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) ThlSpijeCt _i:hv'ol\}es‘ an ?‘iq.-depthtl)dok ét some of thé hiéforicél dévéiép‘ir_n:énts t'hat: 1 o

pteéedéd the foﬁnal .im‘/exntion‘ of 'cﬁlculusf It ‘foc’u‘sev"s chfdnolo_éiéélly on thé‘-e\_r‘ér'lts t_hafled’ |

| tyo NeWon's discovevryvo‘f.‘ »the-'_binomialv sé‘ri-es‘. The primary pﬁrpos_e‘_o‘ff‘_c’hjs proj.eé# is tko_j .
' provi'dé‘ high school caléﬁlﬁs'»étudénts' w1th both writtén- historical ba_c":kgrouna_" and
dis_cbyer'y-base_d’ abt‘i’viti»e“:s_btha_t inv;i‘lv‘e t‘h."el-,m‘ m the dve\‘/evl»o»pmental : stageg,-‘bf the caicﬁlus.
The discoVery-'basbed» éétiVitiés contain exerci‘ﬂsésf()n PaécalYﬂs Trianglé, Alhav_zgh"s‘methg)d for :
‘ acquiri‘ng fémulas for 1* + 2F :-'r‘-v3"‘+...%-n", John Wéllis' charaétéfistic-fatio bf ind,e}{ k, o
Wallis' famous reprcsehtation of © aé- an _inﬁnife pro_duc_t, aﬁd Newton's discoverj} 6f the

binomial series.

Codi v
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Chapter 1

Introductlon .

Mathematlcs not unhke any other subject of study, has in 1ts hxstoncal background,} f
| r>certam developments that stand out among all others as cntlcal turmng pomts This paper»‘;

e | 1nVol_yes_'Qne such deveIOpment, narn_e‘ly_, Walhs mte'rpolatx‘o,n s_cheme Whlchf leads‘-to hls -
> famous representatio.n of & 'as'an mﬁmte p'radua. Infact, 'Wauis}hmaf t‘éiﬁé&' .'th_e,‘ term

.,"interpolatlon (onglnatmg from words meamng "to pohsh in between") in h1s most

dcelebrated work Arlthmetzca Inf mtorum pubhshed in 1656 The new method of

o [.experlmentauon contlnuously employed by Walhs in its pages mvolves 1nterpolat10n and

mductxon leadmg to multltudes of general1zat10ns 'Wallxs use of mductxon was the ﬁrst of e

ﬁ’ it lts kmd and 1t led to an abundant harvest of fresh revelatlons in mathematlcs Arguably,
- the pn‘mary reason t‘or such an explosron of newly dlscovered outcomes in mathematlcs |

- followmg the work in Arlthmetzca Infi nztorztm by Walhs lles in the fact that from ancxent -
times, untll the nnddle of the seyenteenth century, mathernatlclans av01ded workmg w1th
| the mﬁmte due to the homﬁc methodology requrred Walhs prepared the way to modem—

: day approaches to lnﬂmte processes He admltted both the concepts of infinite serles and -
- limit theory 1nto mathemat1ca1 reasomng ’lhe followmg paragraphs act asa bnef |
| ‘,; chronology of 51gn1ﬁcant events in mathematlcs Wthh ultlmately dlrected Wallls to l’llS N ’
- profoupd m‘vesnga‘uosnsi e : P o S L

- The earliest written lnqumes into the}inﬁnit"e-;pr;oce‘_ss date back to aboutSOD BC.



' thh the paradoxes of Zeno IfZeno were to be remcarnated mto today s world 1t 1s lxkely

" l_;that he would beheve that he could Jump from an arrplane w?thoct__a parachute and even .

il “‘more frtghtemng, w1thout the fear of h1tt1ng the 'g‘ ound bAﬁer all there

= : ‘number of "half-way ponts he would‘have to bvpass and naturally that would take an PHETRN

i mﬂmte amount of trme

o At about the same txme Anstotle wrote of Zeno s paradoxes the Pythagoreans o R S

o o dlscovered the mcommensurable (seaments that lacked a common measure so that the

s f'.ratro of therr lengths was what we now call 1rratronal) Tlns escalated mterest m the 1dea

v'of the mﬁmte process and led to the nex‘ stage m the culttvatlon of mﬁmte theones -

In abou* 450 BC Hrppocrates squared the area uader a curve He ascertamed that “

o .,,j‘the area of the shaded reglon below was equrvalent to the area of square AMCD ' " - R

Tlus problem was the ﬁrst of 1ts kmd It showed that the area under a curve could bc

squared Consequently, "t'sparked mterest 1'1 ’o e ffthe most tantahzmg problems S

f“v-encountered m mathematxcs that of squarmg the c1rcle

Shortly thereafter the Sophxst Antlphon proposed that there exxsted a regular e

,“:._polygon”wrth a sufﬁcxent number of srdes whose area matched that of a crrcle havmo a : AT

S radtus equal to the length of the pol}'gon s apothem Already and qulte understandably,‘f j: S




o we see the confusron perpetrated by processes mvolvmg the mﬁmte

s the Greeks "method of exhaustlon

' The Pythagoreans dlscovery of the exrstence of mcommensurable geometrrc

| }‘_"magmtudes (lengths areas volumes) ultrmately led to the n |

tage in th development of . ,_

e the theory of the mﬁmte process the wntmg of thel3 _books of the Elements b.«v Euchd in

. about 300 BC Incommensurable geometnc magmtudes forced a thorough reexammatron Bl

o jof the foundatlons of mathematrcs and th1 t o k: was undertaken by Euclrd He created a

5 "contmurty axrom" that allowed the Greeks to deal wrth geometrrc magmtudes that could S

o .not be "measured by numbers " An 1mportant ppllcatron of the contmulty axrom mvolved Lo

The method of exhaustlon was utrlrzedv by the Greeks as they attempted to

- AT .calculate the area of a curv11mear ﬁgure Thrs appllcatron mvolved ﬁllmg up, or -

L exhaustmg, the curv111near ﬁgure by ‘means of a sequence Of polygons It was devrsed : . '-

L apparently by Eudoxus to prov1de a geometnc approach to acqurrmg certam lrmrts Thrs : S

L B ﬁ‘was an early form of the modem—day means used whrch is mformally called "takmg the

‘ lmnt " The method of exhaustron was loglcally clear but was very cumbersome for 1t 1n ,'

. practlce hmged on the ldea that the dlﬁ'erence between the area of thev curvrlmear ﬁgure L -

N and the last polygon in the sequence could be made as smalw s desrred by makmg the
= sequence of polygons sufﬁcrently large In many mstances t 1s led to drfﬁcult geometry o

e ",‘fproblems :

The classrca era of Greek mathematrcs probably reached its:

lv""'the Preface to hxs g

L | century BC wrth the squarmg of the arabola' by Archrmed

= i ‘Treatlse on the Quadrature of th ’ Par' bol 'Archrmedes wntes' "Man' ‘mathematlcrans




‘of the segment of a parabola, which is precisely the one that can be carried out.

ent in 450 BC.

any of the greatest minds over the course of the next 190 years tried in vain

, Archimedes' work constituted the very beginning of




its translation had a profound inﬂvuence on European thinking.‘ He explored the nature of
the infinite along with the existence of indivisibles or infinitesimals. He summoned
scholars "to discuss the infinite and to inquire whether therc'is such a thing or not, and, if

there is, what it is"{ Book III, Ch. 4 }. Because of this summoning, thirteenth century
~philosophers and mathematicians became fascinated with the mysteries of the infinite. A
sample of the problems solved at this time fol.lows:.,

1. If a point moves throughout the first half of a certain time interval with a
constant velocity, throughout the next quarter of the interval at double the initial velocity,
throughout the following eighth at triple the initial velocity, and so on ad infinitum; then
the average velocity during the whole time interval will be double the initial velocity.

2. If an aliquot part (one kth) should be taken from some quantity (a), and from the
first remainder such a part is taken, and from the second remainder such a part is taken,

and so on into infinity, such a quantity would be consumed exactly - no more, no less - by
such a mode of subtraction.

n

The first problem is equivalent to the summation %,4— " + 3 +.+ X +...= 2, where both

the initial velocity and time interval are taken as uhity. The second_ has the nth remainder

a(1-1/k)" approaching zero as # goes to infinity in the expression

(o) b)) T

‘Also, at this time, the first notions of instantaneous velocity were recorded, but fell short
without thorough understanding and tools for working with limits. These medieval
speculations on infinity and the continuum helped wéaken the grip the Greeks' "horror of

the infinite" had on the mathematical world.



B'y the beginning of the seventeenth century, the subjects of thdivisibles and
: 'inﬁnitesimals had getined.popularity.‘ Kepler initiated extensive work» in the subject of
:Inﬁnitesimals (basically the notioh that an area consists of an infinite number of say,
rectangles, each of whose area is mﬁmtely small) with the publishing of Stereometrzct in
1615 Greatly 1nﬂuenced by this work, Cavalieri pubhshed Geometria Indivisibilibus in
| 1635. His method of Ind1v131bles hl_nged on the idea that an area (surface) consisted of an
infinite number of lines and that a vovlun‘_te' (sohd) consisted of an‘ ihﬁhite number of
surfaces. These tre’atiseS constituted majbr advences tovt}atd breaking away from the
' Greek's oppressive Method of Exhaustion. |

| Roberval, Torricelli, F exmat,vand Pascal pursued ﬁirther the concepts of area
- outlined above in the first half of the sevehteenth century, thus helping to set the stage for -
the work of John Wallis' Arz'thmetica bzﬁ'nitorum; ‘ published in '1656; Ahound with fresh
points of view, ‘new methodology, andstimuiating discoveries, Wallis' Arithmetica
Infinitorum put him at the forefrent of mathematics. Quite arguably, 1t is this treatise by
Wal,hs which ultimately l.ed‘to the "conquering of the infinite” by the mathematical world.
~ This was largely due to the fact that Wallis' impact oh NeWton was immense. He stood as - —
Newton's mighty predecessor and many discoveries of the sUbsequeﬁt three centuries can
somehow be traced back to Newton and hence, to Wallis.

John Wallis wes_,rhost,arOused by the work of Cavalieri, wh1ch hrou'ght htm to the

belief that the'Quadratufe of the eitCIe ,jcou‘id be affected‘. In 1652, Wallis ejmvbavr‘k,ed "on a

- venture that eventually led him to his celebrated representation of = as an infinite product.



. TR | 0 1F 425 4
Wallis began by investigating ratios of the form —————— n —. He was
Lo - , o : n.+n +n +.+n

panicularly intefested m these fastibsvfor. l;fge valuéé of n. ‘He called this the charéttéristic B
ratio ot: index k. The table patterns and analogié§ he was able to _formulate- in his work here
encouraged him to undertake investigations directed toward the age—old problem of
'squaring the circle. The intérpoldﬁén scheme-utilizéd by Wallis in ‘his atfempt to square
the circle was the first of its kind. The intuition, use of analdgy,' method of induction, and
,meané of generalization employed by Wallis throughout his work became the vehicle for
further discoveries for generations to come. |
Wallis' interpolation scheme had a particularly important impact on Newton.
Newton's discovery of the Binomial Theorem was a direct consequence of Wallis'
influence. The methodology originated by Wallis also had a profound effect on Leibnitz :
and the limit concepts he developed. | |
These men, Newton and Leibnitz, pléyed especially important roles in the
discovery of calculus, the synthesis of a new and powerful way to arithmetically (as
opposed to the geometrical methods éf the Greeks)vv analyzebinﬁnite processes. However,
it is difficult to deny the debt these men owéd to John Wallis and his Arithmetica
Infinitorum. This was the key that unlocked the chains that bound the mathematical |
universe to the Greek’s "horror of the infmite.‘ " The conquering of the infinite by gaining
the tools for working with, and the thorough underSfanding necessary for, limit theory and

its applications, took place during the late seventeenth, eighteenth, and nineteenth

centuries.



John Wallis was born at Ashford m East Kent, on November 23 1616. His father
'died when he was SIX years old, and it was at thjs time he began school at Ashford His
o ) enthusiasrn for learning persisted from this point onward until his death in 1703. He once
wrote ",It.was always my_aﬂ’ection, ‘even ifr\orn a child in all pieces of Learning and
Knowledge, 'not merel)r to learn by _r‘ote, iwhich" is soon forgotten, but to know the grounds
or re‘asons of what I 'leam;v to mform my Judgement as well as furnish my Memory,< and
thereby make a‘better‘ Impression on both" [Scott, pg. 3]

: Mathematics made its first impression on him in 1630 when his'yo’unger brother
-had been learmng to wrlte to c1pher and to cast account. Walhs asked what this meant
and was told that it dealt w1th "The Practical Parts of Common Anthmetrck m ’
Numeratlon Addition, Substraetron Multlphcatlon Drvrsion the Rule of Three (Dlrect
and Inverse), the Rule of F ellowship (wrth and wrthout Tlme), the Rule of F alse-P051t10n,
Rules ,Of Practise,_i and ReduCtion of Coins,f and. some:other little things" ‘[‘Scott, pg. 4]

In 1632,:. John Walhs deeided to attend Ernmanu'ei College, Cambridge. This was
the real birthplace of »his‘.mathematical expertise, just as it was Newton's thirty years later.
He graduated with a Bachelor of Arts degree in 1637 and was admitted to the Master's
degree program four 'yearsvlaterr In spite of the fact that his formal schooling' involved - 3
primarily mathematics, Di'i/inity remained his principle interest. »In 194'1,‘he was appointed
R chaplain to Lady Vere the w1dow of Lord Horatro Vere.

Durmg his tenure w1th thlS family, Wallis exhibrted a skill in the art of deciphering
: eryptic messages. The eountry was 1nvolved in the Civil War anv_d‘ the speed in which

Wallis could decode messages written in cipher caught the attention of ’the.Parliamentary




party; The Parliamentary party called on Wallis to decipher letters fo_r many years. As a :
S ma‘sterof this ve‘ry dangerous art, Wallis'rnade many enemies and on occasion he was* 'v |
- accused of exercising this skill carelessly, Without 'regard to the potential consequencesr; |
Nev'ertheiess,b Waljlis.was able to rise above the very turbulent surroundin‘gs‘of.this time |
'an_d endure the negative aspects of de.ciphering coded messages for governrnent officials. .
In the 1650'5 Wallis piayed an important ‘role in the climb to prosperity of the
Royal Socrety He was the most faithful of its members to adhermg to the Soc1ety s
: orlgmal plan of developmg the technique of expenmentation Wallis apphed hrmself to

virtually every branch of learmng and contmually subrmtted his observations and

experiments to the Royal Socrety These included astronomical observations, experiments
in the theory of the Flux and the Reflux of the Sea, observations on Grav1ty and on the J
‘ height of the barometer vat different seasons; and experiments in blood transﬁJsions, | to-
name a few. It was the deyotion of his energies in its infancy that" enabled Wallis to , |
stimulate interest and enthusia_sm in the newly formed learning establishment called the
Royal Society. |

Though hlS intereets and ‘work ranged over almost every facet of hurnan activity;

Wallis added fame to iboth his own name and country with his endeavors in the field of

mathematics. With his appointment to the post of Savilian Professor of Geometry in,16‘49i, |
mathematics became the éubject of serious study. About this time, Wallis' interest in the -
subject of Indrv1srb1es spurred on by the works of Torricelll in Wthh Cavaheri S methods :

were constantly used, prompted the thought that in it was a way by which the c1rcle could =
be squared. The result of the energy directed toward solving this centuries old problem ‘



L ':ZInf mtorum Th15 treatlse relates prlmanly to the quadrature of curves by Cavallen s

| .methoa’ of mdzvzszbles However 1t goes far beyond Cavallerl s geometncal exposmon e

S Wlth the use. by Walhs of Analy‘tlca. Geometry AS noted earller lt played an 1mportant

- 'role in the development of the calculus especrally mtegral calculus :
” The ﬁlll trtle of John Wallls famous treatlse 1s
Arzthmetzca Inf hitorum siv Nova Methodus
Inquzrendz in Curvilineorum Quadraturam alzaque L
- diffi czlzora Matheseos Problemata R R
It's translatron is as follows | _
TI—IE ARITHMETIC of INFIN"ITIES ora NEW METHOD "

of studymg the. QUADRATURE of CURVES, and othermore =~ . - .. |
D]FFICULT MATHEMATICAL PROBLEMS R

n: :?656 w1th the pubhshmg of J ohn Wallxs most famous treatxse Arzthmetzca :.‘ o



 Appendix A

 The Activities

‘The follow.irig'dctivitiesj are of 2 heuristic nature and g}e intended for use by first
year calculus students. The rationale f‘or the involvement by-calculus students in these
actiyitiés ‘is that no student, who givevs:'considerable attention to calculus, should fail to
ﬁiake acquaintance with the historical phases and lo'gi_cal» transitions which occurred in the
developing stages of the calculﬁé. A‘ll t_éo often, subjects, particulérly in mathematics, are
taught to students as ﬁnished-products. However,vthe high school AP Calculus course
_affords a great oppoﬁudfy fqr students to e'rigage in activities which are of an
k‘investigative nature, théreby lééding.fo dispoyery. This obportunity oceurs in the month |
of school following the AP Cai’culus‘ éxa‘in: Thesé activities will serve to putv the "finishing
touches" on the AP éour_ée by lettirig'tqday's calculus studerité in on the methods, history,
) and above all», the excitémgnt of -the wofk by Wallis and others‘ which preceded the fdrmal
invenﬁoﬁ of the calculus.' |
IMPORTANT

As a student works thr‘o‘ughithese exercises, they should think of themselves as a
cryptographer attempting4‘ fo br.eak a code. After all, as stated previously, that is what |
John Wallis primarily did for a ljving‘ He was very good at it and thus made many
enemies. This might be the primary reason fo’r.Walli._s' not receiyiﬁg .the: notori;:ety he

deserved for writing Arithmetica Infinitorum. In simulating a cryptographer, one should

11



look for patterns and use intuition to predict future outcomes. Then, verify or test the
predictions and try to generalize the results (i.e. "break the code").

THE ACTIVITIES

SET I Acts as an introduction to tﬁé style ana nature of Succeedihg activitiés.
SET II: Delvés into the'faécinating methqd by which Alhazen determined formulas fdr | ‘

the sums of the ﬁrst n intégers, the first n squares, the ﬁrst'nvvcub'es, etc. | |
SETII:  Involves the :st,uder‘lt in Wallis' investigations into fhe ‘value of ratios of the

0F +1F +2* +. +n*

form )
n +nf +n*+. +n*

SETIV: Embarks the student on a venture similar to thét' undertaken by Wallis in his
renowned diécover’y of 7 as an infinite product.
SETV:  Depicts how Newton extended Wallis' concept of interpolation to

include areas under curves having negative powers associated with them,

to find a new representation of w, and to create the binomial series.

12



SET 1

A
CRYPTOGRAPHIC

- WARM-UP
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ACTIVITY 1: PASCAL s TRIANGLH

DIR.ELTIO\'S Use the space prowded to expand and stmpltfy the‘followmg'bmormal,

expresszons )] (a 5:-»; 5’),2‘ =
| JE 2) (@+by =
3) (a + b) e

- Now transfer to the blanks below the coeﬁlcxents of the "ms you got in your answers e

2) (a +‘b)j‘ = |

; . At thlS pomt a cryptographer would probably make a predxctron as to wnat the
answer is for problem 4. Venfymg the predrctton the next step mrght be to predrct and
then venfy *he resultt be obtamed m problem 5 Do thxs below , R

Predrct the answer to p oble"ﬂ S Ty ST
e 4 @+ byt =" _a* ¥ ’b +.a b + ab’ + b‘ ;
Venf} vour predxctron by carrymg out the requ1red expansmn and srmphﬁcatton below

Predxct the answer.to problem 5 R ]
: 5 (a by R _ ‘
Venfy your predrctron by cartymg out the requtred expansron and sxmphﬁcatton below

;_The subsequent step whrch mxght be taken bya eryptographer would rnvolye predxctmg
- answers to the expansion- and sxmphﬁcatron of what would be. problems 6, 7: 8, and 9
Then he/she may attempt to venfy problem by actually carrying. out the' expansxon
his continued to fit the established pattern, the next step would most likely be a- predlctton
- of the answer to say, problevn 15. Ifthe cryptographer attamed venﬁcatton ofthis -
- prediction, he/she: may very well move on to an attempt to generahze the- entlre srtuatron TR
. §In other words; further effort. would be- dlrected towards denvmg a formula foran’
L arbrtrary problem (¢ this'is usually denoted by the letter n). The use of analogy, expenenc‘
~intuition, and somettmes Just plam common sense is 1mportant 1n the initial stages_of v
pattern recognition. O r

" phase usually mvolv
predxcttons Fmally,.;:




ACTIVITY 2 : NUMBER PATTERNS
" DIRECTIONS: Fill in the blanks below by following the established number patterns.
| 1 8 36 120 330 792 1716 3432

1 7 28 ' 210 : 924

1 21 | 792

In the space below, list or describe any patterns that you recognize in the chart completed
above. S

v

Now, complete the problems given on the next page. But first, recall that in mathematics

(n)z n(n—,l)(n‘—Z),..(n—r+ 1)

. where n>r and both are whole numbers.
r 1.2-3-.r :

-

n n
| Note that( ) is read "n choose r"}. By definition, (0) =1 vne{0,1,2,3,..}.
r .

(continued next page)

15



5(5-1)(5-2) _5-4-3
1.2-3 1.2-3
at 5-2. Thisis because n—r+1=5-3+1=5-2. EXAMPLE:

= 10. Notice that in the numerator we stopped

5
EXAMPLE: (3) =

8) 8.7.6-5.4 o L
5= 123235" 56. Again, we stopped at 4 in the numerator because n-r +1=4.

o (0 o = B o G (= G-
o0 (= R

o (= (= G- [~ = (-

() (= (e () (1 e [

On your own paper, predict what would be problem © and also predict the answers to the -
individual parts of this problem. Then, do the same thing for problems @, ®, and @.
Finally, verify that some of the individua! parts of probiem © nold true to your prediction.

-

L) W

v . ‘
In other words, verify that the values of say, ( ) (5] and ( ) match your prediction.

When ﬁniéhed with’the above work, answer the questions below in the space provided.

What paftems did you discover in the above exercises that made your work less tedious
and enabled you to evemually make predxctxons,‘7

In what ways do thesé problems relate to the first part of this activitY? to activity #17

16



ACTIVITY 3: INTEGRATION WITHIN THE
UNIT SQUARE

DIRECTIONS: Complete the following chart by evaluating each definite integral.

| 1 | 1
k _[xkdx jxl’/kdx

72

4

What do you notice about the sum of each pair of answers in any particular row?

=7 & Make a mental nbte of the results above, especially those achieved when & = 0,1,
2, 3, and 4, as they are bound to reappear in the near future. Then, continue the
chart below. o ‘ ' L

4/5

7/3

8/9

nmn>0)
1

J.x"dbc=’ ‘ J'x%abcz
0 .

(that is, )

generalize)

Does what you noticed above about the sum of each pair of answers in any particular row
still hold true, even in the general case where &k =n?

17



ACTIVITY 4: GRAPHING IN THE UNIT SQUARE

DIRECTIONS:. Illu‘strrate geometrically the relationship between the regions in the unit

1 v Lo ' o
square having areas equal to j x*dx and f x""*ax for the k=2 row of the previous
0 0 '

activity. Do this by graphing y =x above and then shading the area below the curve.

Then do the same thing for y = x* on the back of this paper. You should notice two
important things as you complete this activity. One concerns symmetry and the other deals
with the combined area of the two regions graphed: Recall that two graphs are
symmetrical with respect to the line y = x if, when holding a picture of one of the graphs
up to the light with one hand and viewing it normally, turning the paper over and rotating
it ninety degrees clockwise gives you the proper view of the other graph. Try this after
completing both graphs. What do you notice about the combined areas of the two graphs?

18



ACTIVITY 5: GRAPHING CONTINUED

DIRECTIONS: Graph y =x* belowand y=x’ onback. Then shade the region below
each curve. Finally, answer the questions below conceming this activity.

4

1
A) What is the area of the shaded region below? j‘x‘gdx =
. . )

B) What is the area of the shaded regicn on back?
C) What is the sum of these two regions?
D) What is the area of the unit square?

E) Why is your answer to question D the same as your answer to question C?
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ACTIVITY 6: WALLIS' QUADRATURE
~ OF THE CISSOID

EXERCISE 1:

The "cissoid," shown below, is the set of points P such that g—%: (;Q. Show that its
equauon sy =x (1 x)y, XE(O,I)}
A A r
4 .
‘ i :
f
-
i
|
{
R R l
| ' o
i I
|
: ! L
@] Q@ QL T X
\ | /
_ \ ‘ /|
_ / i
{1 N ‘ S

,EXERCISE 2

Note first that the area under the cxssmd is I x*%(1--x)™dx. Can you evaluate this definite

mtegra.l7 If so, feel ﬁ'ee to Sklp the fernammg exercises. If not, let

a, -I %(1-x) ’a&: f x"‘(l x)*de. Prove that the two integrals in this expression

are in fact equal. Hint: Let u=1-xand get one integrand in terms of mcludmg the
limits of integration. Then do a reverse substitution (i.e. let x = u) to obtain the second
integral.

(continued next page)
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EXERCISE 3:

‘Evaluate the definite integrals a,, a., a,, and a,. Show that the pattern appears to imply

m
that a, = (

— 3 )a;,,_.‘ for even values of m. Now assume, just as Wallis did, that this
-J

recursion relation holds for odd values of m as well. What is the value of a,?

EXERCISE 4:

1
Let b, = J.x%(l - x)"dx, and note two things: 1. That 4, =a,
o] ’ ’

2. That 4_, is the area under the cissoid.
Evaluate the definite integrals &,, 4., 5., and ;. Show that the pattern appears to imply

that b, = (Ls)bn-z for even values of n. Now assume, just as Wallis did, that this
n-=

recursion relation holds for odd values of n as well.

What is the value of 5_,? Hint: Get b, in terms of 4,

EXERCISE 5:

How many times larger is the area of the cissoid than the area of the generating semi-
circle?
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SET 1II

ALHAZEN'S METHOD FOR
CALCULATING

k+2k+3k+ ...... g

FOR ANY POSITIVE INTEGER

22



ACTIVITY 7 : SUM OF THE FIRST » INTEGERS

DIRECTIONS: Fill in the blanks. BE AWARE! Only even # is expléred in this activity.

Problem Figurate : : | Sum as a2
number . number Sum of first nintegers produc:
(n - L ‘

2 |3 =12 . = ()
4 10 = [1+2=-3=4=(1=4) +(2+3) =3=5= [(2)5)
6 21 = |1+ _+3+4-_+56 -

= [(1+6)+ (- )~ (_+4)=7+7=7= |(3)(7)
8 36=|1+2-3+4-35+6-7+38

= |(1+ D)+ (E-T)=-(C+ -4 .

= 9 + _ = _ + 9 = ()0
10 55 = |1+_~3+4-_+_+7+_+_+10 |

= [C= T -9 G- =D

= . * - = OO
| 8= 1+2-374-3-6-7+8-9-10-11-12 = | ((13)

- 14 = |1+2-3+4- _+12-13+14 ' = (7))

16 ) 136=. 1-:-2:.—3~f-...—__':-_+_'_ oo =07
18| = |1+2-3+.-18 =10
_ | = v | =[O0

"GENERALIZE"
n | =|1+2+3+.-" T =

2 neven T : : 2

VERIFY YOUR RESULT IN PROBLEM "n":

A) 1+2+3+4+ . +100=(__ )___)=5050
500 |

B) DI = ( X ) = 125,250
i=1

23



Does your result work? If so, let's look at the sum of the first » integers
‘where 1 is as opposed to even. ‘

DIRECTION S: First, fill in as many blanks as possible using your answers from the
previous page. Then, interpolate o fill in the remaining blanks. Recall that interpolate
means "to polish in between." ’

D1 = (O
2) 3 = 1+2 - (L0
3 6 =.1+2+3 = ()
4 10= 1+2+3+4 = ()
5)___= 1+2+3+‘4+'5 = ()

6 2l= 1+2+3+4+5+6 = ()
) = 1+2+3+..+7 = ()

2
8) 36 = L+243+..+8 = ()
| 9) }_v__)=- L+2+3+..+9 = ()
1®'ﬁ¥'r+2+3+v + 10 =(;)LJ
11)‘ = 1+2+3+,.+11 =(5.5)L_)

102) = 1 +2+3+..+102 = (_ )__)
195) = 1+2+3+...+195 = (_ ) _ )
"GENERALIZE"
,, |
m Yl =1+2+3+..+n =(__ ) )
i=1 |

n can be odd or even a>
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'VERIFY YOUR RESULTS FROM THE PREVIOUS’ PAGE:

50

A YiI=(__ X ) = 1275
i=1
51 | 50

B) Y =( X ) = i+ -
i=1 =1

0 21 = X Sio- =
i=1 - =l

A different approach to the same su:mnét—ion- follows.

D2 =1+ 1 =) |
QKHQ¥U+Q+U+E=QLJ

ez -ae2ey
,=(1+,)+(7—2)+(3+1)—-41-4+4 (__)(___)

+ 2+ +_)-‘-(1+- +3+_)
+_)*(’+3)*(a*2)~(4+._) I

3)2(1 + 2+ 3)

Do+ _+_+4

1+2+3+ _+_+__+2+_+4+5

Sl 2+ _+_+ )=
- =+ )+@ 6+ (4 O+ (5*1)
A

* pairs must add up to 6 \A v N4 A4 A4
= o+ o+ o+
= (D

»_)‘__‘(1+‘__+__‘+__' ?_)
(l+2+3+4+ +6)+(1+2+3+4+5+6)

C+0+@+9(+ I+@+H++D+6+ )
\'Z v v Y Vv %
o+ + + + +

= (I |
% On your OWI: Attempt setting up one or two more of these, then generalize.
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LECTURE 7A : DISCOVERING ALHAZEN'S
METHOD FOR OBTAINING
FORMULAS TO 1° +2% + 3%+, +n*

This lecture describes an activity that, if carried out to the extreme, may replace or at the
‘very least enhance the remainder of activities in this set. Thus, two approaches may te
_taken:. 1) Students answer the first group of questions given below and then move oa 0

activity number eight. Because of the "hands-on" experience here students il
be able to move through the subsequent activities more rapidly. They will zis0
have a greater "feel" and understanding of what should be learned throughout
the activities.

2) Students in effect go to the extreme with this activity. They answer the firs: set
of questions and continue on to the second set with the overall objective of
finding a means to acquiring formulas for 1* +2% +3*+...+#* in terms of »
given any positive integer .

Materials needed: An envelope containing the pieces to both the "k =2, n= 6" rectangie
and the "&£ =3, n=4" rectangle as shown below.

The ’nk.._. 2, n=4a" rectangle: " _(:_ b 31. N
+Z L 5 6
1r2+3
¢ 2 +30Y> |
. . L ; . |+Z+3+[{’5‘
The "k =3, n= 4" rectangle. 8223 +4- et
‘/3 ) 1
nllt £ :
(2% 7
YA E .
; J2e 20 3 44T
Instructions:

1) Take out the pieces in the envelope containing the "k =2, n = 6" rectangle znd
assemble all of them to form a rectangle. There are several ways in which this
can be done. The best way to assemble the pieces is the one that is most
"organized." If students do not assemble the pieces in the most organized
fashion right away, they will once they start answering some of the questicns.
The most "organized" way is illustrated above.

2) Do the same thing as described above with the "k = 3, n = 4" rectangle.

(continued next page)
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- QUESTIONS - GROUP I v 7
1) What are the length, width, and area of the first rectangle assembled (the "k =2, n = 6"
rectangle) in terms of expressions containing # and/or & or expressions written on the
smaller individual pieces (rectangles)? ‘

2) What are the length, width, and area of the second rectangle assembled (the "k =3,
n = 6" rectangle) in terms of expressions containing » and/or & or expressions written on
the smaller individual pieces (rectangies)? : ,

3) What do the "k=2,n=5", "k=2,n=4""k=2 n=3""k=2,n=2" and

- "k=2, n=1"rectangles look like? Sketch the most orcamzed version of these rectangles

on your own paper.
4) What does the "k 2 n = 7" reciangle look like? Sketch this on your papef
5) What do‘the "k = =3", "k=3,n=2""%k=3n=1""k= ', and
"k=3,n=6" rectanales look like? Sketch the most organized version of these rectangles
on your own paper.
6) What are the length, width, and area of each of the rectangles sketched in' number=
three through five above? Be organized in your approach to answering this question. Look
for patterns to develop. You will recognize patterns sooner if you write your answers in
terms of expressions containing » ané/or & or expressions written on the smaller indivicual
pieces (rectangles)? -

GROUP L

1) What do the "k=1,n=1", "k=1,n=2","k=1,n=3""k=1 n=4" and
"k=1,n=3" rectamles look like? Sketch the most orvamzed version of these rectangles

'On your own paper.

2) What do the "k=4,n=1", k=4 n=2" "k=4 n=3""k= 4,n=4" and

k=4,n=3" rectangles look like? 3Ketch the most oroamzed ver.,xon of these rectangles
on your own paper. : : .

3) Use the "k= 1" set of rectangles to determine a formula for »_i. To do this, you will
i=l

have to construct the "generalized" version of 2 "k = 1" rectangle, determine its length (/)

and width (w) strictly in terms of », and note that Zi appears twice inside the

i=l

"generalized” version of the "& = 1" rectangle. Therefore ZZi = (O(w).

4) Use the formula developed in problem three along with the "k = 2" set of rectangles

(including its ' "generalized" versxon) to devise a means for obtammg a formula for Z i*

i=l

5) Continue the recursive relationships established above to find formulas in terms of » for

Zz Zz and ZI

i=l
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| ACTIVITY 8 : ALHAZEN'S GEOMETRICAL
APPROACH TO THE SUM OF THE
FIRST n INTEGERS

9] b=__h=__ A = ®® =0E) = 2(1) =1 +1

Draw one line segment inside this figure to show that its areais 1 + 1.

2) b=__h=_ A=__= (b

)= () =21+2)
=1+ s+

Insert the arza of 2ach inner rectangle to show that the area
of the original rectangle is (1 + 2) + (1 + 2).

3) A= =)= () = 21 +2 +3)

Draw the line segments required to show the area of this

recta:1g.1eis(l+_+__)+(._+_+_)-

HINT: T'ne figure in #2 above should be contained in :xis
rectangle starting in the lower left comner.

4) Do this next case on your own pager by continuing the patterns established above.
5) Same instructions as #4

6) You may skip this problem and try, say, problem #9 and then "generalize" if you fes!
you are ready. If you find difficulties in your attempt to generalize, a good idea would
be to return to this problem, work through it, and refresh your memory of the patterns
involved here. The generalization procedure for Alhazen's geometrical approach to the
sum of the first # integers is contained in the next activity. However, you should trv
this on your own before advancing. Good luck.
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ACTIVITY 9 : GENERALIZING ALHAZEN'S
~ SUM OF THE FIRST 7 INTEGERS

b =

AREA = (B)(R) = () ‘ ‘)
‘—'-(1+vii-3"-i-...-:-__)~:-(_1—____+__ﬂ_+m + )

_ ' — _ -
DD VD)
iz-k i-_*- i::_

Does the geometrical method here verify further the algebraic result achieved earlier?
Why? v
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| ACTIVITY 10 : ALHAZEN'S GEOMETRICAI.
| APPROACH TO THE SUM OF
THE SQUARES OF THE FIRST #
INTEGERS: A WARM-UP

‘DERECTIO\IS Divide each rectangiz below in such a way so that the original contains

~ smaller rectanales having areas a,, 4., a,, etc.

1

a=1a=1"

(o)}

1
—
4+
(38

i
(9]

(V¥)

W

3)

HINT: The picture you formed |
| in number 2 above
should be inserted in:o
this rectangle.
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4) Sketch a rectangle vw’ith an area of 5 units by =1+_+3+ _anddoas

q =1, a= _
; a. = 1‘?'2, a, = _
you did on the previous page with:
: ' : a=1+2+_, as = _
: a =l+_+_+_, a =

'5) On your own paper, sketch a rectangle with an area of ___ units
by = + + + + and complete this next case by continuing the

 patterns established above. Here we have

. 12 - ) -2
a =1 a=" a=1+2,4a,=2",

2

a,=1+2+_, a;=3, a,=1+2+3+_, a;=4,

ay=_+_+_+_+_, a, =

6) Complete this case in the same manner as you did those above entirely on your own
paper. R ‘
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ACTIVITY 11 SUMMARY OF ACTIVITY 10

0<] NOTE: The problem numbers below correspond to the same problem numbers of
activity #10.

DA=a+a, =1+

2) A=ag +a,+a,+a, = 1 + 1 =2+ 1*+2°

3) A=a +a,+a,+a,+a, +a, = _ + o+ : + 1P+ o+
4) A= ag, +a, + ta,+a, vt +
=1+ + + - 1+ + -

i=] i=l

4 B 4 :
Z{Z k} + D4
5) Try doing this case in the same fash:on as Lhose above.

DIRECTIONS Prior to continuing, go back to actwrty “10 and shade in all regions whose

area is represented bya natural number raised to the second power (e 1‘,22,3“ ).
'Agam the probiem numbers below correspond to those i in actmt y #10.-

B A=(b")(h)=(1)(2)

2) (}A =(b)(h) = (3)(3) = (1+2)(3)
D A= 0 =0 =(72 0

i=l

9 A=O=C =0 = (Trfee

i=l

S A=( = +_+_+_+ 0 - (Zz)

6) Complete this case in the same fashion as you did those above. Do this below.
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ACTIVITY 12 : THE GENERALIZATION OF
' ALHAZEN'S GEOMETRICAL
APPROACH TO THE OF
THE __ OF THEFIRST
__ INTEGERS.

" DIRECTIONS: Fill in the blanks below as we carry-out problem 4 in activities 10 and 11
to its fullest extent. '

4)

d:’Insex‘cthea:easl 1+2, 1+ 2+3, 1+2+3+4, 12 2%, 3%, and 4* mtothexrproper

places above. Next, shade in the 12, 22, 3?, and 47 regions. Note that the area of the
figure above is equal to its base times its hexght which in turn equals the sum of the shaded
regions plus the sum of the non-shaded regions. In other words (or symbols)

C (d)(h) = Z shaded regions + Z non-shaded regions
- THUS, »
(1+2+3+4)(4+1) = (12 +224+3 +42)+[(1) +1+2)+ (1+2-|-3) (142+3+4)]

i=l i=l. k=l

(Z’) 4+? i'z*{i{ik}) &INote tha; Zk=

i=l i=l i=l

= (iz)(s ZI +(i{—;~: 14-1)}) ~ (continued on the ﬁext:page)
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= giiégiii = ii3=32i='3[%(4)(4+1)]=

Can you think of a quick "check" to the result above? If so, show it below.

Fill in the blanks below as we do the same thing for problem #5 of abtivity #11. Since
(b)(h) = X shaded regions + Z non-shaded regions. We have, (1+2+3+4+5)(5+1)

=(1P+2° +32 + 47 +57) +[(1) +(1-2) = (1-2+3) + (142 +3+4) = (_+ P ]

Zz ()= Zz 2 %(m)

As soon as you understand every step above, do case 6 and case 7 (i.e. generalize) in the
same manner as cases 4 and 5 above on your own paper.

&< When doing problem n, you will want to prove that Zz = -;;n + ;n +-;-n
i=l
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ACTIVITY 13 : ALHAZEN'S GEOMETRICAL
'APPROACH TO THE SUM OF
THE CUBES OF THE FIRST
n INTEGERS
Note that in obtaining a formula for the sum of the squéres of the first » integers (end of
activity #12), the formula for the sum of the first # integers was used. In mathematics, this
is called a recursive relationship. When working through this activity, look (&) for all the

familar patterns above to occur, including, eventually, the two formulas you have
discovered above. : ’

DIRECTIONS: Divide each rectangle below in such a way so that the original contains
smaller rectangles having areas a,, 4., 4;, etc.

n 2)

_.2 - 13
a=1,a=1

3)

3 ; 52 =3
a =", a=0, a=1+2" a,=2, a;=1"+2"+3", q,=3

4) Complete this case four here on your own in the same way as those above.
5) Complete this case and then skip to, say, problem 9, and complete its picture. Then try
to create a formula for the sum of the cubes of the first » integers by "generalizing." If

you run into problems, go to the next activity. It contains the procedures required for
generalizing.
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ACTIVITY 14 : THE GENERALIZATION
'PROCEDURE FOR ACTIVITY 13

<] NOTE: The problem numbers below correspond to the same problem numbers in
acivity #13. Also, prior to continuing, go back to activity #13 and shade in all of the
regions whose area is represented by a narural number raised to the third power. Keep in
mind too that _ v

(b)(h) = I shaded regions + E non-shaded regions

| 1) b= 12 h=1+1 A = I shaded regions + I non-shaded regions
(12)(1+1)£ 1P +1°
b= 12+_2 n=_+1

(12 +2-)_+1) = B+ {17) + (12 +2-)
v/ Check your result above before continuing.

b= 2427+ - b= 3+
(12‘ +21+ 32”)(__+1) =13 +2%+ +[(_)+(_+_) +(12 +_+_)}

3 0 | N 3 | 3,1 ‘ o '
(Ziz)(S—:- =34 +{Z(z kz)} 6"Look familiar?
i=1 i=1\ k=l

4 =12 +22+32 +42 h=4+1

I=

igi—- (‘+‘)=,§:+ > /Z_“

®Recall the formula for this:

(continued on next page)
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= Siz2 = iz’ + i{—l-z’ i +li}
i=1 =t =13 2. 6
= _ 4 4 4
=)=+ =D+ =D+ =D
i=1 i=1 i=1 i=1 i=1

| 44 n 4 4
=> D P=|=D- =D
j 2 i=1 i=1 |
4

Complete this problem in the space'provided below (i.e. Find Z I 3 ).
i=1

: : 4
. D 4. - 3
v" Dees your solution obtained in the manner above equate to Zl ?

i=1

5) Find I’ +2° +3% +4* +5° using the same approach as number 4 above.

‘ 5 a3 1, 1
n) The general case! Prove 1’ +2° =3’+. . +n’ = Zn“ +—2—n’ +Zn2
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| ACTIVITY 15: SUI\MRY OF ALHAZEN
SUMMARY OF RESULTS TO DATE
Let S . be the sum of the k™ powers of the first » int}eg'ers. Then

0 Sy=1+2+3+. . +n=

® S5, =1"+22+3%+ . +n? =

© S, =0P+22+3+ =

0 S, =1"+2*+3*+ +n* = lns—ln"ﬁ--l-rf——l—n
5 2 3 30

A) Prove number 4 above using Alhazen's geometric method.
B) S,, S,, and S, can be written in terms of the formulas above as shown below. Use
these equivalent expressions to determine formulas (in terms of # only) for

S;, S, and S,. You will need these formulas in subsequent activities.

® 5= 9’-%33 -

@ s, = %52(1233 -65,+1) =
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" ACTIVITY 16 : SUMS OF SUMS AND
FIGURATE NUMBERS

A) List the first ten natural numbers: __, __ , . ., . . . |

B) The triangular numbers: These are obtained by summing the first n iﬁteger-sv Thus, the
first ten are 1, 1+2, 1+2+3, 1+2+3+4, ..., 1+2+3+...+10. Write the first ten of these
below: : '

> > D > ] > > > >

& The formula.for obtaining the #* triangular number is:

The set of triangular numbers can be illustrated in the manner shown below.

e o e e ' °
T ee o0 S ee o0
: eeoe = oo : XX
) 6000 (XXX
(XX EX) ETC.

C) The tetrahedral numbers: These are derived by summing the sums of the firstn
integers. In other words, by summing the first 7 triangular numbers. The first ten are __,
143, 143+__, _+_ +6+10, ., 143+6+...+___. Write the first ten of these below.

) ) o > 5 ) ) ) 2 : >

% The formula for deriving the n* tetrahedral number is:

B (convtinued next page)
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The set of tetrahedral numbers (sometimes called the pyramidal numbers) can be depicted
in the manner shown below. '

D) The next set of figurate numbers along with their formula can be acquired by summing
the sums of the sums of the first z integers. That is, by summing the first # tetrahedral
numbers. The first tenare 1, 1+4,1+4+ 10, etc. List the first ten below.

> ) bl > > b) b > L >

EXERCISE: Produce a formula for these starting with “{
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ACTIVITY 17 : CONCLUSION TO ALHAZEN

DIRECTIONS: The following is a continuation of activity 16. Make a mental hote of the
results both here and in activity 16 since they will become very useful in future activities.

E) List the first ten numbers in the next set of figurate numbers below. You do not need
to develop the formula. S

> b} D > > . k) b D

F) Construct Pascal's Triangle below. . .

G) Describe the relationship between Pascal's triangle and the previous activity.
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SET III

 WALLIS' CHARACTERISTIC
‘ RATIO OF INDEX £
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ACTIVITY 18 : A TI-81 PROGRAM NECESSARY
| FOR FUTURE INVESTIGATIONS |

THE EVALUATE PROGRAM

Lbl 1
:Disp "X"
JInput X
:Disp "Y="
:Disp Y,
:Goto 'l

This program will allow you to evaluate any function in the variable "x" for
any real number in the domain of the function. The key step involves entering the

nn

expression in "x" as a function of Y, inthe Y= part of the keyboard.

EXAMPLE

0% +12 +2%+...+50°
50% +50% +50%+...+50°

Suppose you want to find the numerical value of

!

Using the formulas developed earlier, we know we can evaluate the following
function at x = 50 to obtain the desired solution.

y iEtixirix
X (x + 1)
Simply enter this into its proper place in the TI-81, run this program and, when the
"x = ?" prompt appears on the screen, enter 50. You should immediately see
Y =.3366666667 :

This is the value of the ratio above. More importantly, you can now find the value

of similarily designed ratios quite rapidly. Now, try these on your own.

X 7 =((13)2° +(y2) X* +(y6) X) /(o (x +1)

2

2000

200,000

.5

-1

-5

-5000

©-50,000

0
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ACTIVITY 19: k=2

0* +1¥ £ 2%+ +nF

Coensider the ratio of the form ————— p when k=2,
o n+n* +n°+.. +n
2.
@ 0 +12 =Q when n=1
P+ (_ o
. 2 2 2
@ 02+12+22= (") when n=2
22422427 ()
2,12 ;A2 2 { )
® O +1"+2 +3’ =("‘)= ) when n=3
o e3re3rer (L) (L)
- 2 2 2 2 2 .
® Qz+12+22+3’+47=,(___)=(___)_ when 7=
£+4+4+47 4 (_) ()

2 2 2 -2
s O +121-22+3 4S5 () () when n=5
5 452 +52 +5 +5° +5° (___) (_) _
At this point ask yourself whether the answers above are convergmg to a non-zero limit.

List the decimal equivalents for your solutions to the problems above.

oo ______o_____e____ 0o

Use Alhazen's formula and a graphics calculator to find both the fractional and decimal

~ forms of the ratios given below. Hint: Use the "up" arrow on the calculator to bring back
previous expressions along with the "insert" button to insert 0's when needed. The
"evaluate" program may also be very handy.

0 +1? +2 4P 4 S +60 ()

® s p=d o
6 +6*+6° +62+6*+6°+6> (___) -
®’ 0+ +2°+3 +42+52+6 70 (L__) _ ,
" T+ + T+ T+ T+ +T+7 (__)  —= 7~
00 0 + 12 + 22+, +50° _ (;____’) ._
502 +50° +50°+..+50° (______ )
500 O FrE+2+ +500? o )
500° +500° +500° +. +500° (________ ) —0—=—-
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ACTIVITY 19 -CONTINUED-

0P +1242%+. 420007 _
120007 + 20007 +20007 +...+2000? -

Q@000

, : 212 102, aoat
5000 20 +1 -i:2, ...4;5000 N
B ~5000° +5000° +5000° +...+5000 T

At this time, do you believe that these ratios are approaching a limit as » increases?

~ If so, what do you think the limit is? Now, it's time to generalize.
: ‘ 3 2
| = +|=n+|=n
" 0*+1°+2%+..+n* (_) , (_) [_)
wan’+nt+nt (n)(_+)

Y HINT: Simplify the numerator
and then use long division.

* AN ALTERNATIVE WAY TO OBTAIN THE SAME LIMIT

DIRECTIONS: Transfer the fractional form of your answers to'the =2 case for n=1,
n=2,n=3, ..., n="7 into the spaces provided below. Then fill in the blanks.
><NOTE: The problem numbers below correspond to those in the previous activities.

11 () RN U A G R S S
330 2Ty ° OO Tw I
() _ QO _1, O () )1, Q)

RO D Ftr S R G N G Nl G0 B
1 1
(o) ;_—_:__l___—_ 9 — = —4 =

3 3

CONCLUSION: AS N —» O,
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ACTIVITY 20: k=3, DECIMAL APPROACH

INVESTIGATING WALLIS' CHARACTERISTIC RATIO OF INDEX £ = 3

n . RATIO FROM
O+ +2%+.. .+n° ¢ COLUMN AT LEFT
nw+n+n+ . +n AS A DECIMAL

1

0*+1%
P+
> )
0*+1° +2°
28423423
3 .
0+ +2°+3°
3P+ +3+3

4

0+ +2°+3* +4°
4°+4°+4° +4°+4°
5
0+ +2°+3° +4°+5
5 +5+5+5 +5° +5°
50 e
‘ 0 +1° +2°+...+50°
. 50° +50° +50° +...+50°
500 ~skip ‘
5000 skip
50,000 skip.
500,000 skip
5,000,000 skip
50,000,000 skip
.5 billion skip
1 billion skip
n | Use the space below to
. O+ +2%+ +n' prove that this limit is
1,.1_21 P+ +ni+. 40’ v 1/4.
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ACTIVITY 21: FRACTIONAL APPROACH TO
k=3

| Without the formal theory we now have at our disposal to understand limit processes,
John Wallis could not "take the limit as #» — ." So he argued that the characteristic ratio
of index ’k =3 was 1/4 in much the manner illustrated below.

n . 3’ '3 . | RATIO'S VALUE AS YOUR
0’ +1°+2°+. .+ AREDUCED | FRACTION
nrnd+n’+ w0 FRACTION IS 1/4 + 2

0 +7
P+

2 .

0 +13+2°
2 +2° 42
3.

O+ 422 +3
3P +3434+3

0+ +2°+3 +4°
A+ +4+4°+4
5 o ‘
0+ +2°+3+4°+5
- 5 +5+5+5+5 +5°
50 ' '

O+ +2% 4. 450°
50° +50° +‘50’+...+j5To’

GENERALIZE Use the space below to prove that ]im

n—yc0

O+l +2%+. 4+ ) _ 1
n+n +n’+. .+’ 4

However, do this in such a way that the results obtained in the chart above are, at the

same time, verified. HINT: After substituting formulas for the numerator- and denominator
 in the limit given above, there are two routes you can take: a) use long dmswn orb)

absorb 1/4 into the limit, get a common denominator, and then carry out the subtraction.
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ACTIVITY 22: k = 4

Complete the following chart.

k- 2 3 4 | 5 6 7 8 9

| C.Ratio
| of
index & 1 | _ S
X & make predictions here & =
Verify your predlctlon numencally for k=4 below. .
'n e L SOLUTION | SOLUTION |  YOUR
: .0 +1 '+2 +..+n" AS A AS A FRACTION
nt+nt 0t 40t | DECIMAL | FRACTION IS
1 _ 1
_ 0* +1° L.
1 i S —
2 S .
. 0* +1%+2% - L
28 +28+2% : | I M
0f +1*42%+3% | » [ERIR S
| P33zt 5=
A e M M S 1
| Feaeaeses | | | 5=
| 0 +1* +2* +3* +4* +5* 1
_ S50 +5t 45t 45t 45t o 5 =
0 0* +1* +2%+..+50* ‘ ~ skip -
Ll 50*+50*+50°+ . +50° 13 -
3 ’ _
0| 0* +1* +2%+...+5000° skip | L,
0|  5000*+5000%+..+5000% o 5 —
0* +1° +2%+. .40 skip 1,
n'intinty 4n’ _ 5 —

At this time, it would be wise to take a step back to see if the =0 and k=1 cases fit
the pattern that has been established in the &= 2, 3, and 4 cases. But ﬁrst make a
prediction as to what each characteristic ratio will be.

The CR. of index k=0 willbe _____and the CR. of index k— 1 willbe
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ACTIVITY 23: k=0 and k=1

0°+1° ()
@ - —_—— =
TIT —) when n
0 0 0
@ 00 10+20=£—‘-)-= when n=2
2°+2°+2 )

0%+ 2043 ()
304304343 ()

20 0°+1°+2°+..+70°  (__)
| 70°+70° +70°+..+70°  (__)

0% +1° +310-_-+...+n0 (_+.)

n) — ~ -
el +end+ a0 C+))

1

CONCLUSION: The characteristic ratio of index k=0is ___

o ot ()

5 ,M_()__z 0 ot

o o +r'+2' 43 () ()

- =-=- when n=
343 +3 +3 (_.._) J
0'+1'+2' +3' +4 ;(——)—(:-)- when n=
P e L D I O R
1
0'+1'+2'+..+70"  _ 5[“(‘"+1)]—(--")= o

700 +70 +70'+..+70° ()70 (___) (

y Ot 3 e el 30Ce) O
n' +n +n' ‘+.>..+n’ (—)(—+—)
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| ACTIVITY 24 - 'MORE ON WALLIS CR

SUMMARY TO DATE
O Wallis' characteristic ratio of mdex k=0 is

0 Wallis' characteristic ratio of index & -;‘1 is
| 2] ,Wallis' characteristic -‘ra"tid‘of ,index k=2 is
® :Wallis" characteristic ratio of index k=3 is
o Wallis' characteristic ratio of index k=4 is o

DIRECTIONS: Define Wallis' characteristic ratio of index 4 in your own words.

EXERCISES: 'Ven'ﬂ that j}diir definition above holds true for k=5, k=6, and k = 7 by
just jumping to the general case and con51denng the limit as » approaches infinity. You
will want to return to activity 16 for the necessary formulas Show all your work below.

k=5
k=6
k=7
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LECTURE 24A : GROUP WORK ON WALLIS'
CHARACTERISTIC RATIO

| Group work to be initiated by instructor at this point in time in the investigations |

Have students list questions, concerns, discoveries, and possible directions of future
investigations. Have them answer how one rmght expand on what has been learned so far.
Have them list "what ifs."

Promising quesnons that might arise as a result of the
‘ above exercise.

-formula for general case: 1,
o o k+1

-what happens when £ is negative? |
-what happens when £ is a non-integer?

-can one change the interval by which each base in the numierator increases?

1

e 0°+3 +6%+. +(3n)°
g (3n)" +(3n)" +(3n)"+...+(3n)’
or o

Gl ey
</0> B T AT

[ ' Instructor s Response - - o ]
x negatlve or irrational w1ll be taken care of by Newton later in these mvestlgaflom

-changmg the mterval does not affeut the value of the ratio (smply factor out the change)

-k fractional "let's investigate-next activity"

-formula being ——1——? This can bé verified through the upcoming investigations.
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ACTIVITY 25: A TI 81 PROGRAM FOR
EXAMINING WALLIS' C.R. FOR
FRACTIONAL &

Program for securing decimal approximations to ratios of the form

Y - k k k- ,
0F+1"+2 +..‘+nk, k>0, n‘e{1,2,3,...}

n* +n* +n*+. +n

:Lbl 2

02X ‘ -A SAMPLE SCREEN
:Disp "N" (n=20, k=2/3)
:Input N
0>S ' N
:Lbl 1 220
:S+Y =S : INDEXK =
18> (X,N) ?2/3
:Goto 1 o o | APPX SUM =
:Disp "INDEX k=" ' S 594367346
Jdnput k N
:S/(N” K(N+1))—)R - . ?
:Disp "APP‘( SUM =" ' :
. :DispR" '
:Goto 2

[XNOTES ABOUT THIS PROGRAM
@ Before runnin‘gj this program, you must enter the general term of the numerator in

0* +1% +2*+.. +n*
n* +n* +n* +.. +n*

into ¥, (graphing portion of the calculator) as a function of x.

(e let T=4X % for our example above)

@ The loop created with "Lbl 2" and "Goto 2" allows you to continue runniﬁg this
program for different values of 7. To escape, you must "quit."

® A nice feature includes what is displayed on the screen after one run, viz. everything
needed. A sample screen after a run with n=20 and k=2/3 is illustrated above.

@ WARNING! A run with » =10,000 and k£ =2/3 takes about 10—13 minutes
depending on the freshness of the batteries.
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LECTURE 25A : INVESTIGATING RATIONAL %

- INSTUCTOR'S NOTES:

-Hopefully students have realized that Alhazen's formulas Will not help in the

- generalization to cases where £ is not 2 whole number Thus, the need for the TI-81

© program in activity 25.

-The chart in activity 26 is meant to be completed by groups of students assigned just part
of the chart. Each group gets a different part and then reports soluttons to each of the
other groups as they are attained.

-The chartm actlvity 26 should be completed in 1-2 class periods.

-The followmg is a "generic" investigation worksheet, meant to be completed with each
new k.

GENERIC INVESTIGATION WORKSHEET - il

Group names:

k= " Prediction of the characteristic ratio of index & :

n 0 +1 42+ +n* |  DECIMAL
' ey APPROXIMATION

5

%

100

1000

- 10,000(optional)

%Be aware that this may take awhile.
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ACTIVITY 26 INVESTIGATING RATIONAL k

k .

Initial

Prediction

Best appx obtained (n)

" Actual CR. of
. mdex_k

Initials of
students

0

rl(n'—->‘oo)v

| class

/5

1/4

1/3

_2/5

12

- 3/5

. .599898605(n=1000) |

273

3/4

4/5

172

class

65

C12(n—sw)

5/4

4/3

/5

32

8/5

| 4010022220(=100) _

53

95

)

T

class

B

9/4

713

12/5

512

13/5

8/3

T

1455

1d(n > )

class

7/2

class

92

' 1/5(n - x) |

l/6(n—->qo) )

~class

11/2
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LECTURE 26A OBJECTIVI

S (CHECK-UP)

_ MAIN OBIECTIVE OF INVESTLGATION

S INTO JOHN WALLIS CR.

~To have students realize »thatv the formula fo_r,John V
(k> 0 and rational) is- 1/(k+1) and that this relate

i

x*dx, and more generally t

Vallis' characteristic ratio of index &
s directly back to

!
k+1

s

L b
o

0

SECONDARY OBJE(

“TIVES

1) Students discover that the above is true ¥ & >0 (

, ‘2) Students investigate k=0 or k<0 using their
"error" in the calculations. This can be remedied by
mstead of 0. Students who have discovered that Wa
relates directly to the area under the curve x* from
their own. That would be fantastlc'

3) Students i"ecog’nizevthat ‘wh’en,_ 0‘<'k <1, aszqpso‘x
versa for £> 1.

without pr_oot).'

program and realize this creates an

storing .1 into X (line 2 of program)
llis' characteristic ratio of index
x=0 to x=1 may realize this on

imations come from below, and vice-

”ASsiGNMEN‘

T

T _

' A551gnment to find out if these ObjeC‘EIVEb have beer
~ been dxscovered)

Write a 1-3 page essay outlini_h?g'anythjng”di
relation to these investigations.
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" LECTURE 26B : HOW WALLIS TIED HIS
' CHARACTERISTIC RATIO TO
AREA UNDER THE CURVE x*

DEFINITION Wa]hs charactenstlc ratio of index k is the ratio of the area under x* (or
for that matter under cx* ‘v’ c=0)to the area of the rectangle contammg the curve.

| y:xx_

Area under curve = 2/5
Area of .réctangle =]

Ratio = 2/5

A:ea under curve = 3/5
~ Areaof rectangle =1

. Ratio= 3/5

T
‘Area under curve =4

Area of rectangle =4

Area under cuwe=(%)(2%)h . Ratio = 1

Area of rectangle =%

Ratio = 2/5
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LECTURE 26C : HOW WALLIS VIEWED THE
CONCEPT OF AREA
(INTEGRAL NOTATION WAS

NOT AT HIS DISPOSAL)

i T
: i
]
|
|
|
!
!

e.g.

I
= wn

)

e S
L ||
I

[N

Wallis' notion of area was taken from Cavalieri; That area is the sum of an infinite number
of parallel line segments. The length of the six line segments erected above (the first
segment is the one at 0, length is 0, the second is at .2, length is .2°, etc.), when
summed, yield the numerator of Wallis' characteristic ratio. ‘

ie. 02+.27+.47+.6°+.8 +12 =207 + 1 +22 +32 +47 + 5?) |

The sum of the lengths of the six segments 'correspo‘nding to the above segments which
make up the rectangle the curve lies within is

PP+ P+ =275 45 #5745 45 45

Thus, the ratio of the area_ under the ¢urve (approximated since 7= 5) to the area of the

\

2207 +17 +27 431 -4 +52)
25 +5 +5° +52 -5 +5%)

The students will recognize how this concept can be directly related to the modern-day
concepts of finding area under a curve (i.e. inscribed and circumsribed rectangles).

- proper rectangle is ~.36

EXERCISES (based on matérial covered in the previous two lectures):

A) Choose two different charactenstlc ratios and their respective mdices for each of these,
show a result like that which was shown in Lecture 26B. :

B) Explain why negative indices will not work in the situation presented in lecture 26B.

C) Show how the ratio of the area of ahy right triangle with base b and height h to the
area of the rectangle with base b and height h is 1/2 using Wallis' conCept‘ of area.

D) Choose a curve and its complement and do with each what was done in the example
above. For each curve, letn=38.
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ACTIVITY 27: CONCLUSION TO WALLIS'
CHARACTERISTIC RATIO

HOW WALLIS' CHARACTERISTIC RATIO OF INDEX 4 =2 CAN BE USED TO
SHOW THAT THE VOLUME OF A PYRAMID IS 1/3 OF THE BOX THAT
CONTAINS IT.

DIRECTIONS: Build the following using sugar cubes. Then continue the pattern on your
own until you run out of sugar cubes.
(1] - VOLUME OF PYRAMID : VOLUME OF BOX

P40t 2Pyl

12+2243% : 32 +32 432

O You can picture the drawing in your head
far better than I can draw it.

CONCLUSIONS:
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SET IV

WALLIS' REPRESENTATION

OF © AS AN INFINITE
PRODUCT
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ACTIVITY 28 : Curves of the form(l x1)’

Background notes and summary
After extensive work with the formﬁl-a‘_s derived by Alhazen and the ‘ratio

0¥ +1F +2+ . +n*
n* +n* +n*+. 40

-and, after determmmg that the value of this ratio as # gets large tends

 to ;%_—1 J oh‘n‘ Wallis had the vco,nﬁdence that he could solve the age-old problem of
"squaring the circle." That is, he felt that he could use his notion of cha;acteriétic ratio

along with interpolation to derive a constructible value for Jr , one which would allow
for the construction with ruler and compass of a square having the same area of a circle

. with, say, radius equal to one. Note that if J7 were constructable, then one could
duplicate the area of the unit circle by constructing a square whose sides each measured

Wallis knew that to solve this problem, he would have to find the area of the unit
circle. It should be noted here that the method for approximating a given circle's area
- employed by mathematicians at this time was that which was developed by Archimedes in
“the third century BC. Enhanced by Eudoxus, it became known as the "method of
"exhaustlon " For nearly two thousand years, mathematlcxans failed at their attempts to
"square the circle" using the Greeks' method of exhaustion. Wallis felt he had a fresh
approach to this problem and began his venture by oneldermg the equation of the unit
cm.le namely, .

- x* +y* =1. He decided to work w1th a farmly of curves represented by the equatxon

_ y = (1 - x%) . Observe that the upper half of the unit circle (p =g = 1_/2 ). is one member
of this family. | - o

EXERCISE 1: Sketch various members of the family of curves dlscussed above for whole

number values of p and ¢. Limit the portions of the curves sketched to the unit square

and be "organized," as a code breaker would be, in your approach to the sketching of
‘these curves. Write your observatlons concemmg this activity in the space below.
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ACTIVITY 29: EXPANDING (1-x)"

The most important observatxon'wl'uch should have been made in the previous activity is

- thefact that y = (1 -x” ), is syrhnietr’ic_t‘d’f y = (1 - x’%’)q about the line y = x. Did you
‘happen to make this observation? ___ Of course, symmetry with respect to the line-
y =x occurs for graphs of inverse functlons so a good exercxse is to check that

y= (1 x"') and y = (1 x’? ) are inverse ﬁmctxons Just. solve one of these forxm

 terms of y, interchange the variables x and y, and you have the other. ‘Wallis also realized
the symmetry that occurs when positive whole number values. of p. and g are

- interchanged. This led him to the development of the following chart (the directions for
filling out this chart wﬂl be given on the next page)

pl 1 2 3| 4 5 6 | 7 | 8 9

8

In the previous set of activities, you leamed that Wallis' characteristic ratio of index k is

1 | O +1* +2%+ +n*
——, and this repesents the value of the ratio. —————— — as n approaches
k+1 on+n s+

" infinity. You also learned, as he d1¢ that this characteristic ratio is directly related to the

ratio of the area under the curve y= x* to the area of the rectangle containing the curve.

‘(co‘ntihu‘ed next page)
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- With these ideas in mind, Wallis filled in the grid above with values which represented the

ratios of the areas under the curves y = (1 - x%) to the areas of the rectangles
containing them. He did this using algebraic expansion on curves where p is a

~natural number. The manner in which Wallis determmed the values to be entered in the
chart is illustrated below.

Consider the curve y= (L—- x%)p where ¢=3 and p=2. Then,‘ via expansion,

y =.(1 —x%)2 =1-2x% +x% = 1x° - 2x¥ + x%. Wallis claimed that the ratio of the area -

under this curve to'the area of the rectangle that contains it could be found by summing
the characteristic ratios of each term in the expansion. Thus, the desired ratio is
1 times the characteristic ratio of x°
minus 2 ‘tim,evs, the characteristic ratio of x”

plus 1 times the characteristic ratio of x%.

That is, l( 1 ) ( 1.).;..1( 1 ):-1_
B} 0+ l n+l) 2/+1 10

DIRECTIONS Complete the chart on the prev1ous page row by row, begmmng with the
q = 1 row, using the. method of expansnon employed by Wallis as illustrated above.

& Keep an eye out for patterns. If you recognize one, say, by the time you get to the

p = 4 column, feel free to skip the expansions required for the p =5, p=6,and p=7
columns, predict a value for.the p =8 column and then verify your predxcuon through
expansxon v

>4 Please note that you are not expected to carry out all 64 expansions in the chart The
_sooner you recognize a pattern, the less work you'll have to do. In fact, you will recognize -

~ the desired patterns more quickly if you invert the values obtained by expansion.
Therefore, for the ‘example above the entry whxch should be placed in the q=3,p=2
box is 10 rather than 110, )

Finally, make a list below of any patterns you recognize as you carry -out the expansions
and enter the values representing the characteristic ratios of the curves of the form

y= (1— x%)p into the chart.




LECTURE 29A: WHY WALLIS' METHOD OF
~ EXPANSION WORKS

EXAMPLE: y =(.l—x*5)% =1-2x% +x% = 1x° —2x$/’ +x7

0 b {'; | jfllv
Setting up Wallis' c}hgrac_:teri'stic ratio for this curve yields the following ratio:

N lengths of n parallel line segmen'ts drawn to curve |
lengths of n parallel line segments making up rectangle

ET-WT O]

L
P+12+13+..41°

f o\ 4 Y 2RV % % % Y
12—2(9\ +(9) +12—2(1) +(l) +12—2(-2-) +(-2—) + ... +12-2(£) +
N n) \n) \n) \n n n) An

- B +2+13+ . +1°

P+ +1%4 .+ 2(0% “71%;2%“"5*”%) 0% +1% +2% 4+ +n”

- — v
P+l +P+.. 412 whenfente on' 0 enS enfie wn®

=1_2 __1_ +_1_
“+l) #+1
- L
10
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ACTIVITY 30 : ABANDONING AREA NOTION
"IN FAVOR OF INTERPOLATION

Due to the fact that Wallis was incapable of expanding the expression (1 -x% )p for

fractional values of p, he was forced to abandon this method for finding characteristic
ratios of these curves in favor of interpolation.

DIRECTIONS: Use the pattemé developed in the.foregoing activity along with
interpolation to complete as much of the chart (located on the next page) as possible.

~ XI'You may want to return to activity #16 to obtain the formulas necessary for correct
interpolation. Keep in mind the symmetrical features of the chart and be aware of the
slight twist that is required prior to using the formulas from activity #16. An example
follows: :

- The known entries of the ¢ =2 row are 3, 6, 10, 15, 21, 28, 36, 45, and 55. It
was established earlier in these activities that these are the "triangular numbers."” Thus, it
would make sense to employ the formula for the sth triangular number, which is

n(n + 1)

. However, 3 is the 2nd triangular number, and it is situated in the p =1 column.

Also, 6 is the 3rd triangular number, situated in the p =2 column. Hence, to get the value
required in the p =3 column of the ¢ =2 row, one would need to use

n+1)
to get the value required in the p =4 column of the ¢ =2 row, one would need to use
n(n+1)
2
more, to get the value required in the p =5 column ofthe ¢ =2 row, one would need

n(n +1)
2

- number. This is the "slight twist" discussed above. More importantly, to find the value of, "
say, the ¢ =2, p =5/2 entry, one would need to use 5/2+1=7/2 asn in the formula
given above. This yields 63/8 as a solution, which is the proper value for the g =2,

P =5/2 box in the chart. o

in order to obtain the 4th triangular number.Further,

4=p+1 inthe formula

5=p+1 inthe formula in ordef to obtain the Sth triangular number. Once

touse 6=p+ 1 inthe formula in order to obtain the 6th triangular

IMPORTANT: The exact fractional solutions to entries in the chart are necessary for
future interpolations. You do not need to reduce the fractions. In fact, reducing will only
make it harder to recognize patterns. o

v If you would like to check your solutions as you complete the chart on the next page,
‘you may use the "integral” program designed for the TI-81 calculator. This program is
also on the adjacent page.
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~ Program for checking the entries to the chart below:"

Prgm: AREA This program uses "midpoint approximations” to

. : 1
0> A . approximate the definite integral I f(x)ax where

0

:1->B flx)= (1 - x%)p for any particular p and g .
:Lbl 1 : :
: Disp "N" - <1 NOTE: The curve whose area is being
: Input N ' approximated must be entered into Y, of the
:.5(B-AYN - H graphing portion of the calculator.
:0->M
105K : ‘ 52 Also note that entries in the chart below represent
:Lbl2 , , reciprocals of the actual area under the curve over
tA+2K+1DH - X the interval from 0 to 1 on the x-axis. Be aware of
: M+2HY, - M : this fact when you do decide to check an entry in
: ISS(K;N-1) the chart with this "area" program.
:Goto2 o
: Disp "MIDPT APPX TO ~ AREAIS"
:DispM
: Goto 1
| . CHART IS LOCATED ON THE NEXT PAGE

In the space below, write down any patterns, methods, or formulas used to determine
missing entries.
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12

32

5/2

72

9/2

312

10

15

21

572

1o |

20 |

35

56

772

1

35

70

126

92

21

56

126

252 |
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ACTIVITY 31: SUMMARY OF RESULTS

pl o |12 1 |32 2 |s2]| 3 |72 4 |9 5
0 1 1 1 1 1 1 1 1 1 1 1
172 1 % 1% ‘ 10%8 4384 3840
3 5 7 9 11
1 1 /2 2 A 3 /2 4 A 5 A 6
32 1 % ‘ 3% 31%3 384 3840 |
3 3 9 143
2 1 l% 3 % 6 | %% | 10 % | 15 % | 21
] {693 | 0 ssiss
s | 7 % | s a =
105/ | 315 ] e 1287 248 .
3 1 | Ps| 4 48110 8120 | % |35 % | 356
‘ 1287 19305 | 328185
7/2 1 % 9% 3 384 3840
943 3465 9009 19305 f 36465
4 1 384 5 384 15 ' 384 35 384 70 384 126
2145 36465 692835
9/2 1 1 % 14% a3 384 3830
10395 45045 135135 328185 692835
S o1 | o6 | a1 | | 56 | 126 | 252

SOMETHING TO PONDER: Try your best at answering the following questions.
What should the plan of attack be from here on? What do the bold-faced numbers
represent? Why is it possible for 1's to exist across the ¢ =0 row and downthep =0
column? Will arithmetic average work to get the entries for any remaining boxes? Which
box represents the reason all this work in the chart was undertaken in the first place?
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ACTIVITY 32: ATTACKING THE g = 1/2 ROW
How did you do in answering the questions at the end of the previous activity?

A) What should the plan of attack be from here on?
AN SWER: Try to get the solutions to the first two empty boxes inthe g=1/2 row.
If this can be done, then because of the symmetry and the fact that each
entry in the table is the sum of the entries of the boxes two up from and
two to the left of the one in question, the entire chart can be affected.

B) What do the bold-faced numbers represent?
ANSWER: The entries of Pascal's Triangle. Turn the grid 45° clockwise and you will
notice Pascal's Triangle. ,

C) Why is it possible for 1's to exist in both the first row and column of the chart?
ANSWER: When p =0, the curve is constant line y =1 since anything to the Oth
power is 1. Thus, the ratio of the-area of the rectangle to the area under
this curve is 1. When ¢ =0, one must consider the limit of the curve

y= (1 x5 )p as‘q = 0. Try seeing what this curve approaches as g

'approaches 0 for some fixed p>0 using your TI-81 calculator Describe
your observatxons below

D) Will arithmetic average work to get the entries for any remaining boxes?
ANSWER: No. This breaks down immediately in any row or column with missing
entries. :

E) Which box represents the reason all this work in the chart was undertaken in the first
place?
ANSWER: The p =q = 1/2 box. It's the box that depicts the ratio of the area of the
unit square to the area of one-fourth of the unit circle. What is this ratio?

54 Wallis did not know the answer to question C. He simply applied his interpolation
scheme and concluded that both the first row and column must contain 1's because of
patterns developed through expansion. However, he did know the answer to question E
(along with the others). Because the area of a circle was known to be 7R* at this time,

~ Wallis knew that the ratio of the area of the unit square to the area of one-fourth the unit
circle was 4/m. But remember that his goal was to find an exact value for this ratio, so
that the problem of "squaring the circle" could be resolved once and for all. Thus, he
continued interpolating in the manner illustrated on the next page.
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Wallis used the symbol O to represent the value of the p = g = 1/2 entry in the
chart. He then realized a pattern which existed in the ¢ = 1/2 row and this in turn led to
the filling in of the remaining boxes, each in terms of . Take a close look now at the
q = 1/2 row below and see if you can spot the same pattern Wallis did.

1 O 3 | 15 105 985

1 2 : 48 384

DON'T LOOK BELOW UNTIL YOU "GIVE UP" ON TRYING TO ESTABLISH A
PATTERN ABOVE! Hints follow, but the goal has to be to use as few of the hints below
as possible. '

HINT #1
What do you multiply by to get from one known entry to another? Try your best on
finding all the unknown entries above given this hint before moving on to the next hint.

|

Row ¢ =1/2 can be changed to

Lol g | 13 135 357 s
1:2 1-2-4 1 2:4:6 -
HINT #3
1o | o |1 105 985
1 2 8 48 384

To get from the first box to the third box, one must multiply by 3/2.
To get from the third box to the fifth box, one must multiply by __ /4.
To get from the fifth box td the seventh box, one must multiply by 7/_.

To get from the seventh box to the ninth box, one muét multiply by _ /__

(continued next page)
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1 R N Rt 105 | 985
| 2 ' 1 8 - 48 384

To get from the first bdx to the ‘thifd box, oné must muitiply by 3/2.

To get from the second box to the fourth box, one mlist multiply by /.
To get from the third box to thé ﬁﬁh box, one must multiply by 5/4. |

 To get frqm the fourth box to the sikth box, one must multiply by _ /.

- To get from the fifth box to the seventh box, one must multiply by 7/6.
.

To get from the - box to the ~box, one mustrmvultip'ly by

To get from the seventh box to the ninth box, one must multiply by __/__

DIRECTIONS: Complete the chart below using the patterns found above and symmetry.
| o |12 | 1 |32 2 |s2| 3 |72) 4 |92] 5

. IR, ' 108 sas/ | doses
112 1 o | % iD » 1%‘ | 48 ./384 3840

32 | 1 % 3% 48 3»a4v | 3830

2 |1 | s % | 6 6% | 10 9% s ||
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ACTIVITY 33 : THE DAWN BEFORE THE

SQUEEZE

DIRECTIONS: Complete the table below. Recall that each entry is the sum of the entries
two boxes up from and two boxes to the left of that particular entry.

pfl o 12 1 |32 ] 2 [ s2 ] 3 |72 4 |92 ] 5
0 1 1 1 1 1 1 1 ] 1 1 1 1
12 | 1 = % B 1% £0 |0y | 50 | 95 | 550 | %8
5 7 9 ol
1 1 % 2 A 3 é 4 A 5 A 6
ey, lem |- Iy : 3465 45045
3/2 1 3 (= ‘ % 3 = -’% 15 = 31548 384 3830
, s/ | 37| |99 |3
21 | U] s 2K 6 |0 |[Th| s "B
R | 7 £ 63 693 9009, 135135
5 15 384 3
5/2 1 A 3 48 i H
105 315 693 1287 285
3 1 48| 4 481 10 8120 | % | 35| * | 56
&0 99 1287 19305 328185 °
7/2 1 35 % /8 48 384 3840 |
’ |
945 ‘ 3465, 2009 19305 36465 !
4 1 384 5 384 | 15 384 35 384 70 384 126 l
on | 1 |89 1y 143 1 e o
10395 ‘ 45045 135135 328185 692835
5 1 3840 6 | | 21 | * | 56 | * | 126 | * | 252
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ACTIVITY 34 : THE SQUEEZE

It's time to take a deep breath and realize that you are about to conclude activities with
- John Wallis' scheme that, quite arguably, conquered the infinite. The only task left undone
is that which determines the value of 0. Now, as stated earlier, Wallis knew that the
value of 00 was 4/rn. However, he was one of the best "code breakers" or
"cryptographers" of the 1600's. The chart unraveled here was a code to him, a code which
“was on the verge of being broken. Thus, Wallis was not about to dispose of all the work
done to get this far in the table and settle for O being 4/n. He wanted to find out the
‘value of O using the skills of pattern recognition, interpolation, induction, and
‘generalization that had worked to get him this far. Wallis was determined to find O in his
own unique way and the brilliant manner in which he did this is the goal of this activity.

Since this interpolation scheme arguably conquered the stranglehold the Greeks' "horror of
the infinite" had on the mathematical world, let's pay one final tribute to early Greek
‘mathematics by using Greek letters to name the entries of the ¢ = 1/2 row. A carefully
constructed list of these is required to understand the steps necessary for finding 0. Thus,

a=1 ' DIRECTIONS:
Continue the list constructed in column one by finding
g =0 L ~ the next four entries in the space provided below.
4 2
5= 2o
3
8 2-4
g 2p 46
15 3-5
- 105 37 -
TR T T4 ~
192, A
4 105 7
1 384 2 - -
;= 1920 00 - -
945
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,The critical observation that must be made at this time lies in the. fact that the sequence

B, %0, &6, 0.7, 7 L Kiy,vozwﬁé‘p,crg,rvwft//,ﬁ,--'

" is monotonically increasing. Thismeansthat ¢ < B, f <z < 6, 6§< ¢, ...
Therefore, an entry in terms of O can be "squeezed" between the entries on each side
of it. The "squeezing" of O follows. -

| SQUEEZE #1 |
1<O< 3
2
| SQUEEZE #2 |
2.‘ < _4_B < }_5.. = _3_3 <0< 3"3'5.
2 .3 2. 244 244
- Pvia multiplying through by 4/3®&
[ SQUEEZE #3 |
—3—5-<i£ﬂ<357 = ==== <0< =====
R 2.4 5 2:4-6 I
| _SQUEEZE #4 | '
357 468, 3579 335577 g 3:3:55779
2:4.6 357 2-4-6-8 2:4:.4.6:68 2:4:4:6:6-8-8

% ON YOUR OWN: Complete the next five "squeezes” on O. Then, try to put together

- anargument as to what the value of B must be. You will have to picture carrying out the

© squeezing process to mﬁmty Look for a way to argue that O must be between two

 fractions that are equal, since a<b<c and a=c implies b=a = c. The key to this
involves the fact that something tendsto 1 as you go farther out in the "squeezing"
process. A way to see just what does tend to 1 is by focusing on the factor by which the
two numbers surrounding O differ. Finally, the value of B will be an infinite product.
More specifically, it will be a fraction where both the numerator and denommator are

- infinite products. ' :
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LECTURE 34A:m AS AN INFINITE PRODUCT

-If we look closely at the fourth squeeze,

357 468, 3579 3385577 o 3355779
246  3:5.7 2-4-6-8  2.4:4-6-6-8 2-4-4-6-6-8-8

it is easy to see that the two fractions which surround O differ by a factor of 9/8. After
carrying out the subsequent "squeeze," it will be easy to see that the fractions surrounding
O differ by a factor of 11/10. Next, they will differ by a factor of 13/12. The factor by
which the two fractions on either side of O differ approaches 1 as the "squeezing"
process is taken to infinity. Therefore, '

- 3-3.5-5-7-7-9-9-11-11- . ..
2-4-4-6-6-8-8-10-10-12- . ..

(2-2-4-4-616--8-8-'
=7 =2 ~ ‘

| since it was already known that O = 4/m.
1-3-3-5.57-7-9. . ..

‘This representation of © as an infinite product was the first of its kind. It bears John
Wallis' name and is the benchmark of his notoriety. Wallis' explorations into the realms of
the infinite with uncanny analytic tactics led to increased attention being given this
methodology. In turn, attention shifted away from the much more burdensome,
geometrical means for understanding infinite processes. Although the results obtained here
by Wallis were not formally proved until the nineteenth century, they had a profound
effect on Sir Isaac Newton.

Newton modeled Wallis' interpolation procedure in his discovery of the binomial series.
He too was not able to prove his results rigorously. However, the mere discovery of the
binomial series played a profound role in substantiating the use of infinite series as a tool
for working with infinite processes and limit theory. The set of activities that follow will
take you through Newton's interpolation scheme. '

One final note about Wallis' investigations hinges on the frequently unexpected nature of
mathematical invention. Wallis began his mystical and very original interpolation scheme
with the confidence that he could either prove or disprove the problem of "squaring the

' circle." Though he could not accomplish this goal, the discoveries afforded him in his
quest are certainly no less valuable.
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SET V

| NEWTON'S DISCOVERY OF
- THE BINOMIAL SERIES
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ACTIVITY 35: NEWTON AFTER WALLIS

In 1661, at nineteen years of age, Isaac Newton read John Wallis' Arithmetica Infinitorum
and subsequently began a venture that, by 1665, led to his first mathematical discovery of
lasting significance. This was the formulation of the binomial series illustrated below.

(1+x)i“=1+(‘1")x+(2)x+ ‘”;(H)‘" where (n) a(é ,1') - (a-n+1)

Influenced by Wallis' interpolation technique and, at the same time frustrated by
geometrical means by which to calculate the area under a hyperbola, Newton extended
Wallis' table to the negative side with confidence that he too could utilize Wallis'
methodology and effectively devise a way to obtain area under a hyperbola. He
constructed a table similar in design to Wallis', but which instead depicted the area brought
- on by each term following expansion. For brevity, let's use modern notation for areas

under curves represented by expressions of the form y = (1 +x)’.

0) I(1+t)°dt f

0 0

I
ey
—
&
1
I

1 t 1 x X

D [(1+0)dt = =+~ = Z+=

R !(f) e +
: x ' , . 2 3[* 2 | 3
2) I(l-s-t)zdt = j(l+2t+t2)dt =_£+2(t—+t—- = £+2l(x + X
! 1 \2) 3| 1 \2) 3

: x (20 3\ 4 2 | 3 4
3) f(1+t)3dt LA L L +——] = —+3 \+3 iy I

/ 1 |2 3) 4 2 4
The area under the curve (1+ 1)’ is of course dependent on the choice of x. But

. . . . x
without regards to x, we can say that the area under this curve is 1 times the —1- term,

2 - 3 4
plus 3 times the iz— term , plus 3 times the %— term, plus 1 times the %— term.

Continue this sequence of problems by completing the cases where p = 4, p=35, and

p = 6, and then finish the right side of Newton's chart shown in the next activity.
Remember that entries in the chart are the coefficients for the terms m the area expressions
derived after definite mtegranon .
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ACTIVITY 36 : NEWTON'S TABLE FOR (1+ x)?
DIRECTIONS: Complete the right side of this chart by detemﬁning_ the coefficients of the
X x, x3 ‘ . . . » . f Py . .
terms T -—2-,—3—,... brought on by definite integration of j,(l%-t) dt with p=4,5, and 6.
. A . S ‘

Next, note that the p =-1 column represents the area under a hyperbola 1—1—- This is
. +x

the curve Newton was having trouble with. Just what is the value of J. (1+1)'dt ?
0

Yes, you're correct, it is In (1+x). But this fact was unknown to Newton. So instead, he
recognized that the columns of his table were the diagonals of Wallis' table and,
~consequently, that each entry is the sum of the entry to the left of it and one up from that
one. Now use this binomial pattern of formulation to fill in the empty boxes on the left side
of this chart. Before doing this however you must assume, as Newton did, that the entire
top row remains constant at 1.

pl-6 |-5 |4 |3 |2 |-1 |0 |1 |2 |3 |4 |5 |6
‘term : ’ '
11 o1 o |t 1
x |
0 (1 |2 |3 |4 |5 |6
x? o
2 .
o |o |1 |3
L
3
o [0 |o |1
x* '
4 "
o (0o |0 |oO
x5 .
5
0 (0 |0 O
xe o
5
0o |0 |0 |oO
x7 .
7
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LECTURE 36A: NEWTON'S CHART

With the completion of the chart below, Newton was gble to formulate an expression for
the area (by way of placing coefficients on respective terms in the table) under the

hyperbola —l—-, namely, for x > 0, area = x -
1+x

~ We now call this area function the natural logarithm of (1 +x). FolloWing much detailed

used to manufacture tables of common logarithms.

pl-6 |-5 |4 |3 |2 |-1 |0 |1 2 3 4 |5 6
term ]

1 1 1 |1 (1 [1 |1 1/ 1 1 1 |1 1
X
1

6 [-5 |-4 |3 |2 110 |1 |2 |3 |4 |5 |6
x? |
2

21 |15 |10 |6 [3 |1 |oO 1 |3 |6 |10 |15
2 o
3 . L
. |56 |35 |20 |-10]-4 |-1 |0 T o |1 |4 |10 |20
L X 1 . ‘ X
4 -
, |26 |70 135 |15 s |1 0 0 Jo o J1 |5 |15
e
5 . \ |
o |25z |-126 |56 |21 -6 [-1 Jo |p [0 |0 |1 |6 |21
. |
6 . 1
o |462 [210 |84 128 |7 |1 Jo |o fo jo ‘f1 |7 |28
X i : .
7

Having addressed and then solved the problem of finding area under a hyperbola through
the extensive work done here, which allows for the|calculation of the area under any ‘

member in the family of curves denoted by (1+x)]  for any integer p, Newton engaged
himself in the same family of curves attacked by Wallis in his g = 1/2 row, that is,
([1 - xz]p). He concerned himself with areas over the interval [1 -x%, 1] and, from

continually returning to Wallis' work on characteristic ratios together, with an ingenious
way to determine solutions to missing entries by sqolving a system of linear equations
composed from known entries, he was able to constuct the table shown on the next page.
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LECTURE 36B: ANEW WAY TO CALCULATE &

p ,

term | -1 | =1 o 11 12 |y 4 13 |3 |2
2 3 2 3 3 |

x| 1 1 1 T R 1 1 1 1
1 |
-x* .1 |zl o I 1 12 | 4 13 |13 |2
3 | 2 B 2 |3 3 2 3
¥ |1 3 0 e el S el S Y 2 943 13 1
5 3 9 3 9 9
" la |5 o |5 |3 |4 |o |4 |2 |5 o
7 16 81 |48 |31 81 |16 |81
2 |1 33 o -100 =15 =7 o S 13 13 Jo
9 128 | 243 | 384 | 243 243 | 128 | 243
ety [ -63 o |22 |05 |14 |9 | -8 | 3|7 |o
1 256 729 | 3840|729 | | 729 | 256 | 729

With this table allowing for the computation of area under (1 - xz)p over [1 -x%, 1],
letting x =1 and using the p = 1/2 column yields a new way to calculate =, since

AREA of (l—xz)yz over [0,1] = AREA of the portion of the unit circle in quadrant I
CEHEE-EEHER) R )

=1+ ==—-1=l=1+x == - + — |+
23 8 NS 48 A\ 7 384 \ 9 3840 \ 11 46080 \ 13

11 1 5 7

6 40 112 1152 2816

(1 1 1 1 5 7

6 40 112 1152 2816
Checking that this series does indeed converge to m gave Newton the satisfaction that hlS
interpolation scheme for finding area under a curve was correct. This triggered a search
for a way to ease the burden of tabulating entries in the columns of his chart row by row.
This search in turn leads Newton to the discovery of the formula for the binomial
coefficient which is the focus of the subsequent activity.
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ACTIVITY 37:NEWTON'S p=1/2 COLUMN

With the p = 1/2 column of his (1 x* ) chart ( which again contains entries that

represent coefficients,of the terms of the row they are situated in, for formulatmg area
expressions), Newton concentrates all his energies on finding a pattern. What he found is
shown below. Carefully follow the patterns bemg developed and ﬁll in the blanks as you

goalong
ROW | COEFFICIENT
= |1 |
1 1
—x? l
3 |2 |
I S B O o (e )
5 0% 2 () 2 22
=l 3 1o (=) o1 (-12) 1-2)
7T 148 24 () 12 _2 3.2
2odos 1o ) 1 (e12) (-2) (- 2)
9 8¢ 24 6 () 12 _2 32 _-_
2 faos 1o ) 6 (o) (22 (29) ()
11 13840 24 6 (1) (_ 1-2 2 32 5.2
13
x° -945_1-1-3-5-7()_
13 -46—056 = -2--4——6-—8'1—0——— | ‘Carry this out onyourown
—x' v ‘
x| dosos 1k -) (- ) ) 7 - D (- ,) Do this on your
520~ 700 010 )

own.

Note again that the patterns dewsed above are for the p=112 column of Newton's

(1 x ) Then, move on to the next activity whxch involves the p 173 colunn of his

chart. Keep an eye out for how the change from p=1/2 to p=1/3 affects the pattems
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ACTIVITY 38 : NEWTON'S p=1/3 COLUMN

DIRECTIONS: Carefully follow the patterns being established in the‘charbt below and fill
" in the blanks as you go along. CAUTION: Some fractions in this chart are reduced.

oW [COEFFICIENT

L

] 1

=x? _1_

3 |3

¢ |- _1-2_ 1 (-13

5 36 13 23

= s 12 () 1 (19 (-2

7 181 36 (_ 1.3 3 33

® oo 125 (o)1 (=19 (1-2) (-9

9 243 36 9 (_) 1 3 - 43

=l 1maes (<) (<) 1 (-1 (-2) (-3 (=4
n {729 3% 9 () () 13 _3 33 - 5
0o 12255 8 L (Carry s ou

B3 leel 3oL —— s out on your own)
2 e ) () ) o (L))
—— = T . . N =l ==l = o)
5 s " DD 0 ) 0 - — " your o)

In the space below, write down what you believe was the effect of changing from the
p=1/2 column to the p=1/3 column.
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ACTIVITY 39 : NEWTON'S p=2/3 COLUMN

DIRECTIONS: Carefully follow the patters being established in the chart below and fill
* in the blanks as you go along. CAUTION: Some fractions in this chart are reduced.

ROW | COEFFICIENT

L
1

|
=
s
|
N—

W
|
_

o fa_za 2 (-1
3 9 3 6 1.3 2.3
i 4 _2-1 (-) _ 1 (2-1-3) (2-2-)
7 st 36 () 13 3 33
2ol 2402 (1)) (2-2) (2-_3)
9 | 36 9 () . 3 __ 43
b= g 2 () () _ 2 (13 2-2) (2-3) () |
11 729 36 9 ) ,(*_ 3 3 3 s
o1 () -1 -4 -7 =10 (-_) o o
vy e = == = 2 (C this. ‘
13 6561 3 6 9 1215 ~(___) 1 ( arry‘ §outonyourown)

:x_ls 208 _' 0O () (=) ’(4_) -0 ) Co) - (onyour own |

I N i O SR S O

In the space below, write down what you believe was the effect Qf changing from the.
p=1/2 column and/or the p=1/3 column to the p =2/3 column.
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" ACTIVITY 40 : NEWTON'S p=3/5 COLUMN

Yes, I realize that this column is not displayed in the chart, but let's attack it anyway.

DIRECTIONS: Carefully follow the patterns being established in the chart below and fill
in the blanks as you go along. CAUTION: Some fractions in this chart are reduced.

ROW ] COEFFICIENT

= |1

1 1

e )

3D

¥ | _3-2_ 3 (19
S5 125 s 10 15 25

=32 ) 3 6o1s) (2-2)

7 |25 0 { ) 15 _5 35

¥ ot o327 3 (-19) (-2) (-9

o 1 51015 () L o5 . 45
) 327 -1z (- _36-1) (2] 6209 ()
— 51015 () (L) 5 5 35 - 5
2 I ) () -2 —7 -12 =17 (-__) |

- =—— = = e —==t = d i

13 |72 5 1015 20 25 () ——(do this on your ow)

- Now, complete a similarly desigried chart for Newton's p = 6/7 column on your own.
Then, do the exact same thing for Newton's p = x/y column:
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ACTIVITY 41 : NEWTON'S FORMULA FOR THE
- BINOMIAL COEFFICIENT

.~ NEWTON'S p =x/ COLUMN

TERM | COEFFICIENT

1st l
11
2nd x ~
y
3rd X x-y
y 2y

4th | x x-y x-2y

Sth | x x—y x—-2y x—3y
|y 2y 3y 4y

6th z,x—y,x¥2y,'k'—’3y,vx—4y

y 2y 3y 4y 5y

DIRECTIONS: Let # = = and use your algébraic skills to get each of the coefficients
. }I .
in the chart i in terms of n. Hint: — .sy X i/i—é-= ﬁ—i |
4y 4 y 4y 4 4 4
If this exercise is done correctly, you should wind up with the general binomial ‘
coefficients. That is, the coefficients of the terms created during binomial expansion of

(a+b)", nbeing a rational number . If you wish to check your work, you should be able
' to find the Binomial Thereom in any algebra textbook.

This culminates our work with Newton's creation of the bmormal series. However, of
paramount significance is the lasting result of these investigations. Commencing with
Wallis' daring numerical approaches to working with infinite processes, leading to
Newton's extension to negative exponents of Wallis' interpolation scheme, and coming to
a head with the discovery of the binomial series, the "horror of the infinite" that so
impeded the Greeks was exiled forever. As Boyer said, Newton "had found that analysis
by infinite series had the same inner consistency, and was subject to the same general laws,
as the algebra of finite quantltxes" ([b], p. 432).0ne final comment is that this work for
Newton, in large part influenced by John Wallis, as we have seen, became the catalyst with
which he would later generate his version of the calculus.
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