This project seeks to presentvthe basic appfoach to

teaehing the Calculus using concepts>from-Nonétandard

Analysis, as developed in the text, "Elementary Calculus, An

Infinitesimal Approach", by Jerome Keisler. In this first

part of the project the elementary development of an
extended number system celled the Hyperreals is discussed.
The Hyperreals, which contain infiniteéimal and infinite

numbers, are developed and it is shown how these numbers are

 used to replace limits in Calculus computations. - This

replacement of the limit concept is one of the foundations

of Keisler's approach.  The introduction to the Hyperreals

in this section is limited and emphasis is placed on how
they are used in the instruction of the Calculus. For the

teaching of entry-level Calculus, no real underétanding of

' the theory supporting the Hyperreals.is needed.

The‘secohd half of this project develops the basics of

Nonstandard Anelysis, including the theory of ultrafilters,

-and the formal construction of the Hyperreals; Major

theorems, definitions and axioms are presented. Proofs,
generally using direct ultrafilter manipulations, are given
in detail. The Transfer Principle is discussed briefly and

examples are presented.

iii
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CHAPTER 1: INTRODUCTION

When I discovered thevcalculus’tekt:written by Jerome
Kelsler, I thought it would be lnterestlng to learn more
labout us1ng new: methods in some ba81c Calculus problems. As
a student and tutor I had always found that ‘some studentsv

‘had a very difficult time comprehendlng and u31ng the theory;
_ of limlts._ In Keisler's text an extended number system
lcalled the "Hyperreals" 1s used./ The'HyperreaIS'are the
Reals'with the added quantltles of 1nf1n1te81mal and
linfinite numbers.‘ By us1ng the. Hyperreals, 1lmlt |
computations become 51mple calculatlons w1th1n thls extended
set of numbers, thereby reduc1ng the complex1ty of learnlng
'rthe Calculus for many students. | |
’H For my purposes, whlch were to get an underlylng
.‘nunderstandlng of the background behlnd the Calculus text,
there was no need to delve too deeply 1nto the major theory
’lof Nonstandard-Analy31s.d Therefore'I.studledionlyvthe flrst_

”chapter,‘"Inflnlte51mals and the Calculus" : 'n‘the text "An

‘ Introductlon to Nonstandard Real AnalVSls" by A. E. Hurd

.fvvand P. A. Loeb.5 ThlS gave a ba51c background to the

development of the Hyperreals, thelr constructlon as an
yexten31on of the Real numbers, and the formal language and

-f51mple methods used to do some standard proofs.



- The Nonstandard Analy31s approach is more- of an
[1ntu1t1ve computatlonal approach as compared to the theory
of llmltS, or the €,0 (ep51lon, delta) methods, as taught in
"colleges today. Unfortunately sometlmes the more rigorous
}35 theory is. only touched on 1n a. most cursory manner, if
‘adatball. Most all teachlng of the Calculus at the beginning
'level is taught on an 1ntu1t1ve basis, however for some
'studentsyitlisn'tgintuitiVetat all. So if instructors are
using an approach wherexthey‘are not deyeloping the theory,
then they mlght as well teach u51ng concepts which are a.
'11ttle ea51er to understand. The good thlng is that this

nonstandard approach also makes the llmlt concept a llttle

‘vmore understandable since in the nonstandard approach

"limit" computatlons work v1rtually the same as computations
:1n the conventlonal or tradltlonal methods. Note that ‘the
.theory of limitS'is still‘taught‘in the Keisler text, though‘
~not until after derivatiyes are covered;

Another reason'I was interested in the Nonstandard
AnalySis‘approach is that I feel that it‘is closer to the
_idea‘of' "infinitely small numbers“ [1]',that Leibniz had in '
mind. When Lelbnlz was developlng the Calculus
v(concurrently with Newton), “he used a conceptual convenience
}dwhlch he referred to as- "1nf1n1tely small numbers '[1] to
allow hlm to manlpulate what we refer to as limits w1thout

- the complex1ty requlred by €,0 (ep81lon, delta) method



| '__‘vmh'ich was*"ridt developed until the 1800's. Neither he nor
anyone else was able to pr0V1de a solid theoretlcal ba51s
.gfor these "1nf1n1te51mals" because at the tlme Lelbnlz was
’diSCovering the'Calculus there'stlll was some question as to
‘the approprlate level of rigor which should be required of
‘:mathematlcs. The form for proofs and notatlon to be used
dwere still in the process of belng standardlzed. Although ;
‘mathematicians Were in agreement that'thls was necessary”to’
-comprehend each other s works,‘the work was not yet
‘ complete. Spe01f1cally, hey had not at that tlme developed
all the necessary mathematics for Lelbnlz to be able to
explain pre01sely-enough these lnflnlte51mals and their
approprlateness for the Calculus. In fact Lelbnlz idea of
1nf1n1te81mals caused a stir with one of the outstandlng
;»}philosophers»of the day, BlShOp George‘Berkeley,-who wrote:
"And what are these same evanescent 1ncrements°
‘They are neither finite quantltles, nor quantltles
~infinitely small, nor yet nothing. May we not call
them the ghosts of departed quant1t1es°" [2]
It was not until'1960 that’Abraham Robinson discovered

the means to prov1de a SOlld foundatlon for Nonstandard

A Analy31s, and through thlS the concept and structure of

,1nf1n1te81mals~were thoroughly establlshed.



CHAPTER 2: THE HYPERREAL NUMBER SYSTEM

One of the student”s greatest dlfflcultles is
\conceptuallzlng what a "very small" number or “approachlng a
Value" means and whether or not that number is "small"
kenough to dlsregard. So in the nonstandard approach we help
them by deflnlng a new set of numbers, an extens1on to the
:Reals, called Hyperreals." The Hyperreals is the set of the‘

”eReal numbers to whlch have been added 1nf1nlte31mals

'v(lnflnltely small numbers) and 1nf1n1tes (1nf1n1tely large

‘numbers) Inf1n1tes1mals w1ll be denoted by Au:ﬁgga 5 the

; 1nf1nltes by f{lf and the. set of the Hyperreals by J{

»STRUCTURE OF THE HYPERREALS

We begln bulldlng the Hyperreals, conceptually, by
adding these ;nf1n;tes1mals_to‘the Reals, somewhat like
adding a decimal.fraction to a whole'number:“This generates
~-a collection of Hyperreal numbers infinitely close to each
,element in the Reals.g This is reminiscent of:the "fuzzy
ball"”idea'that each:Real:number”is'surroundediby numbers
that are really close in value. In*thislmodel howeVer only
»one Real number is in each fuzzyhballg"In.the‘text*Keisler

‘uses an infinitesimal microscope to show this idea.
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Figure”lf The Hyperreal Line [3]

Wé conéeptually generaté the‘infinites by taking
reciproééls‘of the infihitésimals. The Hyperreals are said
to be closed under addition, subtraction, multiplication and
division, allowing the student to compute with this extended
set of numbers exactly as they would with the Real numbers.

But this conceptual introduction will only take the
student so far, sd more formél definitions of what these
Hyperreal numbers are and how they relate are provided. The
most important definitions the student must learn relate

directly or indirectly to infinitesimals.

Generally:
i) A number € is said to be infinitely small or

infinitesimal if for every positive a an element



ii)

iii)

Once
~infinites
these new

are going

of the Reals, —a<e<a. The only Real number

that is infinitesimal is zero.

B o _
If a,b €R and a-b is infinitesimal then axb.

‘This is read a isvinfinitély closé_to b.

The Hyperreal numbers infinitely close to 0 are 

infinitesimal, denoted by a~(0. These are the

only infinitesimals;

If € is infinitesimal and is positive then -€ is
negative infinitesimal, é is infinite and

positive, and —i isvinfinite ahd negative. A

Hyperreal number that‘is not infinite is called a

>

finite number.

we have identified what infinitesimals and
are, we need to know that we can compute with
numbers in some reasonable way if'the'Hyperreals

to be useful to us in the study of the Calculus.

wThree'bésic principles whicﬁlestablishrthe relatidnship

between the Reals and the Hyperreals form the basis of the

Calculus as developed in Keisler's textbook;



CHAPTER 3: THREE BASIC PRINCIPLES _;?f;fh[‘“V""’"

bﬁf”fhls development of the Calculus are the ExtenSIOn PrlnCIple,ful”f

The three baSleprlnClpleS on whlch Kelsler relles for:;;pfff

':fthe Transfer Pr1ncrple and the Standard Parts PrlnClple.ﬁ'Iﬁ f,.h;“

quurd and Loeb we should note, these results are actually

.plpresented as theorems;prresentatlon of these prInCIples

'”fessentlally as ax10ms allows Kelsler to use the power they

:?lprOVlde w1thout the burden of detalled technlcal developmentﬂ

2'or Justlflcatlon.. Requlrlng such technlcal development
lphwould defeat the purpose of us1ng the nonstandard approach

bito teach the Calculus and do llttle to enhance student

E i;understandlng.g

'“k‘THE EXTENSION PRINCIPLE

The ExtenSIOn PrlnCIple tells us that the Real numbers

'fhlfare a natural and proper subset of the Hyperreals, and it

extends all Real functlons to the Hyperreal numbers.

‘ ‘3Pr1nc1p1e I.; Extens1on Pr1n01ple

'ffa)j.lthe Real numbers form a subset of the Hyperreal

'“95numbers,'and the order relatlon x<:y for the Real;,""

Lk
q

ft&f}In other words the Realfllne is a part of the

: Hyperreal llne.,hﬁf

s pnumbers lS a subset of the order relatlon for 1{1;“:_l"



bf | there exists an € in‘ ﬁ{* sﬁch.thét 8:>O but
e<a for all ae Rt
. <) “for e?efy Rea1 function_f of one or more
| variables we‘afé‘given a COrresponding ijerreal
function f* ’of‘the same number df variables. f*

is called the natural extension of f .

From this we formulate a more precise description of

infinitesimals.

Definition: A Hyperreal number b is said to be:

Positive Infinitesimal if b is positive but less than

every positive real number.

Negative Infinitesimal if b is negative but greater

than every negative Real number.

Infinitesimal if b is either positive infinitesimal,

negative infinitesimal, or O.

Negative v Positive
Infinitesimal ‘ Infinitesimal

€ > (), infinitesimal

Figure 2: The Infinitesimals [3]



Then we do the same‘for‘the infinite numbers.

Definition: A Hyperreal number b is said to be:»v

Finite if b is between two Real numbers.

Positive Infinite if b is greater than every Real

‘number.

Negative Infinite if b is less than every Real number.
Infinite if b is either,positive infinite or negative -

infinite.

100 100+€

100-€ -

-1/e ' 1/e
: I\
Y v ‘ Y
Negative - ~ Finite  ~ ~ Positive
infinite ' ' B : ' infinite

Figure 3: The‘Finites and:Infinites' 31

The definitiéhs for fihité;viﬁfinite aﬁd‘infinitesimal
numbers given above are'stated in tefmé of comparisons to
Real numbers. Usuaily ﬁhen,ﬁebarequ;king with Hyperreal |
numbers it‘is more cpnvenienttfo qupare to btherv

Hyperreals. The following theorem allows us to do’this.



Theorem:
| i) Every‘Hyperreal number whichvis between two
infinitesimele is infinitesimal.
ii) EVerY»Hyberreal number'which is between two finite
Hyperreal_numbetsvisvfinite.
iii).Evefy ijerrealvhuﬁbervwhich‘is greater than some
 positive infinite number ie pqeitive‘infinite;
i%) Eﬁery Hyperreal number whieh‘is’less than some

negative infinite number is negative infinite.

~ These results are easy to prove. ' For instance,

cons1der 11)

Proof of 11) }

Let abceﬂ( with a<b<c and a,c fJ.nlte.

To show b finite, i.e. 3-7;S Real such that_r<<b<<S.i'

Since aé finite, 3 58 ‘Real such that n<a<s and
3 1,8, Real such that i’z <C<S2. ‘. | |
set r=min(7,”) and §= max(sl,sz) then

r<n<a<b<c<s,<s. Thus r<b<_s with 7,5 Real.

Therefore b is finite.

10



THE TRANSFER PRINCIPLE
The Transfer Principle states éssentially that
computations with, and properties'bf, the Hyperreal numbers

are identical to-those’bf the Real,numbers.

Principle II:  Transfer Principle
Every Real statement that holdsifor one or more
particular‘Real function holds for the Hyperreal

natural extensions of thesetfunCtions;

The transfer principle'basically states that everything
We‘do‘with the Reals -- the rules, functions and operations
'—=- we also can do in the Hyperreals, and they behave the way

we expecttthem to.

Definition: Real Statement'
A combination of equatiohsfor.inequalities about Real
expressionS'ahd statements specifying whether a Real

expression is defined or undefined.

Specifically a Real statement involves real variables

~and particular Real functions.

11



”‘vExampleslbffRééi:Sﬁﬁtéﬁents{::i

|  1) vAésociatng,laws fof‘éddiﬁion-énd,multiplication
‘2)"Distribﬁ£ivé'iéw e | |

3) Propertiéé.of equality.

4}  The fact that division by zero is not defined

5) 'Additive-inverses exist |

6) Multiplicative'inverses exiét for non-zero elements
7) Properties of inequalities

’8) ‘AdditiVe and multiplicative idéntities exist

9) Algebraic and trigonometric identities

Each of these‘statementsvtransfers to an équivélent
statement which holds for the Hyperrealé.
| Generally, ény statement which you can say is true for
ali Real numbers is also true fot»all.HYperreal numbers,
wifh an appropriatebinterpretation. For instance, the
étatement that a?—1=(a+1)(a—-1) holds tfue for all Real
numbers a. Thereforelit aiso holds true if a is any
Hyperreal numbér. No change in the_intérpretation of the
statement appeaied to be necessary, but we did in fact have
to remember that l'is both a Real and a Hyperreal number.
We treat 1 as a Real number when interpreting the Real
statements and as a Hypetreal number when interpreting the

transferred (Hyperreal) statements.

12



For the»statement, "If a#0 thenié exists as a Real

number," we have to make a more expllc1t adjustment in our
1nterpretatlon of the statement when we transfer it to the
-IHyperreals. Thertransferred statementwshould be, "If a;ﬁO

,then-% exists:asra:Hyperreal number.“ Though this seems

dobvious"and‘trivial it shOws that'beinéhtoo casual in our
.ahandllng of the Transfer Pr1n01ple can lead to an error.

A good example is the Archlmedean Pr1nc1ple. "For every
Real a there ex1sts an 1nteger n such that a<n." If we:u
are not careful, an 1ncorrectutransferxof‘thls statement
which we'might‘generate‘could be: “For“every:HyPerreal a
v'there eXlStS an 1nteger n such that a<in;ﬂ Clearly this is

:not true because each p051t1ve 1nf1n1te number is larger‘
. than any 1nteger,_s1nce all 1ntegers are Real,numbers. - The
correct transfer would be.‘"For every Hyperreal a there
| ‘ex1sts a Hyperlnteger n such that a<<n.""The specific
definition ovayperlnteger‘requlres the precise7construction
of the Hyperreals from‘ﬁurd and Loeb and thus will be
deferred until this is presented later in this document.

In Hurd and Loeb the deflnltlon of the formal language
"which we must use to describe the Transfer Principle and the
statements to which it‘applies'iS“rather complicated to
construct'and understand, but it‘essentially says the same
. thing.'_FOrtunately the language itself helps'us avoid

simple errors in using the Transfer Principle. By learning

13 T



-and using the formal language, transferrlng statements and
- 1nterpret1ng the results becomes a stralght forward process,

_ The Transfer Pr1n01ple bas10ally states that everythlngli

. we do w1th ‘the Reals, be 1t rules, functlons,vor operatlons,'

;'behave the way We expect them to 1n the Hyperreals.

HYPERREAL ARI THMETIC
The arlthmetlc operatlon rules for the Hyperreals are
'the same as for the Reals'wlthka few ‘added detalls and

special cases.

Rules for'Infinitesimal’ _Finite, andﬁInfinite Numbers
Assume that € 5 are. 1nf1n1tes1mals, l>c are. Hyperreal
'.'numbers that are flnlte but not 1nf1n1tes1mal' - and f{Kfare

"rnflnlte Hyperreal numbers,

i) Reaannmbers;
The'only-infinltesimal.Réal‘number is 0
Every real‘number is finite.

ii) ‘Negatlves.

-€ is 1nf1n1tes1mal
éb’isffinite:but not infinitesimal

-H is infinite

" k;‘f



iii)

Reciprocals:
' 1

1f €#0, - is infinite

iv)

€

1

5 is finite»but‘ndt infinitesimal

1

T is infinitesimal

Sums: .

€+8 is infinitesimal

.b-FS is finité'butfnot infinitesimal

vi)

vii)

b+¢ is finite (possibly infinitesimal)

H + € ahd H +b are ihfinite

Products:

€-0 and b € are infinitesimal

b+c is finite but not infinitesimal
H -b and H foare»infinite

Quotients:

b

and ?i‘are infinitesimal

™
e

is finite but not infinitesimal

NS0 | ST
o

- H
-and J are infinite, provided that € # 0

Roots:
If € >0, ¥¢ is infinitesimal |
If b >(L‘Qﬁ; is finite but not infinitesimal

If H >0, %/H is infinite

15



There are four cembinations which‘are‘not‘eovered ahove
ibecause they may result in a variety ef different answers
depending‘on thedrelative,"siée“ of theivaiues heing
combined. SinCe;we'can not say for Sure what‘the actual
"size" of theiansweriwill be without additionalbinformation
about the‘numbers themseluesi we refer’to these combinations
as "indeterminate forms"; The four indeterminate forms are .
%, I[g' He and H+K The»follow:vi_nq tabie illustrates how‘
“examples.of eaeh of thesebcombinatiens can generate resultst

which are infinitesimal, finite or infinite.

Figure 4: Indeterminate Forms of Various Values

Indeterminate InfiniteSimal' : Finite : Infinite
Form S o B (Equallte 1)
% | %§ ‘% iTi" ;, i%
ek HRCH)  GRDCH) Hen

éemfar'we haue:discussedﬂcemputations with,the%

Cﬁyperreals;sbut'f6r~these7ebmputations-to be helpful to us

1'1n the Calculus we have to be able to get answers whlch are

Real numbers. Generally the answer we need is the Real

16



number closest to the Hypérreal'nﬁmber which is the result
of our Computations.,‘Finding the appropriate Real number,
and even knowing that‘such exists, involves a concept called

the Standard Part of.a number.

STANDARD PARTS
To define the Real number we are looking for, we need
to define what it means to be "infinitély close” to a

number.

Definition: Infinitely Close

- Two Hyperreal numbers b and ¢ are said to be infinitely

close to each other, in symbols b~c, if their

difference b—c is infinitesimal.

Numbers which are infinitély close to each other

satisfy certain properties, as described below.

17



Properties of Hyperreals: ‘
1) If € is infinite'simal then brb+g
(b is infinitely close to b+¢ becausev

b-(b+e)=-¢ is infinit‘esimal)

' 2) b is infinitesimal if and'onlY'if b0
(this notation is used to indicate that b is

'infinitesimal)

' 3)“ If b and ¢ are real and bkﬂc‘then;bﬁ=c

v (bf;C.i$ real and infinitesimai;’hence 0)

Theorem: o | _

* ’Lef'd;b”énd ¢ be Hypefreallnumbefé.
i)_ .dgsa o ;  | o _
';ii) 1f a'zb,; theh bra

iii) If a~b and b~c then a~c

Theorem:'
Assume b~c v v
i) If b_ﬁok then so is ¢
o ii) If b_is finite then so_is c

‘iii) 1f b is infinite then so is ¢

18



For convenlence Real numbers are sometimes called
"standard" numbers while Hyperreal numbers that are not Real
' are."nonstandard" numbers. This then leads us naturally to
calllng the Real number that is 1nf1n1tely close to b the

"standard part" of b.

~Definition: 'Standard Part

Let b be a finite:Hyperreal number. The standard part

- of b, denoted by SKb), is the Real number which is
infinitely close to b. Infinite Hyperreal numbers do

not have standard parts.
Example: If b=a+g, ae R, then st(b)=a

Principle III: Standard Part Principle
Every finite Hyperreal number'iS'infinitely close to
exactly one Real number.
1) st(b) is Real
2) b=st(b)+¢ for some €

3) If b is Real then b=st(b)

19



Theérem:
| Let d and b be finite.Hyperreal numbers. Then:
i) st(- a)--st( )
A )
iii)  stla- b) ()-‘st(b)
iv) vst( b) = st(a) - st(b)
v) If st(b):éO then st(a/ b) ( )/ st(b)
vi) St( ) (a))n '
'{rii)‘ 1f >0, then st(ﬂ—’(/%

;Viii) If a<<b “then Sﬂ )<Sﬂb)m

72}
Q
+
=
v
FR
\../
+
[72]
=
=

ii)

‘_Note: ; Even if a<<b, Sﬂ a) may,éqﬁal Sﬁb)

 Examples of Prodfs»df the Properties:

Given: r,s are Real numbers, and €,0 are infinitesimals

a=r+¢ and b=s5+9

 Property (i): st(—a) = —st(a)
" Proof: - st(-a)= |
st(—(r +¢€))=
r+( 8)) =
=

—st(a) = —st(a)
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~ Property (ii): st(a+b)= st(a)+st(h)
Proof: o ﬁ(afkb)=
SH((r+E)+(s+8)) =
| st(r+s+é+6)=
st((r + )+ (e +8)) =
eR ~0

r+s=
st(a) +st(b) = st(a)+st(b)

Exémples of Computations Using Standard Parts:

Example 1:
| Compute the standard part of 2+¢+ 3g?
st2+¢e+ 382)
=st(2) +st(g) + st(3e?)
=2 +0+st(3) - st(e?)
=2+0+3-0 ‘
=2

Example 2: | .
st((4+€)* ++/95)

=st((4+¢)?) +'st(«/%)

=(st(4 + :—;))2 + St(«/§) . st(\/g)
=42 43.0 o
-16
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CHAPTER 4: NONSTANDARD CALCULUS

STANDARD PARTS AND LIMITS |

Many students haverdifflculty with4limits;-_The
nonstandard approach allows us‘to do'the éalculuS'as a
computatlonal exer01se w1th a new set of numbers instead of
hav1ng to understand what llmlts are all about.‘”“

Yet the algebra 1nvolved is v1rtually 1dent1cal and the
rules for taklng standard parts are the same as.those for
taking limits. | | |

If yOu"consider the.folloulng eXample,fYOu'should
'jrecognlze the s1m11ar1ty between standard parts and llmlts;
In fact taklng standard parts replaces the operatlon of

‘taklng llmlts in the Calculus as we shall, see.-

 Example Comparing Rules for Standarvaarts and'Liﬁits:l

Standard Parts - Limits

st(a +b)=st(a)+st(b) llm [ f(x)+g(x)] llm f(x)+ llm g(x)

After‘gettingﬁa'baSic understanding of how standard

E parts computatlons go,‘when the students learn about llmlts,

and even the €,0 method they w1ll already have an
:understandlng of the computatlons 1nvolved and should even

.have an 1ntu1t1ve 1dea of how llmltS behave.
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', DIFFE‘REN']T‘IATION, 6R "LOOk MA, NO LIMITS‘! "
- One of the most interesting aspects of the Keisler text -
is that Differentiation and Derivatives are introduced by
using standard parts instead of limits. This, I‘feél, is
what ines studentsvthe édge to a better uﬁderstanding. of
course "limits" are in£roduced in the next chapter éf
Keisief's text, but only after a student has had the
opportunity to do some work with derivatives by using

standard parts.

SLOPE OF A LINE

‘Thé motivating diagrams énd definitioné for slope of a
curve and derivative. of a function used by Keisler are
virtually identical ‘to the traditional devélopment, with the

exception that limits are replaced by standard parts.

S is said to be the slope of‘f at a if

s St(f(aJrAx)—f(a)
Ax

) for every infinitesimal Ax 0

Infinitesimal microscope makes idea of slope of tangent

line intuitive.
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snwughthne 'f;fi}’if'%%b‘ : R T

©. Figure 5: Slope of a Line [3]

As ln the tradltlonal method there are several ways

fthe slope of f'at a can fall to ex1st;.EThe detalls ofteni‘g

‘ylook qulte a blt dlfferent, though.itfglh;*t:"
H. The follow1ng are all the pOSSlbllltleS that can occurh?f

}'when computlng slopes.,,.l

| 1) The Slope Of f at Cl ex:.sts 1f the ratJ_o

| (f(a+Ax)—f(a)

Ax v*) lS flnlte and has the same fuﬁ“

glﬁ_standard part for all 1nf1n1te51mal Aw:¢0 ea S

It has value‘S m{

fa +;A'¥)j-“f(}a‘), P

frex A" )= f <a>) . o e



2) The slope of_f at a can fail to exist in any of
four ways:
“a) fla) is undefined.
b) f(a+Ax) is undefined for some Ax #0

fla + A - fla)

c) The term , is infinite for
‘some Ax #0

S f(a+Ax)—f(a) .

d) The term - A has different

standard parts forydifferent Ax #0

The followihg”are examples forjthe cases listed above

of how eompﬁtations of;slopes'can»fail}
Example a): Slope of f(l) doesn't exist for f(x)==;%T

Example b) fla+ Ax) is undefined for some infinitesimal

Am #0. The constructlon necessary for this example relles
on a much more detalled knowledge of howvfunctlons transfer
into the nonstandard domain. Because of this, it is'note_

covered in Keisler and is not likely £o berresented in a
Calculus course.  This will be covered in detail‘durihg the
more formal diseussion of nonStandard.anAIYSis as presented

in Hurd and Loeb.
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S (a + A76) f (x)

'_jEXamplé“c)ff?Thé}term ' 1s 1nf1n1te for some"hf”

8 Co 'J.nflnltes:l_mal Ax ;& 0

#’x 7 > L
If Ax>0 the’n f(7+Ax) f(7) 5 5

O

‘,ﬂAx‘yfo

f<7+Ax) f(7) 3-5 -8
Ax :

f(x) {

If Ax<0 the

f(a+AX) f(x)

x?[Examplé;d) The term has dlfferent

‘...étandard”parts for’differént;ihfinitesimals;Ax;gois;

f (x) |x|

Formula for slope at a 0

L0891, iCn (0> l SRR

L “DERIVATIVES
| Once the slope of a llne 1s deflned the deflnltlon of
‘ﬁl[the derlvatlve lS exactly the same as 1n the tradltlonal

' f’m%thodef«:;lff’i:? B

—~=—= infinite =



‘Definltion. ‘
Let.f be a real functlon of one varlable. The
derlvatlve of f is the new function f' whose Value ati
X is the slope of_f at x |

o - oLt e

A ,) wherever the_slope exists

f'(x) is undefined at x if the slope of f does not
exist at X

‘ For'a‘giVen point,a, the slopeaoflf at a and the

derivative of‘fhat a are the same.

If we wrlte Ay f(x-kAx) ‘f(x) we can 1dent1fy Ay as
a real functlon of two varlables x and Ax.

The transfer pr1n01p1e 1mp11e5’that this eqnation'also
determineS‘Ay as'a‘Hyperreal function of the same two
variables. | N |

f Ay is called.thevincrement of .

Sometimes we»write»yr=;fo)-so’that

roms( G )

3 . B -;i_ (Ay) :
takes the form )’ =st|—| -
) | Ax

Whlchever form we choose to use, with the nonstandard

approach dlfferentlatlon becomes a s1mple computatlon.
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Example:

Compareffindianthe derivative'ofvf(x)zr% using

the limit concept to using standard parts.

Using Limits

S +h)—f (%)
.f(x) h”’ I '

Standard Parts

rorms{ ) o L 100)

gg_
b

1/ (x+Ax)—1/x

'x+(x+Ad)

~ x(x+ Ax)Ax

'-*A)C '

) ,,= x,(,x, + Ax)Ax

-1

T x(x+Ax)

1

T st(a)st(x + Ax)

Note that the algebra 1nvolved in the two dlfferent

approaches is v1rtually ldentlcal.

The only real difference

' is a conceptual Qne; the real quest;on is will the student

1.handle'1imits or standard parts more easily?‘

Clearly the B

answer to this is somewhat dependent on the specific
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“student‘ but'itbis“knbwn‘thatvlimits cause some students
. dlfflculty. Perhaps other students would grasp limits, but
| have dlfflculty w1th standard parts. ThlS would seem
unllkely, but it may‘stlll happen. Until more classes are
‘taught using the nonstandard'approach;pthough, we will not

" be able to answer this question.

"DERIVATIVES OF SIN AND cos

The computatlon of derlvatlves of the transcendental
functions is another challenge ‘which is made easier by use
of the nonstandard method.

Many students have a very difficult time accepting that
‘the‘derivative‘ef the sin(x) is the CO%X),'even after seeing
the'prOOf, because of two things: ‘i) it is‘non-intuitive,
and ii) it relies on the use of the Pinching Theorem, which
involves an interesting property of limits which makes
little sense unless you-understand limits, which many of the
 students don't.

The nonstandard approach addressed.both of these
problems. It provides a nice, intuition-supporting image
for why the derivative of the sin(x) is the cos(x) and, when
you finally get around to the proef,pit eliminates the need

for the Pinching Theorem.
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~ Acoso "

A6\ A sin®

0 ~ ¢cos0 in

1

Figure 6: Derivatives of Sin(x) Under Microscope [3]

__By lookihg at the above:drawihg;hthreugh the
‘infinitesimal microscope ene can eee‘that by increasing 0 by
an infinitesimal'amount,”one moves an infinitesimal distance
from.point A to point~B;f'In doing this, ASﬁ]G is a small

p031t1ve ‘value and Acos® is a small negative value. Thus

~ we get COSO—AZISG ;,ésme and 51n9———m——gecosﬂ which are

exactly the results we want.
If we des1re, though we can still do the complete"
proof. Like the trad;tlonal method, the key elemeht of the

proof that é%shﬂx)=co%x) is‘the result that:

St(%) =‘1 |:analegeus to g%(ﬂge)_l}
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,  The,s§ﬁé gebmetrical,éfeaw60mparisdn”is used,to»brove
”ﬂcﬁ%g)=1,'fbrSanyvinfinitesimal‘9( asis usedvin the
_fraditiohal aéproach. The_différencé iSin the_honstahdafd
method a Siméle sféndard éar£s”c¢mputation'ié used,kwhile_
the traditiénal method felies on the use of the Pinching
Theorem. 'Thé ineqﬁéiify'inVOlves the’éreas of a,neSted”
sequence of ijects,’a[triangle;‘a pié‘Slicé; and anothet v

triangle, determined by the same.éngle 9." 

y
1L
D
B
1 : \ [tano
- sin@ | - '
- 0 ._ . [ A .x'

. Figu:e 7: Diagrém for the Geometric Inequality [31
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Proof'

Area(trlangle OAB)<Area(p1e sllce OAB)<Area(tr1angle OAD)

'OA' BC < 1°e-r <%'OA°A‘D’

| 5‘BC<—%—'6<% AD (OA=r=1)

> BC<B<AD

._,)

— sin® <0< tan®.
. o . 1
—> 1< sin 0 < CosO
—>1> ‘___3136 >cos

v'takinq standard parts”withre infinitesimal
(linear.orderingiis preserved) B
—> st(1) > st(—Si—gQ) > s‘t’(‘co'sf))_
-ame is contlnuous by deflnltlon; so
st(cose) cos(st(e)) cos 0= 1
> stj(_—SM) =‘1'f»o-rv5ny infinitesimal O

As we have come to expect the algebra for the proof is
*‘1dentlcal to the tradltlonal method. The prlmary dlfference

yls that we dld not need the Plnchlng Theorem (see below) to

T"icomplete the proof. In the nonstandard method the Plnchlng

;fTheorem lS an automatlc result of the 11near orderlng

"‘.propertles of the Hyperreal number system.d‘
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Theorem. Plnchlng Theorem

Given f(x)<:g(x)<l(x) on an 1nterval around ¢
tf lim f(x)=lim h(x)=L then lim g(x)=L
: : x—=c¢ o X—>c

xX—>C

'”This Theorem is often stated and used in Calculus texts
when oomputing the derivatives of the trigonometric
functions, but'rarely, if ever, is it proven in these texts.

Instead it is treated as if it were intuitively
obv1ous, Wthh it probably is to people well versed in the
theory of 11m1ts, but to many students it is not. These
:students often will- flnd 1t easier and more understandable
to do a s1mple computatlon u51ng the rules of the Hyperreals
than to even learn where to begln in applying the Plnchlng

Theorem.

DIFFERENTIALS ANDY INCREMENT THEOREM

One of the nice, and reassuring, things about the
nonstandard approach to the Calcnlus is that all of the
properties and applications of the derivative are unchanged
from the traditional approach. This makes it reiatively
easy for instructors experienced in teaching using the
traditional approach to‘understand, accept and teach the
Calculns using the nonstandard method. In some cases, the

computational nature of the nonstandard approach makes it
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easier to‘underStand“not_only the'theory, bﬁt nlso the
applicatidnS'of the dérivative. | |

One area of applicatibn of derivatives‘which has been
difficult for some students to understand using,the
tradltlonal method ‘of teaching the Calculus is
‘dlfferentlals. As with llmlts, the nonstandard method makes
differentials a more 1ntu1t1ve, computatlonal~effort thus

" making them easier to understand and manipulate.

— ‘ (a+Ax,b+ Ay)
f(x)

(a, b)

Figure 8: Differentials
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_Theorem' ‘Increment Theorem

Let. y = f(x). Suppose jf(x) ex1sts at a certain p01nt
'x, and Ax is lnflnlte31mal.é Then Ay is 1nf1n1tes1mal
and Ay lf(j)ﬁu#+8Ax for some 1nf1n1te51mal 8, Wthh

depends on X and Ax

- Proof: . ) o S
Case 1: Ax=0. In"this case, Ay=f'"(x)Ax=0,
: and we put €= 0

Ca‘.sv’é'{Z: = Ax¢0- Then ;[i—x-~f (x), 80 for some

j&;_nfini:tesima_vlv' €, E = f (x)+¢

Multlplylng both sides by Ax, we get,
Ay = f (x)Ax+8Ax

That is,’the increment theorem providesfus with a
’,method for flndlng a good approxrmatlon of the change in the
value of the functlon for small changes in the value of the
variable. .Intultlvely, we can see that 1f Ax an
1nf1n1te81ma1 is conceptually “very small" then 8Ax the
nproduct of 1nf1n1te31mals, is "extremely small" or “very
.small compared to Ax" - Even though they"very small" change
in X generates only a "very small" change in y, since we:7
only want an approx1matlon, it seems justlflable that we /

'1gnore the "extremely small":product of 1nf1n1te31mals term.
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" In doing so, though, we must remember that our computations
will not actually use infinitesimals and thus'can only give
us a good approximation if the change in X is kept,as_small’

as poesible.

- Example of leferentlals

Find an approx1matlon for f(4(H), where F(x) = .
1.
fln=—— , x=4, f(x)=+4=2, and Ax=0.01 , so

 fr _ L oon= |
Ay= f'(x)Ax = —=(0.01) = 00025

and then y=y,+4y=2+ 0.0025=2. 0025

(Note: y= 2. 00249843945 by the calculator)

Noticeathat excepttfot the hehetandard analysis style
used in the Statemeht of the Inctement Theorem, as usual
bdlfferentlals are manlpulated the same way as in the
tradltlonal method.v The advantage of ‘the nonstandard method
to the student is that it prov1des a SOlld intuitive basis

~'for thls computatlon.

36



CHAPTER 5: FOUNDATIONS OF NONSTANDARD ANALYSIS

The Hyperreal number system can help students learn and

a understand the Calculus without relylng on a deep, technlcal_

understandlng of why they work (or even real proof that such
thlngs as 1nf1n1tes1mals ex15t)

| | Unfortunately new methods are usually ‘not adopted by
the mathematlcal communlty just because "they seem: to work".
:ThlS is why a more rlgorous development of the Calculus than
Lelbnlz s was pursued. Abraham Roblnson s development of |
»llnflnlteSLmals in the 1960 s flnally prov1ded the rlgorous
'Tfoundatlon for 1nf1n1tes1mals and the Hyperreals that
‘iallowed thelr ‘use in the teachlng of the Calculus, and

Vmathematlcs generally, to be serlously cons1dered.

FILTERS AND ULTRAFILTERS
In order to understand the constructlon of the

' Hyperreal number system, 1t 1s necessary to establlsh some
.'baSLC-deflnltlons*and methods related to fllterS‘and
_ultrafllters.‘ . |

R To begln w1th we' need to understand what an ultrafllter
is, and more 1mportantly what a free ultrafllter mlght be.
For 1t is with free ultrafllters that we bulld the exten51on
to the Reals called the Hyperreals which 1s the basis for
vNonstandard Analys1s.

B Flrst we must start with the definition of a filter.
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Definition: Filter
Let [ be.a ndnémpty set. A filter on [ is afnonémpty.
collecfioﬁ QI.Ofbsubsets~0f 1 haﬁing the following
prdberties.~ | |
i) @el S .

ii) Ael and Bel=AnBel

iii) Adel and AcB=>B el

A filter U is an ultrafilter if

iv) for any subset A of [ either Ae€U or its

cm@LﬂBm:Ac=]—Aeﬂ'(mnlmtbmm)

By conditions i) and ii), an ultrafilter cannot contain
both A and A, since if both were elements of U, then by
ii), Anm AC elU, but AnA°=0Q, which contradicts i).

A filter therefore is closed under the operations of
intersection and "supersettingﬁ, and does not contain the
empty set. An ultrafilter has the additional property that
either a set or its complemént is alwayé an element of the
ultrafilter.

An alternate and equivalent definition for an

ultrafilter is a maximal filter.
Definition: Maximal Filter

a filter F on [ is maximal if whenever G is a filter

on [ and FcG—>F=G ’[3]
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Propos:.t:.on fJ.lter F onf“"]:'.ls max1mal :|.f and only :Lf for”‘jfmw

<: Suppose F 1s a max:l.mal fJ.lter on. I and AeF ‘,
L f'To show A EF oy - K |

v»“;‘iﬁSuppose VB EF AﬁB;ﬁ@ >
'_f.;Let G {Xcl AanX for some HeF}

HGG VHEE?‘."v"lnce AﬁHcH therefore FCG
AEG s:.nce AﬁHCA |

Therefore F J._s a proper subset of G

o '.Check Propertles:, of fllters. B

“ l ) @ ¢G by construct:l.on, Aﬁ:H:;t @ VH EF N
o J.:L) | Plck G1=G2 GG Then HHl,HZ GFQA('\ Hl (et Gl
:-'-and AﬂHZCGZ 'v T s

| i. ‘Then A4 m (H1 N Hz) (A N Hl) m (A m Hz) = Gl N G2 LR

S :SJ_nce Hl (\Hz EF therefore GlﬁGz EG R
= lll) ‘Plck Gl GG Gl c G2 . Then HHI GFB Aﬂ Hl C Gl
“ A,?:;“Slnce Gl CG2, AﬂHl c Gz’ and hence G2 EG




| Therefore (}‘is’a’filtef; ThlS contradlcts our
essumptlon that f7 is a max1mal fllter, therefore the
'assumptlon of thlS case cannot occur.. ‘ ‘
= SJ.nce the preVJ.ous case fa:l.led B eF3ANB= @ This
1mp11es l?C:A , whlch implies /4 617 whlch is exactly what

we wanted to show.

Definition: Fixed Ultrafilter

An ultrafilter U is principal or fixed if
L Ixel3VBeU, xeB
For each XtEI; then, there is a fixed ultrafilter

U, ={Bg1:x eB}

We w1ll call X the qeneratlnq element of the flxed

h ultrafllter 71

Some collections of sets may satisfy some but not all
of the conditions to be a filter (or ultrafilter), so one

must be careful to verify the conditions accurately.

Given the set S={1,2,3}, its power set is
P(s)=12.{1}{21{3}{1.21.{1,3}.{2,3},{1,2,3}}

Clearly P(S), the pewer set of S,‘satisfies the
intersection (ii) and superset (iii) conditions for a
filter. It even satisfies the‘maxiﬁal condition for an
ultrafilter (though not the mutual exclusivehess resﬁlt).
But it does cohtain the empty set. The eﬁpty set is a

subset‘of.every set, so it is an element of the power set,
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therefore'the.powerfsét of a set is not a filter (and thus

is certainly not an ultrafllter)

Let [ = {a b,c d}and consider the ‘sets. of subsefs of I:
A—{{a chia, b,c}, {a c,d}.{a,b,c d}}
B= {{c}{ac}{bc}{dc}{abc}{acd}{bcd}{abcd}}

Claim,tha-t A‘and B ,are fllters on /.

‘Check the propertles for A:
i) AA.does not contain the empty set
ii) Intersection of two elements of A is still an
element of A, e.g. {ab,c}n {a,c,d}={a,c} eA
iii) If a set is an elementiof.A.and that set is
contained in a larger set then the larger set is
also contéined in A. ‘That is, |
v"1={a,b,c,d,} and’ let
“OL = {b,C} and [3= {a,b,c}
OmhmﬂyBDakmd]DBDa
and since o eA

L BeA

By exhaustivelY'chedking all possible combinations, it
can be verified that all the conditions hold, A is a filter
on /. The set B is also a filter by the same properties, in

fact it is a maximal filter or ultrafilter on [ by:

iv) B is a fixed ultrafilter since every set contains

the element C.
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fiﬁfﬂyperreals- Our constructlon requlres the use of free

leed ultrafllters are of 1m1ted lnterest to us 51nceﬁ

lfthey generate nothlnggnew 1n our constructlon o’fthe T“I

'ultrafilters.f Free ultrafllters contaln the Frechet Fllter.»‘

%leRECHET FILTER

The Frechet Fllter (ﬂi) 1s a specral fllter deflned on

E“s':lnflnlte sets.‘ It 1s also called the coflnlte fllter and 1t

'*gsglls deflned by._,fim‘

{AC:II' A?lsrfqﬁlw
The Frechet fllter 1s avlarge collectlon of lnflnlte

fsets._ The base set must be 1nf1n1te or: the Frechet ﬂ_?f ‘

‘-Lf"fllter" is. not a fllter at all since. if [ is flnlte?then |

mafinot ‘a fllter.,{.ﬁfl

”fffProp051t10n._"

lV?ﬁ contalns the null set (s1nce 1t lS coflnlte) and thus 1s

{ACII A is fJ.n:Lte} is a fJ.lter lf ] lnf;,_nlte e

;“:{”;Suppose @e _Tl ,Vt:hen I @ 1. would be fJ.nJ.te whlch

l”ifﬁvhwould contradlct the condltlon that I 1s lnflnlte.fef‘

f;ﬁd;mtAE?imdBeﬂ

S ;“:"-To show AﬁBeTl L
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(i e., show that the J.ntersectlon of the sets A and B

in ¥, is itself an element of }'1)
By DeMorgan's Laws A°U B®=(4A B)
so (I-A)U(I-B)=1-(4nB)
Finite finite finite

~(ANB)° is finite and ANB G_Tl

iii) 1f A€f and IDB2A4
| To. _‘sho.w_.B. e_‘fl |
BoA—>Bc A°, but_’i A€ is finite
.. B® is finite WhichISatisfiesjdefinition of an
element of the Frechet fiiter
Bef

Examples of Elements of ¥, on N
Let C={all primes less than 100}, C is finite and
D=N-Ce¥%,. D is one element of the Frechet filter.

Other examples of elements of the Frechet filter

~{k}, for each keN
N -{1,2,3}
N —{all numbers between 4 million and 5 billion whtich
contain no 3's in their decimal form}
N —{all non—prime numbers with less than 487 digits}

N —{all specific natural numbers humans have ever

spoken or written}
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An ultrafllter U on I which contains the Frechet
lfllter is called free.’ A free ultrafllter u cannot contaln
any flnlte set.A sihcevthen A. would be coflnlte and hence
»ln U, and then IQFLA -0 would be 1n ua, contradlctlng the
lflrst property of fllters. Note that the Frechet filter is
not ‘an ultrafllter itself 31nce we can always construct a
set A(:I such that both A and A€ are infinite. Thus
, neithereA‘nor AC is anjelement.of ?1. For example, any
ultrafilter 6n.N'Would‘have to contain‘either the set of
evenrhumbers;er the eet of odd numbers, but not both since

they areveomplements in N, but neither set is in ¥

Theoreﬁ:" _
1f U is an ultrafilter on I, I infinite, then U is

free if and only if U not fixed at any x el

' Proof:

= U free —> not flxed
Suppose U free and fixed at xez]
i e.,'112211'==b4(:lgr€14}
In spec:.flc {x} E‘U =U
But if U is free — it contalns the Frechet filter
—> 11 contains I -{x} .
- U contains>{x} NI-{x}=3, a contradidtion to the

 first property of filters.
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< Ql not fixed — free ,
To show if U not flxed —é contalns ?1v

, Pick arbitrary ffeﬂﬁ
Ac'is finite, i'e., fzz{abaz, 5, }
Not fixed - Vxe] HA e‘(lax ¢ A,

Cons:l.der ﬂ 4, ' A E‘U, A€ o A
i=1 “ ‘

rﬁ;A%Aeﬂ
hg‘—>il contains 9if‘

Ql 1s free

. We have yet to prove that free ultrafllters ex1st.'
' These, however, are the 1mportant ultrafllters for our

-constructlon.

THE ULTRAFILTER AXIOM

In order to obtain an understandlng of ultrafllters one
needs to learn some of the mathematlcs supportlng and
proving the Ultrafllter.Ax1om. Zorn's Lemma, which is a
variation of the Axiom‘of'Choice, will be used ih the proof
of the Ultrafilter:Axiom.-‘Zorn's Lemma involves the idea of
a partially ordered set and‘related'ebncepts as described |

below.
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Defznxtlon.,"’_ ‘
A partlally ordered set is a palr (X, ) where X is a
,nonemptyvset’and‘ is a blnary relatlon on X which is
i) vreflexive', i.e.; xSx for all xeX
11) antisymmetric; i. e., if x<§y'and Y<X then x=Yy

'111) tran51tlve, i. e., 1f x<<y and )“<Z then x<<z

bAvsubset C 6f )(?is:afchain if,for all A:}’E(j either

: x<<y'or }~<x. ’The element X is an upper bound for a subset

BCX if b<x for all bEB An element meX is maximal

if, for any xeX, m<x J.mplies xX=m .

Zorn's Lemma

Let CX;S) bela'partially ordered set. If each chain in
)( has an upper bound then X has at least one maximal

element.

Zorn' s lemma is equivalent‘to the Axiom of Choice and
both can be used to prove the Ultrafilter Axiom but the

bpreferred proof is the one that uses Zorn's Lemma.
Ultrafilter Axiom

If F is a filter’on I then there is an ultrafilter U

on I containing F.
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 Proof: , .
Let F be the set of all filters which eontain F. [ is
) ,‘1~~_nonempty since FGF We part:l.ally order: F by inclusion;

| 'J..e., vv :Lf ABGF then we say that A<B if Xed implies

“XE?B!-. . It is easy to check that < is a partial ordering on

oA

'_F.

| - Now let C be a c‘hai'n“in‘ F. o show that C has an upper -

bound consider F= UC(CGC) Then c<F for all C<C

, Also F is a fllter.

' :Check Propertles of Fllters

i) @&C for any C so @eUC

ii) If ’»X,YGF then XECI and Y €C, fo;:'..some C; and
C, in C. SJ.nce C is a ehain, we‘may' assume
without loss of generalJ.ty that C1<C2, and so

X,Y €C, and XNY e ngF——)Y eF.

J_J_J.) 1f XeF and XCYthen
ElClaXeCl—-)YeCl ——>YeF

A

By Zorn's Lemma F has a maximal element, call it Fmax

~n

~which both contains F, by construction of F, ‘and is an

liltrafilter':because Fax is a maximal filter.
Once we have the Ultrafilter Axiom, we can construct

free ultrafllters on any 1nf1n1te set.
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Theorem:

| Free ultrafilteﬁs exist on any infinite set I.
Proof: N N
o Since [ is infinite, cdnStrﬁct ¥, the Frechét filter 
on I. By the Ultrafilter Axiom, there exists a maximal

filter [, containing %;. F, is the desired free

ultrafilter.

For Qur-construqtion of the Hyperrealé we‘usevthé

naturals numbers as the base set for our ultrafilterQ
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CHAPTER 6: CONSTRUCTING THE HYPERREAL NUMBERS

The constructlon of the Hyperreals, denoted R, is
31m11ar to the constructlon of the Reals from the ratlonal

' numbers by means of equlvalence classes of Cauchy sequences.

df_To begln the constructlon,.let.N’denote the natural

‘AL

"numbers, R denote the Reals, and:R.denote the set of all

‘sequences of ‘Real numbers 1ndexed by N.

Each element»ln:R.ls ‘of the form ' r-4<qu2ﬂg”">,‘where
'n 613 Vi. For convenlence we w1ll denote‘@1J2n3,;> by <Q>;
Operatlons of addltlon, 69; and multLPILCation,‘Q@,‘can_be'

A

"deflned oanjaskfollows;

Definition}

If r—(ﬁ) and S <&> are elements‘of:R. ‘we deflne

r@s: <i;+s> and r®s=<r s)

It is clear that (R @ ®) is a commutat:l_ve r:Lng w:Lth an
'~ident1ty'<LL.u> and a zero (00”.) (where 1 and 0 are the
niunlt and zero in R e B -

L For 1nstance, to verlfy that the cperatlons are

*‘dlstrlbutlve.‘h} ff?%. R

ret r=(), s=(s), t=(t)
r@®N=ro((s +4))=(5 (s +1))=

{5+ @) =(r-5)@ (5 r> <r®s>@<r®r>

However, the ring is,nct‘affield}, For example,



__(1,0,1»,‘0‘, i, >®<Q~,1,0.,‘1,‘0;‘.‘;;' >‘= (0,0,0,.._.), ‘éo"the- product of
bnonzéro,elements can bé-zero. This problem can be
veliminéted‘by introducing an equivalence relafion On.ﬁ.énd
_défining opefations’and'relations‘+, *, énd < on the |
 £esnlting‘sét;’I(; Qf.equivaience classes which make

R,+,,<) into a 1inearlY»orderéd-field.

~ THE HYPERREAL NUMBERS

The eléments of the nonstandard or the Hyperreal

numbers are equivalence classes of the elements of R

relative to the equivalence relation defined below.

Definition:

If F=<G> and S=<%>‘are in R, then r=s if and only if
' {iEN:I;'=S,-}G‘u, where U is some free ultrafilter on

N. We then say that <G>=:<Q> almost everywhere (a.e.).

Since U is a free ultrafilter, not just a Frechet
filter, note that <G>=<%> a.e. does not mean simply 7 #S;
for only a finite number of'i's._ This is a common error.
Certainly two sequences that differ at only a finite number

of places are always equivalent under =. 1In fact, for

convenience, when comparing sequences one can always
disregard any finite number of terms at the start of the
sequence as long as you ignore the same number of terms for

both (all) sequences being compared.
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SeQﬁences‘which;are the same at only a finite number of
' places are never equivalent under =. Sequences which are
'the same at an infinite number of indices and also different

at an infinite number of indices may or may not be

eguivalént under =, depending on the ultrafilter. [2]

| For example <L2,L2,L2,">.is equivalent to either
(Ll/Llp,) or (2,2,2,2p.&,ﬂdepending.on whether U contains
the'éet of odd numbers or the set of even numbérs,

respectively.

-Lemmaé~
' The relation = is an equivalence relation oh ﬁ,.

 Proof:
We need to show fhat the relation = is reflexive

~(r=r), symmetric (if r=s then §=r), and transitive (if- |
»fESamiSEtthamrEtL | |

i) To show r=r is trivial since

{ieN‘:r,‘=1;-}=Ne‘ll, |
ii) To "show if r=s then s=7r

{jEN:’Ii':Si}V:{iEN:Si:G}

So if one is an element of ZL both are.
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lll) To show J.f I’ S and S t then I” t

Please note that two sequences can have the same l:|.m:|.t

as l aPproaches 1nf1n1ty and not be equlvalent- v G

11

| For example, <1,5a§‘, > is not equ:n.valent to <000,..-> e R

| fs1nce {IGN .0} @e‘ll though, llm—‘"O— llmO

z—>oo e

'The' 's'et ‘R is lelded :Lnto dlSjOlnt subsets called

n .'}_‘equlvalence classes byv-—.' Each equ:l.valence class cons:Lsts

i ,:fof all sequences equ:l.valent to any gJ.ven_sequence lI'l the

-s-class..:-""

Thus r and S are J.n the same equlvalvence class :Lff |

= [HL 5]




One ofitheudifficulties with free‘ultrafilters:is that
you cannot completelyydetermine which-infinite sets»With
: infinite=complements-are‘in the ultrafilter.. For instance,
'how‘does cne kncu,sfor a given ultrafilter,QIron N, whether
the set of odd numbershor.the set cf eVen‘numbers‘is in U-
f>0ne of these sets must be in U, 51nce these sets are
"complements; yet ultrafilters on ﬁJ ex1st for either case.
| »Fortunately thlS really-does not matter. The ability
tcvldentlfy the exact equivalence class that one of these
y"borderllne" sequences belongs to is generally 1rrelevant.
'»We just need to know that every'sequence in*ﬁ_belongs to

some equlvalent class so that = actually satisfies the

definition for an equivalence relation on N. ThlS is why

. we caﬁ\not use just the Frechet fllter to construct the

;Hyperreals.f We need a structure Wthh satlsfies the mutual

exclus1v1ty property Wthh characterizes an ultrafilter.

'VOPERATIONS AND FIELD STRUCTURE
| We deflne the arlthmetlc operations and 1nequalit1es on

the Hyperreal numbers‘as follows:

Definition: , o
Let l‘=[<1;->]’ and S=[<S,>] Then: |
1) r+s=[( r,._+s,.)‘]‘,‘_i.e.,‘[r]~'+»[] [@s]
Lid) rs=[(y sl>],‘ e, [P]-[s]=1[r ®s]
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o :I.’.'Ll) l‘<S(s> r) if‘"and only J.f {z EN L3 <sz} E‘U, and

ffprove that thevaﬂerr”al_number system 1s a llnearly ordered |

:ffTheorem°'fg Lf' |

Thewstructu£é3 neafifrafdé%gdffiélaéiidh:1H
: fProof. | e “ _ . ﬁ?‘;. i |
v"ei It is eaej‘to prove that J{ 1s a. commutatlve rlng”w1thf;
'dﬁhrt. We w1ll prove some of the propertles as examples.‘
| To show that multlpllcatlon 1s a58001at1ve :j““

(r s) t=r(st) i |

o [rs]t
=fesye)]
[ (S t)] - as5001at1ve property of Realsakrﬁhu
. [<S . >] L S TR

» To show that addltlon is commutatlve

r+S S+r
[s-+r ] commutatlve property of Realsvh

. "_S+l' :; i ‘LQY‘QEDV_, g 'Y e e



To show that multiplicative identity exists

Define: » »1==> [<1,1,1,...>]

o orler

e

"v:"f’ = (g)]iiv multiplicative'ideptityrof Reals
=r QED ’

 ;Ciéariy.£he>pr66fs ére similar for COmmutatife property‘
of multiblication, asébciétivé'prépertyiof addition,
disttibutive propérty and the,additiVé ihverse. -

To complete the proof‘that,ﬂ{ ié'a linearly ordered
' fiéld we need tO‘pfove‘additionally that every nonzero
elemént'in.R haé a'multip1icative inverse and‘that the
field is ordered. | | |
| To shbw that if r#0 then there is an»elementv‘:‘“'l'_1
in R such that'r~r‘1==1;' o - : B
 suppose that r=[(n)]#[(0,0,.)]. Then {ieN:;=0}eU and
so {ieN:r#0} U by’the fouffh;brépefty of filters. Define
| l‘_1“=[<17,-»>]{ ‘where 7;:1;-—1 bif I‘l %0_,,’_ ahd 7=0 if r=0. |

then rr7 =[(5-7)], but ;=1 if %0, and f-F=0 if

_1;-}>=O,' so }'{i eN:g =1} ={i eN:r ¢ 0} ct.

. 'Theréfore rri=1
Finally we must show that % is a linearly ordered

field with the.ordering‘given by <. We Say'that an element

r of R is pos_i‘tivé lf l‘>0
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We must show that'
i) the sum of two pos1tive elements is positive
ii) the_product offtwp positive elementstis positive

iii) Law o‘f‘Tricho'tomy

By pOSitive element we mean l‘>0 where 0= [<0,0,...>],

'fthat is r>0 if and only if {leN >0}E‘U

The first two properties are easy to prove and follow
directly from some of the preVious sections. |

‘To show, for ex‘ample,' that the sum of two positive
elements is -p.ositive\, pick r,s€R with r>0 and $>0. That
is Uj=1ie N:r!>0} €U and U, ={i €N:s; >0} ed.
| To show r+s>0 i.e., {IEN L+ >0} el.
Clearly on UlﬁUz, ‘and §; are both pos:l.tive, so by the
v' properties of the Reals, 7 +3 >O on UIHUZ. But
Us={i eN:r; +5 >0}:){leN >0,5>00=U;NU,.

So, since UlﬁUZ G‘U U3 el. |

Therefore T +s>0.

On the other,hand, to prove the Law of Trichotomy we

use the following theorem.

Theorem: Selection ‘Theorem
Let U be an ultrafilter on I, Al,Az, ,4, be a finite
number of subsets of I WJ.th 4 ﬁA @ for i#j and

UA,(1<l<n) I

T-hen» one and only one of the sets. 14118 in‘ U.
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e. A,- cl Vi= 1,2,...,71, » ’GlAi =1, and
_ _ i |
A4 =0 Vizj
- —>3lia4 €U |

»Proof'; “ | . “ |
R Suppose <there is no A E‘U
- since U ,a'n_ult_rafﬁilte‘r then 4, e U vi.
This would imply that 'ﬁl(A,-C)E u. |
| . n n ¢ ) . :
Then () (A,-c')=(UA,-) =1°=CeU.
= =1 )
But this Would contradic£ Uu ]oeing alll‘filter.
Therefore i3 4 el. | o “
Now suppose A,-,Aj el, i#]. Then 4 ﬁAj =':®>€(U, again
"a contradiction to U being a f-ilter.“>

Therefore liz 4 eU.

Proof of the Law of-Trichotomy: |
(i.e. if re€R then l'<0,1’_=‘:(‘),'or r>0)
Fix Uon N o B |
Define U, = {IGN <0}
| l5=beNm=@u
U3—{zeN7;>O}‘
Clearly U, CN Vl

By Law of Trlchotomy for the Reals,' every I” sati'sfies

one, and only one, of these conditions. Thus UU N and
o - i=1 ’

blUﬂU @forl#]

By the preVJ.ous theorem, then EI'ISA G‘U
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Therefore either r<0,r=0, or r>0 depending on

whether U;, U,, or U;, respectively, is an element of U.

,Sovfar’all of this development‘could have been done
whether the ultrafilter selected was free or fixed. We‘
‘would llke to understand why the use of a free ultrafllter
is requlred. As we w111 see, using a flxed ultrafllter will
_generate nothlng new beyond the standard Real numbers. To
'see why, 1t_1s necessary to better understand how the Real

numbers themselves appear in the Hyperreals.

.EMBEDDING MAP
- The Reals can be embedded in the Hyperreals using what

‘dfais called the embeddlng map. As we did earlier for the
n;multlpllcatlve 1dentlty 1= Klﬂ Kl]_L.uﬂ and zero

0= [ ] [0()0”.)]; ln general we w1ll as3001ate a Real

d?number r w1th the equlvalence class Kri'r ﬂ‘ln the

‘Hyperreals;'

Deflnltlon.

If reR, we deflne *(r) *r, where #*r= [l’,l’,l‘,...>] €R

 Thus if r=*r= [(‘r,r,r,..‘.,)] for ‘some reRr :and S=[<S,>] then
r=s if and only if {i'EN:SI- ='r} el. 1In many of our examples,
:though, the terms of the sequences we use are all different,

thus at most one term of such a;sequence*could match a given
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Real number, forcing the sequence to be‘different than ahy
 embedded Real‘number. -

e
For example, s=[(1,

2,3,.u>}'is not equal to any
embedded Real number l'ﬂ=*l’=[<l”',,lf._',7”,'...>] vw‘i‘th r eR since
{iG)V€ﬂ=r}, has at most: one member and thus cannot_possibly‘

be an element of any free ultrafilter.

bTheorem.
The mapplng * ‘1s an order preserv1ng isomorphism of.R
into R. | | | |
'Proof:b : 7
| The mapping * is 1-1, fer;if *r=%*s then
YAKPI’ >] [(SS ﬂ and1so r==S. It'is a trivial matter to,f

show that * preserves the fleld and order propertles.

For»eXampie, the mappiﬁé preserves‘additien, .
| [(r 7o)+ [(s.s, >]= [(r.+s r+s,.)] so *(r —i—'s) =¥ 4 ¥s.

« rb'And also preserves orderlng. If r<s then *r<*s
Cons1der {teN <S} {zeNr<s} Ne‘Zl

Hence *r<<*s ‘QED o

h,For convenlence we w1ll occa91onally use 7 for both the

, Real number and 1ts embedded Hyperreal value.



DefinitiOn:,Standard‘Number
The image of the'set of Real'numbers‘under the
embedding map, is called the set of standard numbers.

Any Hyperreal number Wthh is not a standard number, if

any, is called a non—standard number.

Tbe term_"nonstandard:Real numbers"'is_already being

"uused for:the.entire'set'of,Hyperreaivnumbers; Now we are

.deflnlng the term "nonstandard number" to mean a Hyperreal
number which is not "standard" Since these terms are so

similar, we_must be careful,tc’distinguish between the two
forms when used. |

This brings us back to the notion of an ultrafilter.
We can only build the extension of the Reals called the
Hyperreals by using a free ultrafilter.

Fixed ultrafilters, "generated" by a single element,
are inadequate for the construction of HYperreals because
comparing arbitrary sequences reduces to comparing them on
the single element of each sequence which corresponds to the
generating element of the ultrafilter.

If the ultrafilter on N is U=U,={Ac N:k e A4},
l’=[<lg>] and S=[<S,>] then r=s if and only if 7, =S;, because
A={ieN:1;- <si}e‘ll,( if and only if ked. r= *1762[(776,176,77(,»..)]

for each r eR because k e{i e N:7; =rk}.
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Thus,iusing‘the sane.sequences as in an'earlier
ekampie,bif the éeneratrng element, k;;for.the fixed
ultrafilter is odd then [<1“2'1'212 >] is equal to
L [<1 1 11 )], otherw:l.se it is equal to [<2 2 22 >]

For another example,,con31der the flxed ultrafllter

;‘Zl3—{ACN3€A} (i.e. k 3) The sequences r= [5678 >]

¥ ,and s= [13 10,7,4,. >] are equal because {IEN '_S} {3}

(r3—s3-7) and {3} E‘U3. ~r is also equal to t= [(7,10,7,10,...>] )
“"because {ien: -—t} {3 6}6‘(13 and s= t because | _

: ‘{l eN:g; —t} {2, 3}6‘113. I‘n__ fact r=S= t=;'7.  The important
thing to notlcejls that euery sequence in a given |
vequivaience classirelative:tO‘ZE must have‘the same vaer-
in the third elementief the sequenee. So, .

% ﬁ'[(ﬂ,O, 1.9‘,73,.}..>] =%(l.9) - [<—v-5v,\/—2—;1.9,462,...>] =W, no matter what |
the othervterms_are,'because' {jG]Vngs;Mg}‘at least contains
“the index 3, and:thus iS'anvelement-of,ZQ.

Therefore, forhfixed ultrafilters, = is simply a
mapping from ﬁ.1u:.R,‘the Real.numbers;:and?every element
of the new "Hyperreals" we are'tryingttb construct’would in
j'fact_be equal'tobsome embedded Real number, i.e. we have
gained nothing. Hence the requireﬁent that we use a free
ultrafilter for this construction.

‘But do we adtually gain SOmething‘by using a free
'ultrafJ.lter‘> The answer, of course, must be yes or this has

- all been a waste of tlme. But we already have shown that

s——|:<1,2,3,...>i| is not equ-al to any embedded Real number and
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-fthus must‘be in some new equlvalence class. Therefore the
deyperreal numbers are a proper superset of the (embedded)
,L;Real numbers. |

| ' In fact s is our flrst non- tr1v1al example of what we'
pcall 1nf1n1te51mal numbers.ii;" |

The deflnltlons of 1nf1n1te, flnlte, and lnflnlte31mal

;fnumbers in- Hurd and Loeb are equlvalent to those glven in

”f'Kelsler, ‘but are now descrlbed 1n terms of their absolute

: Values in comparlson to Real numbers.g ”
The deflnlthH of absolute value for the Hyperreals is

,Hldentlcal to that for the Reals..'f'u

Deflnltlon. Absolute Value

If I'Ell then the absolute value of r, denoted by h1

is defined as follows.

x| = ‘o if .r._=o‘ |
[-rif r<0

By the Law'of TrichOtOmy, ‘the abSolute value of every
HYpérreal:number is‘defined. Often one will be manlpulatlng
a SpelelC Hyperreal number, usually represented in the
: equ1valence class as a sequence which is the result of a
nspe01flc”computatlon, oraa’seguence'whlch‘ls simply

‘convenient. In’such.ajcasebthe-following result is helpful;'
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Theprem:‘ | a o f
- xe r=[(5)] then [rf=[(s))]
Proof. ‘ o , _
Pick reR and deflne U,,U, and Lg as in the proof of
’;the Law of Trlchotomy. Exactly one Qf_these sets is in U.
Which‘onejdetermihes whether r;:O, r=0, or r>0,
:respectively. - S
- zee T[]
To s‘howv..|vr’ =F:
Case 1: r<0 i.'é.; "Ul G‘U
:14 -r=r if" and only if Up= {lEﬁJ P‘}e?l
But U, = U1UU2, U ed, UICU1—>U16‘U
Thereforelr| T . '
‘aCase 2z r O i. e., C@ 671
| 0 T if and only if LQ-—{ler() Pﬂ}e?l
mat O,=U,ell.

”‘ Thereforelrl r.,

Case 3: l’>0 i. e., U3 G‘U - .
r=T if and only if U3—{IEN [r}e‘U

| =
mt%—%u%,uﬁﬂ %C%%Uﬁﬂ
Therefore . lr| r.
Since all possible cases verify, the‘theorem ié true.
We now use absoluté‘Values to define theaéonéepts of 

‘infinite, finite, and infinitesimal numbers..
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Definition: |
i) A number SER is infinite if n<|s| for all
.;standard natural numbers n.

ii) A number Sell is flnlte 1f FL<n for all standard

natural numbers n.

iii) A.number SeR is 1nf1n1te51mal if bl 1 for all

standard natural numbers 7.

To verify that S=|:<1,—2—,3,...>:|- is infinitesimal, we -

need to show that hk(%, for all standard natural numbers 7n.
First,vnotice thatn$%=s.since all terms of § are positive.
Now pick neN. Clearly all but the first n terms of the

11 , |
sequence S=v|:<1 5 3,...“ are less than %, i.e., {l EN%<%} is

cofinite and thus in U. Therefore S=;'|Sl<%‘, VneN, and §
satisfies the definition of an infinitesimal.
Similarly we can create infinite and finite Hyperreal

numbers. SJi=@,2ﬁl4,") is an infinite Hyperreal number
since {fé]Vj:>n} is cofinite for any'rlefv and thus in U.

Finally pick réR, r=0, so then *r,+s, is a finite
. . ) _
v((r-l%f}-ks<(r+iﬂ), non-Real, non-infinitesimal Hyperreal

number.
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NATURAL EXTENSiONS 0F”SETS

- If AcCR, then we can constrhdt‘a;'-"HYéer—extensiOh"' to
Av.j_n »thbe‘ same Way'v";WQ“*‘?Q“StruCted the EYperreél.s from the
 Reals. . R e N o
»Define A={<a1,d2,4a3,_...>:q,-&eA Vi EN}. Let Ube a free
‘ uvltrafilter on.N and eonStrﬁet the set %A of equivalence
classes of A r.e‘la_."tljv_fv'ebz to tl}e:"; equivalence relation = ( = is

A

defined on A because Ag]%).

The properﬁieé of *A are dependent on the propertie's
of A, but clearly, AQ*A,'relative to the same embedding map
we Llsed before. Further ‘A is a subset of R and can be

embedded using.the obvious "identity" ﬁlapping f*A—>R,
f([<a1>]) =.[<ai>], where we read [(a,)] on the left side of_the

N

eqﬁation as equivalence classes of elements of [& and on the
‘right side as eqﬁiValence classes of elements of.ﬁ. That
is to say,‘the equivalence classes "look" the same, they are
representable by the same elementary sequences involving
only elements ef A, but the sequences in the equivalence
classes of the form‘Ka»]:hlll can contain values from R—A
(just not too many of them).

l'=[<l;>] €R is equal to some element [<a,>] € A if and
only if {ieN:I;- GA}G‘U,, i.e., if <I;> is in A a.e.

Thus if any finite number of elements of a sequence <n>'

‘. . . . . * . .
in an equivalence class A can be from outside the set A,

and even some infinite collections of elements could be if
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uthe complement of the set of 1ndlces of the elements not 1n‘
‘,A is in U, (i. e {IGN eEA} €U or {IEN eAlel).
~ For example, 1f A.ls ‘the set {.q 14, '70'714”u} then
[(-3,49,—3,49,.;.)]6 A if and only if the set of even natural
.numbers is in 71 |
As long as Akls 1nf1n1te, fA.is a proper superset of
| A since we can construct a sequence (al,az,.a3,...> “such that

a; #4d,; Vli] Then < >1s not in the equivalence class

*( )=[<b,b,b,:.-..>] for any beA because {i e N:a, —b} can have at»

most one . element and thus thJ.s set is not in U.

If A is flnlte A gives us nothing new. ~To show this,

let A= {al,...,a } a; #4d; Vi#j, and con51der the sequence

(bl,bz,b3,...) (b)) with b eA Vk eN. pefine U;= {k eN:b, =a}
) ) n :
for each i= 1,...,n . Then UU,=N since every value in the

: ci=1
sequence must be one of the ¢;, and ,Ui(\Uj =@ Vi#j] by
construction since d,- #a; Vi#].

‘Byhthe Selection Theorem then,exactlyxone of the
U, €U. That is every sequence <bk>y is in the equivalence
cléss ’*(a,-) for some a; EA. Thus no new elements are
ucreated.

There are two specific subsets of R whose Hyper-
extensions‘are of interest to us; These sets are the
Natural numbers, ]V, and the Rationél numhers, Q. BAs we
‘have shown‘beforeAWith the Reals, the Hyper*extension of a

‘set has many of the properties of the original set.
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Thns, ﬁV’ the'set of1HYpernaturé1 numbers, is closed'
under addition and multiplication,,but there are no additivev
or multiplicative inverses,' Unlike R, ﬁJ contains no
.ninfinitesiméls; since N contains*no_values near 0. All the
finite values‘in *N are actually (imaqss of) natural
numbers. Yet *Af dOes'cbntain infinite valués, thoughwof
course only positive infinites. Clearly, for instancé,
-[<L2,3JL.H>], is an infinite in *N.

The set of Hyperrational numbers, %2, inherits the
field structure of (J. In addition, ﬂg contains |
rinfiniteSLmals, infinites and non- tr1v1al finite values. An
example of a Hyperrational number is I = [<L;,§,i”.>],.which
is also one of our examples of an infinitesimal. Also nste
that all Hypernaturals are also Hyperrationals since Nc(Q.

| Proofs for each of the properties of the Hyperrationals
and HYpernatnrals san be constructed by»explicit handling of
'sequences and ultfafilters, or they can be verified by
application of the Transfer Principle as we shall
demonstrate in the néxtbchapter. Since we have already
provided several examples of direct verification of smaller
properties for the Reals, wé will not repeat this exercise
here. | |

‘ (4
The complement of the Hyperrationals, (%2) is a set we

would like to call the Hyperirrationals. But the
. ) 3 . c %
Hyperirrationals should be (Qf). ‘Fortunately (%2)::(Qf)

as we can see from the following result.

67



Propositioné ,
. ‘ ‘ PR
e Ack, (*af=(a°)
Preof: ST o
Let r=[(1;>]e(*A)c
Then I & *A, but this is true
olieN:r, eA}gE‘Zl
o lieNt eA}cé‘ll
o eN:r,; gArel

re (Ac) - QED

The,Hyperirrationals also include finites,_infinites,

and infinitesimals. For instance, Kn,%,%,%,u>] is an

infinitesimal Hyperrational.

NATURAL "EXTENSIONS OF ‘FUNC'I'VI ONS
The natural exten51on Lf of a Real function f,

evaluated at the Hyperreal value Ir= Ki>]’ is determined by

finding the equ1valence class of the sequence obtalned by

evaluating f at each of the 7. That is to say:
*

j(r)=[<f(n)hf(@)hf(@)”.>]; ff is defined at r if |
f{iefv;f(n) is defined .}671, i.e., if <j(n)> is defined a.e.
1f ff(r)satisfies‘this rule for being defined, we ignore the

elements of the sequence where f(ﬁ)‘is undefined in

‘determining the appropriate equivalence class.
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- v-_j-'-_‘.-j'Example 1

- | | Ifr [<1 2 3 4 5 >] then L 5
) %ﬁ@ﬂ%ﬁk}:?;;fqvnzww;¢a

o Example 2

x1fx<3
3 fx>3

%f@ﬁ@%ﬁ?.

-»a;ﬁwuu34ﬂtm;a*°~*ﬁ**j*”*~*****““

*

*~vwgm@w>ﬂ o=0

o .ff‘*’\fK““(“ e

[(10 1010 1. )]

f (t) 0 lor —1 dependlng on whethevr -
{2kkeN} {4k 3keN} or {4k lkeN} is in u T

,'_:wa S l’ 1—‘[<1a;a§a7}f’ ‘ >] then e e AT e T

O "‘_i::s»;:l.nce lzm smH 0




»This'relationShipfbetween,sequenceszwith limit-O and

infinitesimals can be_shown‘With the following proposition.

" Proposition: S et P
If S= [< ﬂ and hwzs-O, usingjthe traditional'
- definiticn of‘l;mlts, then § is infinitesimal.

’Proof. : ' L ‘
lzms—O JEN ‘v’g>0 EIneN 3|s—0| |s|<s Vi>n.
i—>c0

»P}ick an arbitrary keN and let 8=%, "then
“dneN 3‘S~|<l Vi>n.
LlelU VkeN,

Sane each such set is coflnlte.

S is 1nf1n1tes1mal.

. The converse though is not necessarlly true because of

'the nature of ultrafllters. As wevd;scussed earller,‘lf
s=[(0,1,0,1,0,1,...)] and t=[(1,0,1,0,1,0,...)] either s=0, i.e., is

infinitesimal or t=0, i‘e., is’infinitesimal (but not both)

dependlng on whether u contalns the set of odd numbers or

- the set of even numbers, respectlvely. But both im S; and
i—00

~ limt; are undefined because both {S} and {t} have two
i—>o0 v

accumulation points‘(O and 1).

Thus, just because a sequence ‘is 1nf1n1tes1mal it does
;not necessarily have a limit in ‘the tradltlonal sense (at
best we might be able to say a sequence Wthh is

'x;nflnltes1mal has a llmlt a.e. )
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Perhaps a more interesting case is a classic example of

a (very) discontinuous function.

Example ‘3: » B
RN
oz r=[(;)]eR then

O =[]
This sequence will be 1 ‘w‘hene.v‘ér rois 'Ratioﬁal'and 0
‘when 7} is_n‘Irrational‘.‘: Thus *f(r) _*1=1 if {ieN:; eQled,
that is, if r is Hyperrational. Otherwise */(r)="0=0,
since fhen {i EIIN:I‘I-‘ YGIQ}C={I' e N Q‘Q}E‘U‘, ".ahd T is then

~ Hyperirrational.
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CHAPTER 7:1_THE TRANSFER‘PRINCIPLE

The Transfer Principle:provides;us With a direct,v
straight-forward mechanism for identlfying'What properties
»of the Real numbers also hold true in the Hyperreals. Use
of the Transfer Pr1n01ple ellmlnates the need to resort to
examlnlng spe01flc sets of. 1ndlces where expllcltly defined
Sequences satlsfy the des1red propertles.

In many cases applylng the Transfer frlnCLple is
quick and easy. The down srde is that a relatlvely |

Mrestrictive formal,languagewmust be used,

"THE FORMAL LANGUAGE

For purposes of obtalnlngian understandlng of the
Transfer Pr1nc1ple 1t is necessary to 1ntroduce some
elements of symbolic loglc for relatlonal systems.g These
are referred to as simple languages_calledegvand they are
used to Work with the properties of relations and functlons
that’are extended from the Reals. For our purposes lt will
not be necessary to define the formal language completely.
Except for a few pecullar detalls,~much of the language is
~actually relatlvely easy to read, though as is usually the
case with new languages, it is harder to learn to wrlte.

One of the first thlngs to note is that the names of
nost ob]ects, such as sets, relations or. functlons, are

underllned. ThlS is used to 1ndlcate that we are . in fact
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referring»to the object.in:our'language, not actually
manlpulatlng the object itself. .

When we apply the Transfer Pr1nc1ple, the names ofieach
of these objects w1ll be further appended by addlng a star,
_to 1nd1cate that we are referrlng to the nonstandard :

Vhexten51on of the object in questlon. |

The notatlon R()istates that X is an element of the

yReals. The lower bar 1nd1cates the "name" of the Reals in

w"thls 31mple sentence. ThlS is an example of what could be B

;calledv“metamathematlcs", meanlng that 1t descrlbes the
‘mathematlcs, 1t does ‘not actually manlpulate mathematlcal
objects. o | - | | | . |
Many of the usual loglc symbols apply. A (and),
];(1mplles), and V’ (for all) None of these symbols are
underlined or starred 51nce they are part of the language,
not the mathematlcs belng descrlbed. The standard
‘Aarlthmetlc or linear. orderlng symbols also are not
v”j:underllned or “starred"VSlnce they have exactly analogous'
;meanlngs 1n both the Reals and the Hyperreals. Further, if
‘necessary, 1t is easy to determlne whlch operatlon we would .-‘
ﬂ:be referrlng to ln any speclflc sltuatlon.
 However there is no'uSe of_thelsymbol 3'(there
exists). The symbolstI(Or).andhrni(not) are'alsornot'
avallable for use in the 31mple language. One can:get',-
around these restrlctlons by creative use of the language,
e. g., "not" can be replaced by set complements and "or" can

be replaced by multlple statements.ﬂ"There ex1sts“ is
g 1. _
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'replaced by the use- of Skolem functlons, Imposing these
llmltatlons helps to make the ‘proof of the "simple" form of

_ the Transfer Pr1n01ple poss1ble to understand for people new
'vto this area of study.

' Thls does not mean that the proof is- easy to explain.
The proof lnvolves a detalled dlssectlon of interpreting
true statements about the Real numbers, expressed in the
fformal language, to determlne whether they will be true

’"almost everywhere"'ln the Hyperreals. Slnce the

‘ﬁ’,presentatlon of the complete proof would add little to the

_reader s understandlng of how nonstandard Analy81s can bev
hused to teach entry level Calculus, the proof?not be

presented. Instead‘we.w1ll focus on‘examples of how Real
‘statements are constructed:ln the_formal language and hoW'

‘they are transferred»to;and“interpretedainlthe Hyperreals.

 SIMPLE SENTENCES
_ThedTransfer}Principle relies on theiuse of simple
statements, or sentences asythey~are called in Hurd and
Loeb,'expressed‘in our-formal language.‘”
| Our first‘example of'a simple'sentenCe is: ,
(‘v’x)(‘v’y Vz) [R <y>/\B'<z>——'>x-(y+'z)=x-y+x-z]"
Technlcally thlS is" to be read "For all X, for all y,
and for all z, if xnls,an_element of the set called the Real
.'numbers, and‘y'is.anﬁelementjof the set called the Real
numbers,'and Z‘iswan element'of the set called the Real

numbers, then x- (y+z) =X-y+x-z".
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~ More reasonably thls would: be ‘read "For all Real
E numbers X, ¥y, and z, -(y+z)—x-y+x-z"

Another eXample‘ofha Real Statement'might be the
ClosurehRule’forvaddition of Rational numbers, i{e;, if

This can be formally written as:

() g > Ofr+ )]

‘SKOLEM FUNCTIONS

Hurd and Loeh refer to Skolem functlons as a "technicai
‘ artlflce" whlch 1s used to replace the phrase "there |
,Zex1sts", usually denoted 3 One of the examples'they use
is, "For . each nonzero X in R there exists a Y in R such

d that x-y:=1".g In standard mathematical notation thlS could

be- wrltten.

‘v’xeR x#OEIyeRax y= 1

ThlS statement can be lnterpreted to assert that there-
ils a functlon, call it qt, of one varlable whose domain is
the set of nonzero Reals, whlch satlsfles X q« ) 1, so,that
wlx)=x"" |

We can comhinetthe statements~xf€}3 and x#0 into a
s1ngle statement by deflnlng Ry= R- {0} {0}0 and then
stating x:eﬁ% Also note that the deflnltlon of . »
Ry=R- {0} {0} is an example of the methods which allows
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~ us to avoid using an "or" statement, i.e., x#0 is the same
“as "x<0 or x>0."
‘Using such nétatioﬁ.We translate‘our Reél,statement

into the formal’language of nQnstahdard analyéis'5sbfdiloWs:’

 (Ro) > x v -1]

In thisjcase the function Yy is an example of'a_Skoleﬁ.
function.  Aﬁ§£hér, moré'complicAted examble of the use of
~Skolem functibns'ihvolves the Archimédean Principlé.

One Qariétion.of the Archimedeaanrinciple states that
forveach Reai X there is a pbsitive integef[(i.e., a natural
number) suéh that: |

| Vx‘eRElmeNax<m,

This,transfers into‘our‘formal language as:

(‘v’x)[E(x) - N_(y_(x)> AX< y(x)]
Note that \y(x) operates here as a selector function
 since may different values of WY(X) could be chosen for each
‘X. For example, if>\y(x),$atisfies‘tﬁe“given:cohditions,
then so does \|12(x)=\|j(x)+n,for any fixe_d neN, and
| wj(x)in-:'w(x) . for:‘é._vny fixed n eN. Any one. of these
;fﬁnctions,'and‘many,more,‘would havé‘adéquately served the

purpose here.
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" THE TRANSFER PRINCIPLE

| The Transfer Pr1nc1ple lsba baslc assertlon that any
:statement in the Reals,jwhether a funct;cn or a relatlonvcan
be transferred to the Hyperreals.ﬁ ’

* Bas1cally what happens 1s that a Real statement is

',u translated 1nto a 51mple sentence and then the Transfer

fPr1nc1ple is applled. Notatlonally thls essentlally amounts
to starrlng the names of the sets, functlons and relatlons
used._ Conceptually, though we are actually replacrng the
-orlglnal Real sets, functlons,‘and relatlons ‘with thelr,
‘nonstandard extens1ons, the detalled constructlon of whlch
we have‘aireadygpresented.. The fact:that the mechanlcalhv
process:of transferringiReal‘statements‘to obtain their |
HYperreal eguiValents is sc”easy is‘whatrmakes the Transfer
,-Pr1n01ple powerful.~ E | | |
| The fact 1s that you must correctly express ‘the desired
‘fReal statement(s) in an awkward formal language, and then
‘1nterpretvthe transferred statement(s) ccrrectly,:ls what
f‘makes‘the‘process’sometimeSvdifficult and/or:triCky.
The formal statement of the Transfer Pr1nc1ple, as

f“presented in Hurd and Loeb 1s as follows._

:Theorem. Transfer Pr1nc1ple

If ¢ 1s a 31mple sentence in LR;(the 1anguage of the
%
Realsxwwhlchjls true in 9{,. Then ¢ is ‘true in J{

[2]
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The use of R and QQ*Vhere.is adeontinnation’Of

'~netation from the-first»Sectionbin’Which the>Transfer
‘Pr1n01ple was 1n1t1ally introduced. R and 9(* denote the
TdReals and the Hyperreals respectlvely.‘ Proof is beyond
:scope of thlS paper and is not needed for understandlng the:;

basic principles deser;bed here. -

dEXaﬁple 1gitbis££ibﬁ£i§e»bfbpé££y e
‘v’x,y,ZeR—,>¢xv-(y+‘z)=x?y+x-z, .

Written in. the formal language is: TR -
(‘v’x)(‘v’y)(‘v’z)[R( )/\R<y)/\R< )—)x (y+z) - X - y+x z]

The transferred statement is:

(Vx)(vy)(vz)[ R{s)N LN };;x (y+z) weyaz]

Example 2: -ClOSure'Ruletfor'Additidn of‘Rationals»
o If P g éQ;“'th‘en pt+g EQ. |
This can be formally'written as:

(v(v2)1Q(x) A Q) > Qo+ )1

The transferred statement is:

(va)(V3)[" Q)" Q)" 0l + )]

This says, 1n-br1ef,-that iffxaand y are”Hyperrational

nuﬁbers, then their sum is also a Hyperrational number.
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7‘Example 3: Ex1stence of Multlpllcatlve Inverses

‘v’xeR x;t() EIyeRax y=1

- Written in the formal-language'ls:_.
(Vx [R - x-y(x) = 1]
The transferred statement iss

(vl Ro{w) > x"w) =1]

*
Eb here 1s the set of ‘non- zero Hyperreal numbers since

‘%‘rthe only Hyperreal number that cannot be ‘represented using

telements of f% is- Orrtself. The transferred statement,
'ifthenyvisfformallylreadfl"Fbr*euery?x,‘lf X is an . element of
5the non- zero, Hyperreal numbers then X tlmes the value of
the functlon ql, the Hyperreal exten31on of the Real

r'dfunctlon v, evaluated at x equals 1.

'Example 4:  Archimedean Principle»'
‘v’x eR Elm eN3x<m

.ertten in the formal language‘is;
(Vx) [R(x >N <\|/(x)> AX< \u(x)]
The transferred statement 1s.
‘v’x)[ x)——> N < \|1(x)> A X< \u(x)]
This transferred.statement is read "For every X, if x
is an element of the Hyperreals, then the values of the
”’Hyperreal functlon ‘w(x)ls a Hypernatural number and X is

less than the Value of \y(x)
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‘ STAN DARD PART

In order to lntroduce the next sectlon we need to
1ntroduce two 1mportant equivalence relatlons on:Rkand the
eassoc1ated notions of monad and galaxy..‘Monads are of
special importance for tWo reasons: for'the,nonstandard
treatment of convergence and contlnulty, and also because
.Lelban dlscussed monads as being the 1nd1v181bles essentlal

dto the understandrng of his development of'the Calculus.

h'Deflnltlon.' o
Let X and y be numbers in 5{*.
i) x and y are near or 1nf1n1te81mally close if x—-y
'chls lnflnlte81mal.;‘We wrlte xm RYy. The monad of X
“1s the set m(x) {y e.l{ PX R~ y} | |
'lldh‘x‘and y are flnltely close 1f xX—y is flnlte. We
. wrlte x y ' The galaxy of X is the set
GW=yeR"xzy). -

The monadic and galactlc structure of J{ is- eas11y
'visualized.‘ Clearly HKO) is the set of 1nf1n1tes1mals and
f(}(O)‘ls the set'of'flnlte numbers. It follows that'any two -
monads ﬁKX)‘and h(y) are either equal‘(if'x is‘infinitely

~close to ¥, i.e;;ixﬁsy,).or disjolnt (if X is not infinitelyi
- close tony). 'Specifically'the monadlof‘any infinitesimal is

v

still m(0). The relationVNfiS»an equivalence relation on
*
9{., An analogous statement can be said for two galax1es

*CKX) and CK}Q are either ‘equal (if X = y is flnlte) or

dl5301nt. The monad of any flnlte number, spe01f1cally any
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o an equlvalence relatlon on 9{

Z. Real number, is the same as CKO) g Thezrelationfé’isfa156 f.a””'~

Examples of Monads and Galax1es

“Lﬁi=¥ Inflnlte51mals (elements of WKO)1L;£§*TQR%515[Q SR

Hfo0o.fo)=0

Ll ‘<1,;,;,;, >] [<%>]V,. L

o s3= (o 14159 004159 000159 )]»-_ BRI R

.[all but the flrst l dlgl

:sﬁf}¥ l'Finttes (eiementswof CKO)) e
| [(692692692 ][692] 692

t2 ~ TC —> t2 Em(TC)

R@f’ Dli=sf (1+3>3;;. I kl ; ’ﬂ ' e

[(1 20 300 4000 50000' )] [<(—1o)"1>] o



http:6.92,6.92,6.92
http:4)(-0.iy

Other Examplesjof.quadsvand Galagies;‘
,Elements » of v m(—8) '
- wi=[(= 8)] =-8 B |
"V, —[ 7 —7— _,73,_7_ >']*'V'1+51 ‘
v —[{ ~8.4, ~7.96,-8.004,-7.9996,.. N=vits,

Elements of i’h(ul)
"WI—K2213141 ﬂ—uﬁsl e
wy =[(114159...,2.04150... ,3.00159..., ...)] = —uts;

Elements of G(ul)y' o
T |
p=[(101, 102,103,104,...)]= u;+100
B =[(4,5.1,6.14,7.141,8.1415,.. )| =u,+ £,
- vp.2 “v“.1+.'7“ "Pz e,m(ui+ r) |
Also, P, =='u'1+'zf, reR

p,=up+s, seG(0)

Similar to ’our previous development‘, if: s-—[( l>] and

lzmS —LGR, uSJ.ng the traditional def:l.nJ.tJ_on of l:LmJ.ts,.
i—0

then s~ L, or equivalently, Sem(L) |
To see this, consider s—ll=[<%—vLﬂ; Then |

lim ( - L) =0, and thue by ‘the earlier result, [(sl —L>] ~ 0, k
i—o0 .

ThlS means S—L 0 hence s~ L and sem(L)
We are now prepared to present a fermal definition of

the Standard Part of a Hyperreal nﬁmber.'-.
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o Proof.

Theorem: ‘
If pe X is finite, there is a unique standard Real
number r €R -with‘ piwr; i;e.,‘every;finlte‘number is

near a unlque standard number.

Let A=‘{xeR:p_<x} and"B#{x,e Rix < p}

. Slnce ;) is flnlte, there ex1sts a standard number S
“such that»—S<|)<S.. It follows that B is nonempty and
has an upper bound., Let r be the least upper bound of
B (the ex1stence of ris assured by the completeness of

- R). For each £>0 in R, (I’+8)€A and (r €ebB,
ff8<p<l‘-lf8, and__hence li"—p}S&. It follows vthat-r- '
rep. '-‘If_ K ~p then |Ij—l”|$|r1—p|+|p—r|<28 for each

" standard £>0, whencef'r#=ﬁ;‘ QED [2]r

Def;nltlon-' _ A
| - If p e R is finite;“ the vuniqu'e standard number r €R
such that pfvr is called the standard part of p and is

,denoted by M(p). ‘This deflnes a map St(3(0)—+1§ called

the standard part map.

Clearly st maps G(0) onto R since St(l’)=’l’ when reR.
B That the map*also preserves algebraicfstructure is shown by

 the followingbtheorem;: [31
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' Theorem.: |

ng. homomorphlsmOfG(O)

v“?Mdlscours f

; somet1mes called

"Standar‘rﬁJf¥ ‘




‘ﬁonstandard Analysis.: The.Standard'Part of a number‘is the
Réal numbér which is infinitely close to some Hyperréal |
number b. Infinite Hyperreal numberé_do not have’standard
' parts. This then,leads us to calling the Reél number ﬁhatb’ 

is infihitely»Close to b the "standard part" of b.
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CHAPTER 8: CONCLUSIONS

As we have ééen, £hé primary“édﬁantages,of the
nonstandard hethod.of'teaching the Calculus is that it
providés the student with a‘moré intuitive, conceptual
approach to the subject. The results are the same and the
algebra is virtually identical to the traditional limit
based method, so instructors’canveasilyAmake the transition
in instructién»to using the nQnstandard method. Though
covered later in the course and less heavily depended upén,
limits are stiil taught, so no'critica1 background is
missing for students who choose to'go on in their
mathematics educatibn. On the contrary, having been exposed
to the nonstandard method may enhance the students’
intuition about limits and provide them‘with another
intellectual tool with which to solve other types of

problems.
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