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gInstituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad
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Abstract

The paper focuses on the calculation of the effective elastic properties of a lam-

inated composite shell with imperfect contact between the layers. To achieve

this goal, first the two-scale asymptotic homogenization method (AHM) is ap-

plied to derive the solutions for the local problems and to obtain the effective

elastic properties of a two-layer spherical shell with imperfect contact between

the layers. The results are compared with the numerical solution obtained by

finite elements method (FEM). The limit case of a laminate shell composite

with perfect contact at the interface is recovered. Second, the elastic properties

of a spherical heterogeneous structure with isotropic periodic microstructure

and imperfect contact is analyzed with the spherical assemblage model (SAM).

The homogenized equilibrium equation for a spherical composite is solved using

AHM and the results are compared with the exact analytical solution obtained
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with SAM.

Keywords: Effective elastic properties, Spherical shell laminated, Composite,

Asymptotic homogenization, Spherical assemblage model

1. Introduction

Composite materials have emerged as the materials of choice in various

branches of industry - aerospace, automotive, sport, etc. - for increasing the

performance and reducing the weight and cost. However, defects induced during

the manufacturing process or accumulated due to environmental and operational5

loads lead to the reduction in the mechanical performance and material strength

and are recognized as a general problem in this type of composites, [1]. Most

typically, such defects can be found at the interfaces between the layers creating

an imperfect contact condition, [2], [3].

Effect of the contact imperfectness on elastic properties of composites at-10

tracted attention of researchers from 1970’s, [16], [17]. In [4], [5], [6], the authors

obtained analytical expression for the effective elastic properties of rectangular

fibrous composites with imperfect contact between the matrix and the rein-

forcement. On the other hand, the multilayered curvilinear shells structures

have received special attention in the last years. In [7], [8], [9], [10] several15

mathematical methods have been used to derive analytical expression for the

elastic properties of laminated shell composites. As a particular case, in [11],

the expression of the effective coefficients for a curvilinear shell composite with

perfect contact at the interface is obtained.

Several mathematical models and techniques have been developed to eval-20

uate the elastic properties of curvilinear laminated shell composites with im-

perfect contact at the interfaces. In papers as [7], [9], [12], [13], [14], [15], [18],

[19], the assemblage model, finite elements method and the two-scale asymptotic

homogenization method are used to derive in one way or another the effective

behavior of the elastic properties of particular composites with imperfect contact25

at the interface.
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In the present paper, we first use AHM technique to evaluate the elastic prop-

erties of a two-layer laminated shell with imperfect contact of the spring type at

the interface. The general analytical expression of the effective coefficients are

derived from the solution of the local problem. We focus on a two-layer spher-30

ical shell subjected to internal pressure assuming that the layers are isotropic.

To validate the model, the effective coefficients of the spherical structure are

compared with FEM calculations. The elastic fields (stresses, strains and dis-

placements) are also compared with ones calculated by the method of Bufler

[20] for the analysis of a spherical assemblage model (SAM). The approach is35

based on the transfer matrix method and yields closed form calculation of the

equivalent elastic properties of a periodically laminated hollow sphere made of

alternating layers of isotropic elastic materials with imperfect contact. The ef-

fective displacement, radial and hoop stresses computed via AHM are compared

with the elastic fields calculated by FEM and SAM.40

2. The linear elastic problem

A curvilinear elastic periodic composite is studied. The geometry of the

structure is described by the curvilinear coordinates system x = (x1, x2, x3) ∈

Ω ⊂ R3, where Ω = Ω1∪Ω2 is the region occupied by the solid, it is bounded by

the surface ∂Ω = Σ1 ∪ Σ2, where Σ1 ∩ Σ2 = ∅, Ωα α = 1, 2 are the elements of45

the composite, separated by the interface Γε. In Ω, the stress σ and strain ε are

related through the Hooke’s law, σij = Cijklεkl, where Cijkl are the components

of the elastic tensor C. For a linear periodic solid structure, the elastic tensor

C ≡ C(x,y) is regular with respect to the slow variable x and Y−periodic with

respect to the fast variable y = x/ε ∈ Y, where 0 < ε << 1 characterizes the50

periodicity of the composite and Y denotes the periodic cell.

The linear elastic equilibrium equation for a curvilinear laminated shell com-

posite with imperfect contact (spring type) at the interface is

σij,j + Γijkσ
kj + Γjjkσ

ik + f i = 0, in Ω, (1)
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subject to boundary conditions,

ui = u0i on Σ1, σijnj = Si on Σ2, (2)

and interface contact conditions,

σijnj = Kij [[uj ]] ,
[[
σijnj

]]
= 0, on Γε, (3)

where {�},j = ∂
∂xj
{�} is the derivative with respect to the slow curvilinear co-

ordinate, Γijk are the Christoffel’s symbols of second type, [[�]] = (�)(2) − (�)(1)

denotes the jump at the interface Γε, nj is the normal vector to the correspond-

ing surface (Σ2, Γε), Kij are the components of a matrix K, that characterizes55

the imperfect contact in Γε and the order of K is O(ε−1). Replacing the Hooke’s

law and considering the Cauchy’s formula, εij = (ui,j + uj,i)/2, the equations

(1)-(3) can be rewritten for the displacement vector function [11].

3. Homogenization of two-layer laminated shell composites with im-

perfect contact60

In order to obtain an equivalent problem to (1)-(3) with not fast oscillating

coefficients, the two–scales Asymptotic Homogenization Method (AHM) is used.

The general expression of the truncated expansion is given by

u(ε)m = vm + ε
[
N̂p
mvp +N lk

m vl,k

]
+ o(ε), (4)

where vm ≡ vm(x), N lk
m ≡ N lk

m (x,y) is the local function for the first order

approach, N lk
(1)m(x,y) is Y−periodic, where Y = [0, 1] and N̂p

m = −ΓplkN
lk
m [11].

Substituting the expansion (4) into the equations (1)-(3) a recurrent family of

problem is obtained for different powers of the small parameter ε.

Considering a two-layer laminated shell composite with isotropic compo-

nents, i.e.

Cijkl = λ(y)gijgkl + µ(y)
(
gljgki + gilgkj

)
, (5)

where [gij ] is the metric tensor of the coordinates (x1,x2,x3) and

λ(y) =

λ1 y ∈ [0, γ)

λ2 y ∈ (γ, 1]
, µ(y) =

µ1 y ∈ [0, γ)

µ2 y ∈ (γ, 1]
,
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where the layers are transversal to the axis x3, the local problem is obtained for

ε−1

∂/∂y
(
Ci3lk + Ci3m3∂N lk

m/∂y
)

= 0 on Y = [0, γ) ∪ {γ} ∪ (γ, 1], (6)

with interface conditions given by the expressions65 [
Ci3lk + Ci3m3∂N lk

(1)m/∂y
]

= (−1)α+1Kij
[[
N lk

(1)j

]]
, on Γε = {y = γ},(7)[[

Ci3lk + Ci3m3∂N lk
(1)m/∂y

]]
= 0 on Γε = {y = γ},(8)

where the parameter α = 1, 2 denotes the layer.

Substituting (5) into the local problem (6) the following expression is ob-

tained ∂2N lk
(1)m/∂y

2 = 0. Therefore, the local function has the expression

N lk
m =

A
lk(1)
m y +B

lk(1)
m , y ∈ [0, γ),

A
lk(2)
m y +B

lk(2)
m , y ∈ (γ, 1].

(9)

Taking into account the periodicity of the functions N lk
m and ∂N lk

m/∂y the

following linear equations system is obtained from equation (8)[
Ci3lk(1) + Ci3m3(1)Alk(1)m

]
= −Kim

(
Alk(1)m (γ) +Alk(2)m (1− γ)

)
, (10)[

Ci3lk(2) + Ci3m3(2)Alk(2)m

]
= −Kim

(
Alk(1)m (γ) +Alk(2)m (1− γ)

)
, (11)

where the supraindex (α) α = 1, 2 refers to each layer α. The linear problem

(10)-(11) related to the variables A
lk(α)
m can be solved using classical methods70

and therefore the local functions are obtained.

Applying the average operator to the coefficient of the parameter ε0, the

homogenized coefficients are obtained and the general expression is given in the

equations (12)-(18) of [11]. The effective coefficients for a two-layer laminated

shell composite with isotropic layers and imperfect contact condition at the

interface have the general analytic expression

ĥijkl =
〈
Cijkl

〉
+ V1C

ijm3(1) ∂N
kl(1)
m

∂y
+ V2C

ijm3(2) ∂N
kl(2)
m

∂y
. (12)

where Vα is the volume of the layers of the composite and the local functions

∂N
kl(α)
m /∂y have the expression

∂N
kl(α)
m

∂y
=

−Cq3kl(α)
(
KqnVβ + Cq3n3(β)

)
+ Cq3kl(β)KqnVβ

Cr3m3(1)Cr3n3(2) + Cr3m3(1)KrnV2 + Cr3n3(2)KrmV1
, (13)
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Figure 1: Comparison of the effective coefficients h1111, h3333, h1133 and h1313 of

a composite with perfect contact at the interface using equation (26) of [11] and

the effective coefficients for a composite with imperfect contact using equation

(12).

for β = 1, 2 and β 6= α.

The homogenized problem is obtained from the equations (19)-(20) of [11].

3.1. Comparison of the effective coefficients for composites with perfect and im-

perfect contact75

In order to illustrate the influence of the imperfect contact on the effective

coefficients, a two layer rectangular laminate shell is considered. The layers of

the composite are isotropic and the materials are stainless steel (Young’s mod-

ulus E1 = 206.74 GPa, Poisson ratio, ν1 = 0.3) with volume V1 and aluminum

(Young’s modulus E2 = 72.04 GPa, Poisson ratio, ν2 = 0.35) with volume80

V2 = 1 − V1. The matrix K characterizes the imperfection and has nonzero
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components K11 = K22 = µ/ε and K33 = (µ + 2λ)/ε where µ = λ = 1 and

ε = [0.001, 0.01, 0.05]. The effective coefficients for imperfect contact case are

calculated using the equation (12) and they are compared with the coefficients

obtained using equation (26) of [11] for perfect contact case (see Figure (1)).85

The convergence of effective coefficients for the imperfect contact case can be

appreciated as ε→ 0, i.e. Kij → +∞.

4. The spherical assemblage model with imperfect contact (SAM)

In this section, a spherical assemblage model consisting of N different thin

elastic layers is studied using the transfer-matrix method.90

The transfer-matrix method is a classic [21] approach. Here, we first review

its application to a periodic laminated hollow sphere proposed in [20] and next

extend the obtained results to the case of imperfect contact between the layers.

The spherical assemblage has internal radius Ri, external radius Re and

thickness h = 2t. The inner surface r = Ri is loaded by a constant pressure95

σrr(Ri) = +p, (14)

whereas the external surface r = Re is traction free

σrr(Re) = 0. (15)

The k-th layer comprised between the radii Rk−1 and Rk, is characterized by the

thickness hk and it is made of linear elastic homogeneous and isotropic material

with Young modulus and Poisson ratio Ek and νk, respectively. According to

the transfer-matrix method [20], the radial stress σrr and displacement ur at

radius Rk−1 of the laminated sphere can be related to the radial stress and100

displacement at radius Rk through the field-transfer matrix Tk of the layer k:
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 σrr(Rk)

E∗ur(Rk)/h∗

 = Tk

 σrr(Rk−1)

E∗ur(Rk−1)/h∗

 , (16)

Tk :=

 1− akh bkh

ckh 1− dkh

 , (17)

with

ak := 2
(

1− νk
(1− νk)

)λk
Ri
, (18)

bk :=
2

(1− νk)

Ekh
∗

E∗
λk
R2
i

, (19)

ck :=
(

1− 2ν2k
(1− νk)

)Ekh∗
E∗

λk, (20)

dk :=
2νk

(1− νk)

λk
Ri
. (21)

Here, λk = hk/h is the thickness ratio of the k−th layer, and E∗ and h∗ denote

a reference modulus of elasticity and thickness, respectively. Applying (16)

N-times for the layered hollow sphere made of layers in perfect contact, we have105

 σrr(Re)

E∗ur(Re)/h
∗

 = S

 σrr(Ri)

E∗ur(Ri)/h
∗

 , S := TNTN−1 . . .T1. (22)

Here S is the transfer matrix system from radius Ri to Re, linking the two

elastic states at the boundaries of laminated sphere.

Sustituting (16) into (22) and considering only the terms of order zero and

one in h, the Bufler’s result is obtained:

S = I− hM + o(h), M :=

 a b

c d

 , (23)
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with

a :=

N∑
k=1

2
(

1− νk
(1− νk)

)λk
Ri
, (24)

b :=

N∑
k=1

2

(1− νk)

Ekh
∗

E∗
λk
R2
i

, (25)

c :=

N∑
k=1

(
1− 2ν2k

(1− νk)

)EkE∗
h∗

λk, (26)

d :=

N∑
k=1

2νk
(1− νk)

λk
Ri
. (27)

To extend these results to a laminated sphere with imperfect contact between

the layers, an arrangement of springs is artificially considered at the spherical110

surface between adjacent layers. In this case, a jump of the radial displacement

has to be taken into consideration, [22, 23, 24, 25]. In particular, the continuity

of radial stress is assumed and the following linear relation between the radial

stress and the jump of radial displacement is imposed at the radius Rk :

 σrr(R
+
k )

E∗ur(R
+
k )/h∗

 = K̂k

 σrr(R
−
k )

E∗ur(R
−
k )/h∗

 , (28)

K̂k :=

 1 0

E∗εk/(h
∗(2µk + λk)) 1

 ,
where the matrix K̂k characterizes the imperfect contact provided by the k−th115

layer of springs, with k = 1, 2, . . . N − 1, εk << 1 is a small length parameter

accounting for its thickness and 2µk + λk its elasticity coefficient.

Now, the presence of springs are considered, therefore the transfer matrix

system S (cf. (23)) modifies in order to incorporate the matrices K̂k,

S̃ = TNK̂N−1TN−1 . . . K̂1T1. (29)

Sustituting (16) and (28) into (29), one obtains the new matrix system for a

spherical assemblage made of N layers with imperfect contact. It can be shown
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that

S̃ = I− hM + o(h), M̃ :=

 a b

c̃ d

 , (30)

with a, b and d given again by equations (24), (25) and (27), respectively, and120

c̃ := c+

N−1∑
k=1

E∗

h∗
εk

(2µk + λk)

=

N∑
k=1

(
1− 2ν2k

(1− νk)

)EkE∗
h∗

λk +

N−1∑
k=1

E∗

h∗
εk

(2µk + λk)
. (31)

The case of a periodic laminate made by repeating n times a group of N

layers is now considered. As n increases, the thicknesses hk and εk must decrease

with n in order to keep the total thickness h of the fixed laminate. In particular,

it is assumed that hk = Λkh/n and εk = ξkh/n, with Λk, k = 1, 2, . . . N , the

thickness ratio of the k−th layer inside the group, and analogously ξk << 1,125

k = 1, 2, . . . N − 1, for the k−th layer of springs. The matrix system for the

hollow sphere with homogenized properties following Bufler is calculated as

lim
h→0

1

h

(
S̃n − I

)
= lim
h→0

1

h

(
(TNK̂N−1TN−1 . . . K̂1T1)n − I

)
= <M >, (32)

with

<M >:=

 < a > < b >

< c > < d >

 , (33)

< a > :=

N∑
k=1

2
(

1− νk
(1− νk)

)Λk
Ri
, (34)

< b > :=

N∑
k=1

2

(1− νk)

Ekh
∗

E∗
Λk
R2
i

, (35)

< c > :=

N∑
k=1

(
1− 2ν2k

(1− νk)

)Ekh∗
E∗

Λk +

N−1∑
k=1

E∗

h∗
ξk

(2µk + λk)
, (36)

< d > :=

N∑
k=1

2νk
(1− νk)

Λk
Ri
. (37)
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As an example, consider the homogenization of a periodic laminate made by

repeating a group of two layers under imperfect contact. In this case, the “unit

cell” of the laminate is T+KT−, with T± the transfer matrices of two layers130

whose elasticity constants are denoted E±, ν±, and K̂ the matrix characterizes

imperfect contact. The thickness ratios Λ± are assumed to coincide Λ+ = Λ− =

1/2. Thus,

< a > :=
1

Ri

( (1− 2ν−)

(1− ν−)
+

(1− 2ν+)

(1− ν+)

)
, (38)

< b > :=
h∗

E∗R2
i

( E−
(1− ν−)

+
E+

(1− ν+)

)
, (39)

< c > :=
E∗

h∗

( (1− 2ν−)(1 + ν−)

2E−(1− ν−)
+

(1− 2ν+)(1 + ν+)

2E+(1− ν+)
+

ξ

(2µ+ λ)

)
,

(40)

< d > :=
1

Ri

( ν−
(1− ν−)

+
ν+

(1− ν+)

)
. (41)

As a final result, note that comparing the latter relations with the matrix

system of a transversely isotropic homogeneous elastic sphere (cf. [20, eqns.135

(17)-(19)] ) one obtains the equivalent material parameters E/(1 − ν), E′, ν′

of the homogenized sphere consisting of a two–layers laminate with imperfect

contact,

E

(1− ν)
=

( E−
2(1− ν−)

+
E+

2(1− ν+)

)
, (42)

1

E′
=

(
ν−

(1−ν−) + ν+
(1−ν+)

)2
(

E−
(1−ν−) + E+

(1−ν+)

) +
(1− 2ν−)(1 + ν−)

2E−(1− ν−)
(43)

+
(1− 2ν+)(1 + ν+)

2E+(1− ν+)
+

ξ

(2µ+ λ)
,

ν′

E′
=

(
ν−

(1−ν−) + ν+
(1−ν+)

)
(

E−
(1−ν−) + E+

(1−ν+)

) . (44)

The state of stresses and displacements of the equivalent transversely isotropic

hollow sphere subjected to the boundary conditions (14), (15) can be obtained140

by substituting the relations (42)-(44) into eqns. (52) of [20], which are

11



ur(r) =
pRe(

Ri

Re

)λ1−1
−
(
Ri

Re

)λ2−1
h∗

E∗
< c >

[ (
r
Re

)λ2

Ri < d > +λ2
−

(
r
Re

)λ1

Ri < d > +λ1

]
,

(45)

σrr(r) = − p(
Ri

Re

)λ1−1
−
(
Ri

Re

)λ2−1

[( r

Re

)λ1−1
−
( r

Re

)λ2−1]
, (46)

σθθ(r) = − p/2(
Ri

Re

)λ1−1
−
(
Ri

Re

)λ2−1

[
(1 + λ1)

( r

Re

)λ1−1
− (1 + λ2)

( r

Re

)λ2−1]
,

(47)

with

λ1,2 = 1/2
(
− 1±

√
8C̄ − 1

)
, (48)

C̄ = 1/2
(
R2
i < b >< c > −(1−Ri < d >)Ri < d >

)
. (49)

5. The Finite Element Method

In this section, a numerical method based on the finite element is proposed

to solve problem (6)-(8). Since this technique is quite standard, it is rapidly145

outlined here.

For the sake of simplicity, we denote Y− = [0, γ) and Y+ = (γ, 1]. Then,

choosing a test function v, which can be discontinuous across the interface Γε,

multiplying the equilibrium equation (6) by this test function and integrating

among Y , one obtains after integration by parts150

−
∫
Y−

(Ci3lk + Ci3m3 ∂N
lk
m

∂y

∂v

∂y
dy + (Ci3lk + Ci3m3 ∂N

lk
m

∂y
)(γ−)v(γ−) = 0 (50)

−
∫
Y+

(Ci3lk + Ci3m3 ∂N
lk
m

∂y

∂v

∂y
dy − (Ci3lk + Ci3m3 ∂N

lk
m

∂y
)(γ+)v(γ+) = 0. (51)

Now, adding these two equalities, using the continuity of Ci3lk +Ci3m3 ∂N
lk
m

∂y

across the interface, (see equations (7) and (8)), a weak formulation of the

12



problem can be written as follows∫
Y±

(
Ci3lk + Ci3m3 ∂N

lk
m

∂y

∂v

∂y

)
dy +Kim[[N lk

(1)m]][[v]] = 0

Finally, using standard finite element on each sub domain, and a ”flat” finite

element on Γε, that have all its nodes on Γε, the first ones related to Y− and the

other ones to Y+, it is possible to write a rigidity matrix of this problem, that

is, invertible, with standard error estimation (see [26] or [27] for more details).

Due to finite element discretization, the integrals (see formula (12), for ex-155

ample) for the computation of effective coefficients are substituted by sums over

element contributions.

6. Numerical results

In order to validate the above mentioned models, a spherical shell composite

is studied. A two-layer elastic hollow laminated shell composite is considered

with isotropic components. The inner and outer radius are denoted by Ri =

R0− t and Re = R0 + t respectively, where t = R0/10. The spherical coordinate

system (θ, ϕ, r) is used to describe the geometry of the structure, [9]. The layers

of the composite are transversal to the coordinate r. The inner surface r = Ri

of the heterogeneous body is loaded by a constant radial stress, (14), and the

external spherical surface r = Re is traction free. The materials used in the

composite have the following elastic properties

µ− = 10µ+, µ = exµ+, (52)

ν− = 0.2, ν+ = 0.35, ν = 0.3, (53)

where x ∈ [−3, 3], the index ”−” denotes the inner layer, the index ”+” the

outer layer, non-indexed constants are the K parameters. For this particular160

case, the matrix K is diagonal and has components K11 = K22 = µ/ε and

K33 = (λ+ 2µ)/ε.

To obtain the effective elastic properties of the presented spherical shell

composite, the two above described approaches, AHM and SAM are used.

13



hijkl/µ+

h1111 h1133 h1122 h3333

x AHM FEM AHM FEM AHM FEM AHM FEM

-3 14.84995 14.84995 2.05841 2.05841 3.84995 3.84995 5.22134 5.22134

-2 15.03957 15.03957 2.53939 2.53939 4.03957 4.03957 6.44138 6.44138

-1 15.13372 15.13372 2.77821 2.77821 4.13372 4.13372 7.04716 7.04716

0 15.17297 15.17297 2.87777 2.87777 4.17297 4.17297 7.29971 7.29971

1 15.18812 15.18812 2.91622 2.91622 4.18812 4.18812 7.39723 7.39723

2 15.19380 15.19380 2.93062 2.93062 4.19380 4.19380 7.43377 7.43377

3 15.19591 15.19591 2.93595 2.93595 4.19591 4.19591 7.44730 7.44730

Table 1: Values of the effective coefficients hijkl obtained via AHM and FEM

for some values of the parameter x

As a first step, the local functions ∂N lk
m/∂y are computed via AHM (13) and165

FEM. The variational formulation (50)-(51) of the linear system of equations

(10)-(11) used to obtain the value of the local function ∂N lk
m/∂y by FEM, reports

the exact solution of the system due to the linearity of the system. Thus, a

perfect concordance between the local function ∂N lk
m/∂y, computed via AHM

and FEM, is obtained.170

In Table 1, a comparison of the effective coefficients obtained via AHM

and FEM using the parameters (52)-(53) and considering ε = R0/100 is shown.

Notice the perfect coincidence between the effective coefficients reported by both

methods; this is an expected result since the local functions obtained through

AHM and FEM also coincide.175

The effective coefficients given in Table 1 are used to obtain the homog-

enized problem following the methodology described in [11],[16]. Solving the

homogenized problem with the boundary conditions (14)-(15), the effective dis-

placement and stress are computed. In order to compare the results obtained
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µ+ur/p(Ri) µ+ur/p(R0) µ+ur/p(Re)

x AHM FEM SAM AHM FEM SAM AHM FEM SAM

-3 -0.15039 -0.15191 -0.16851 -0.12612 -0.12649 -0.12857 -0.11365 -0.11433 -0.11224

-2 -0.14827 -0.14581 -0.16224 -0.12647 -0.12335 -0.13398 -0.11459 -0.11198 -0.12014

-1 -0.14749 -0.14315 -0.16218 -0.12660 -0.12182 -0.13813 -0.11494 -0.11077 -0.12510

0 -0.14721 -0.14210 -0.16310 -0.12664 -0.12119 -0.14054 -0.11507 -0.11026 -0.12775

1 -0.14710 -0.14170 -0.16367 -0.12666 -0.12094 -0.14164 -0.11511 -0.11007 -0.12893

2 -0.14706 -0.14155 -0.16393 -0.12667 -0.12085 -0.14208 -0.11513 -0.10999 -0.12939

3 -0.14705 -0.14150 -0.16403 -0.12667 -0.12082 -0.14225 -0.11514 -0.10997 -0.12957

Table 2: Values of the normalized effective displacement µ+ur/p(·) obtained via

AHM, FEM and SAM for some values of the parameter x

by AHM, FEM and the methodology presented in Section 4, the normalized180

displacement reported in Table 2 is computed using three methods AHM, FEM

and SAM for the values of the parameter x = {−3,−2,−1, 0, 1, 2, 3} at Ri, R0

and Re. Good concordance between the three methods is appreciated.

Considering the effective coefficients of Table 1, the radial displacement of

Table 2 and the methodology described in Section 4, the effective radial σrr and185

circumferential σθθ stresses are computed using the three methods.

In Table 3, the effective radial stress is computed by AHM, FEM and SAM

for different values of the parameter x. The good correspondence between the

three methods for r = {Ri, Re} is due to the boundary conditions (14)-(15). In

Table 4, the effective circumferential stress is reported for the spherical structure190

above mentioned. The results have similar behavior for the three methods and

the same values of the parameter x.

7. Conclusions

In this paper three different approaches are used to study the elastic proper-

ties of a spherical shell composite. The two-scale Asymptotic Homogenization195
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σrr/p(Ri) σrr/p(R0) σrr/p(Re)

x AHM FEM SAM AHM FEM SAM AHM FEM SAM

-3 1 1 1 0.39194 0.40777 0.37774 0 0 0

-2 1 1 1 0.39442 0.41001 0.38967 0 0 0

-1 1 1 1 0.39535 0.41086 0.39422 0 0 0

0 1 1 1 0.39569 0.41117 0.39591 0 0 0

1 1 1 1 0.39581 0.41129 0.39654 0 0 0

2 1 1 1 0.39586 0.41133 0.39677 0 0 0

3 1 1 1 0.39588 0.41135 0.39685 0 0 0

Table 3: Values of the normalized effective radial stress σrr/p(·) obtained via

AHM, FEM and SAM for some values of the parameter x

σθθ/p(Ri) σθθ/p(R0) σθθ/p(Re)

x AHM FEM SAM AHM FEM SAM AHM FEM SAM

-3 2.45936 2.48818 2.69206 1.99925 1.99922 1.97031 1.76450 1.77485 1.68188

-2 2.41921 2.37235 2.49624 2.00421 1.94473 1.99469 1.77900 1.73844 1.75124

-1 2.40438 2.32194 2.42263 2.00604 1.91827 2.00379 1.78437 1.71966 1.77776

0 2.39891 2.30199 2.39533 2.00672 1.90737 2.00716 1.78636 1.71178 1.78766

1 2.39690 2.29444 2.38526 2.00696 1.90319 2.00840 1.78709 1.70873 1.79132

2 2.39616 2.29163 2.38155 2.00706 1.90163 2.00886 1.78736 1.70759 1.79267

3 2.39589 2.29059 2.38019 2.00709 1.90105 2.00902 1.78746 1.70716 1.79316

Table 4: Values of the normalized effective radial stress σθθ/p(·) obtained via

AHM, FEM and SAM for some values of the parameter x
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Method is used to obtain the general expression of the local problems and the ef-

fective coefficients of elastic composites with imperfect contact at the interface.

The expression of such effective coefficients is given in (12). The results are

compared for different cases of imperfections and the limit case reported in [11]

for perfect contact is derived, considering a particular composite. The method-200

ology for spherical shell composites with imperfect contact at the interface is

implemented. The local problems for this structure are solved analytically and

via FEM. The solution of local functions are used to computed the effective

coefficients, and a good coincidence between AHM and FEM is appreciated.

Moreover, a third method considering the spherical assemblage model (SAM)205

is proposed and the general expression for the elastic properties of a spherical

structure with imperfect contact at the interface is derived. The general ex-

pression, via SAM, of the displacement, radial and circumferential stresses for

the spherical structure are given in the equations (45)-(47). Comparison of the

effective displacement, radial and circumferential stresses obtained via AHM,210

FEM and SAM show good results.
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[11] D. Guinovart-Sanjuán, R. Rodŕıguez-Ramos, R. Guinovart-Dı́az, J. Bravo-

Castillero, F. J. Sabina, J. Merodio, F. Lebon, S. Dumont, C. A., Effective

properties of regular elastic laminated shell composite, Composite Part B

87 (2016) 12–20. doi:10.1016/j.compositesb.2015.09.051.

[12] Z. Hashin, Thin interphaseimperfect interface in conduction, Journal of265

Applied Physics 89 (2001) 2261 – 2267. doi:10.1063/1.1337936.

[13] Z. Hashin, Thin interphase/imperfect interface in elasticity with application

to coated fiber composites, Journal of the Mechanics and Physics of Solids

50 (2002) 2509 – 2537.
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