
Access Control for the Pepys Internet-wide

File-System

Tommaso Cucinotta, Nilo Redini

Bell Laboratories, Alcatel-Lucent Ireland

Gianluca Dini

University of Pisa, Italy

October 31, 2012

Abstract

This paper describes the Access Control Model realized for the novel

Pepys distributed, Internet-wide, file-system. The model design has been

widely inspired to various existing standards and best practices about

access control and security in file-system access, but it also echoes peculiar

basic principles characterizing the design of Pepys, as well as the ΠP

protocol, over which Pepys itself relies. The paper also provides technical

details about how the model has been realized on a Linux port of Pepys.

1 Introduction on Pepys

Pepys is an innovative distributed file-system born to meet the increasingly
growing demand, from users, to always have their data available anywhere.

Pepys is composed of a multitude of servers that, together, present a col-
lection of files organized in trees or volumes. It uses a hierarchy of caching file
servers and a set of archival storage servers, brought together through a com-
mon set of protocols for data access and control. Moreover, in order to design a
fault-tolerant system, files may be replicated among servers; doing so it is even
possible to improve the speed of files fetching.

In Pepys, when a new file is created, it is not necessary that every directory
present into the path is present. For example, the file named /a/b/f can exist
in the file-system without requiring existence of /a/b and/or /a. In the Pepys
design, the traditional distinction among files and folders is replaced by the
ideas that a collection of files (called objects) reside in the file-system. The
existing object having a name with the longest prefix matching the name of
another object merely becomes the guard of said other object. For example, if
/a and /a/b/f exist and /a/b not, then /a is the guard of /a/b/f. The guard
relationship among objects ultimately regulates how exactly access control is
performed, within the Pepys file-system, as it will be detailed in Section 3.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/84495912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1.1: Pepys components.

Pepys is a versioned file-system, i.e., when a file is modified, a new version of
the file is added to the system, that keeps storing all the previous versions. This
way it is always possible to keep track of the files history. Versioning allows for
an efficient caching of files.

Moreover, files in Pepys may have attributes. These are defined in the same
name space as for the regular files. For example, if owner is a valid attribute for
the file /a/b/f, then its complete name is /a/b/f/owner. To avoid confusion
between files and attributes, a special character is used in the file operations
when referring to attributes.

Furthermore, Pepys uses a new transport protocol (called ΠP ) in order to
minimize the round-trip message exchanges, between a client and a server, nec-
essary to perform file transfer operations. The protocol allows to send, to the
server, multiple consecutive requests in a single packet.

Being still under heavy development, Pepys has various features still under
implementation, or merely at a design stage. For example, Pepys was not in-
cluding any mechanism for access control, yet. This document describes the
work that has been done in order to add an Access-Control Model to the Pepys
distributed file-system, complying with the general principles behind the Pepys
design.

Pepys file-system is currently implemented on top of a new operating sys-
tem called Osprey [9] (see Figure 1.1), providing an alternative approach to
cloud computing, and specifically aiming to improve latency and predictability
of cloud applications and support for mobility. A key component in the over-
all architecture is the ΠP protocol, supporting all Pepys operations, including
various interactions with the Osprey kernel itself.

As shown in Figure 1.1, the original Pepys server we modified included ΠP

Ram, basically an in-RAM file-system. As explained in 4.1, this has been ex-
tended to keep files on a Linux (and generally POSIX) file-system, and to sup-
port our new AC model.

2



1.1 Paper Organization

The reminder of this paper is organized as follows. In Section 2, we put our work
in relationship with related existing works in the literature. In Section 3, we
present the Access-Control Model (ACM) we designed for Pepys, highlighting
the most important design choices. Section 4 provides some implementation and
further architectural details. Finally, in Section 5 we describe possible future
work we plan to do on the topic.

2 Related Work

In order to design an efficient and state-of-the-art access control model, some
of the most widely known and deployed standards for file-system access control
have been considered, and specifically:

• Unix File-System permissions [11] and Linux extensions [13]

• New Technology File-System (NTFS) permissions [12]

• POSIX Access Control Lists (ACLs) [1, 5]

• Role-Based Access Control (RBAC) [10]

• Discretionary Access Control (DAC) [7]

• Mandatory Access Control (MAC) [7]

• HTTP authentication mechanism [4]

Our work was greatly inspired to the POSIX Access Control Lists (ACLs) [1, 5].
POSIX ACLs overcome some of the limitations of the old UNIX file-system [11],
allowing for the definition of multiple per-user and per-group rules, providing a
great liberty of flexibility in expressing access-control rules. The access-control
model proposed in this paper is also based on attaching lists of access-control
rules to files, therefore our model is also referred to as an ACL model, even
though there are various differences with the standard POSIX ACL (see Sec-
tion 3 for details).

In order to represent the set of allowed permissions for users or user groups,
the classical concept of a bit-mask has been used, similarly to the UNIX file-
system [11]. However, the set of allowed permission bits does not match perfectly
UNIX. For example, we do not support the right of execution for files (that would
not have sense in a distributed system); also, taking inspiration from NTFS [12],
the co-owner bit has been added, used in ACL entries to define which users are
co-owners of the file, i.e., they can manage its ACL settings.

Also, in our model the concepts of users and groups are somewhat unified,
being also possible to define arbitrary nesting levels among groups of users. This
behavior can be thought of as a flexible way to define users’ roles and their hi-
erarchical or nesting relationships, hence can be compared to the expressiveness
often found in RBAC [10] models.

3



Our model design allows users to manage their own files permissions, allowing
for a completely discretionary access-control, as found in DAC [7] models. At the
same time, it is provided the possibility, for a system administrator (or specific
set of privileges users), to define “upper-bound” rules that cannot be overcome
by regular users, stealing some of the characteristics of typical MAC [7] models,
and taking inspiration from similar characteristic available in in NTFS.

Our implementation did not address comprehensively authentication, yet.
However, a basic authentication mechanism has been realized, taking inspira-
tion from HTTP-Auth [4], used in the HTTP protocol, in which clients send
their hashed password to authenticate to the server. The authentication mech-
anism also re-uses the “everything is a file” old paradigm of UNIX and further
developed in the Plan9 OS [3]. Furthermore, we support a primitive mechanism
for delegation [6] of authority through off-line delegation certificates resembling
Amoeba capability lists [8, 2].

Various other access-control models for file-systems have been proposed in
the literature, such as the WebOS [14] work, including a mechanism allowing
entities to delegate other entities in order to act on their behalf on a set of
defined file-system objects, or others. A comprehensive list of such works is out
of the scope of the present paper.

3 Access Control in Pepys

One of the basic concepts behind the Pepys access-control model design is the
one to create an environment in which:

• the traditional distinction between users and groups is replaced by a uni-
fied vision of such entities;

• AC rules can be specified at a generic abstraction level, considering sets of
files and sets of users, then refined for specific subsets of those files and/or
users;

• each user is free to define the access control rules for its own objects, in
the most flexible way possible;

• however, each user freedom is constrained by the rules dictated by system
administrators, if any;

• re-using the “everything is a file” approach to manage as many opera-
tions as possible, including operations involving the administration of the
access-control operations, such as editing of ACL rules or creation of users.

More details on the specific aspects are reported below.

3.1 Entities

The difference between users and groups has been overcome by introducing the
concept of entities, representing users or groups of users, that can be authorized
or denied the access to portions of the file-system.

4



In order to make the system security administration as scalable as possible,
entities (i.e., users and groups) can belong to others entities; if needed, a system
can be configured in such a way that a nesting relationship becomes valid when
both involved entities agree about it. An entity has to be aware of the fact that,
adding another entity in the set of entities belonging to it, is equivalent to giving
them all the access rights to which it is entitled, unless otherwise overriden by
more specific rules.

There are no limitations for the nesting level of the belong-to relationship,
which is to be considered a transitive relationship. Hence, a “belong-to” rela-
tionship between two entities can be:

1. Direct

2. Indirect (if transitively inherited).

The first kind of relationship is considered stronger than the second one, from an
access-control (AC) perspective, meaning that an AC rule referring to a direct
father of a user has priority over an AC rule referring to a generic ancestor.
The direct and indirect ancestors of an entity can be visualized in a “belong-to”
relationship priority tree in which the entity under consideration is the root of
the tree (see Figure 3.1).

Moreover, as we will see, an entity authentication is not mandatory: an
entity can decide whether or not to authenticate itself into the system.

Two system-level entities are always defined in the system, called others

and nobody. Each entity defined in the system belongs implicitly to others,
but only in the weakest possible sense (see Section 3.2.1). The others entity
is a convenient way, in ACL rules, to refer to any authenticated user in the
system. Also, unauthenticated entities, as well as entities just logged onto the
system, and about to authenticate, are treated by the system as implicitly being
the nobody entity. The nobody entity may be conveniently used in AC rules to
refer to any unauthenticated user. Also, is the system implicitly considers that
others belongs to nobody, as shown in Figure 3.1. The purpose of these two
entities is further detailed in Section 3.3.

Finally, since nesting relationships can be arbitrarily added by users, loops
are possible in the belong-to tree. Such a situation, albeit unusual, is still
handled by the implementation consistently.

3.2 Access Control Model

Each object in the file-system owns an ACL table which contains the access
rules governing access to it; each rule names an entity and its permissions to
the object.

Each ACL can have one or more co-owners, which can manage the rules in
the ACL. At least one co-owner has to be always present, so to ensure that there
is always someone able to manage the object security settings. Therefore, the
system forbids the operation of deleting the ACL rule for the last co-owner.

5



Figure 3.1: Belong-to relationship tree, rooted at a generic entity E1.

ACL rules apply generally to the object they are attached to, but are implic-
itly and dynamically inherited also by all the objects having it as a guard (i.e.,
the children file), and any other further object down the containment/guard
hierarchy of objects (i.e., the whole subtree rooted at the object). Normally, a
rule attached directly to an object takes precedence over a rule attached to its
guard (father), or a rule attached to its guard’s guard, etc. However, there is a
special type of rules, called non-overridable rules (o-rules), that forcibly apply
to the the whole subtree of the guarded files and cannot be overcome. Such
rules are designed to be used typically by system administrators to restrict the
AC settings that regular users may be willing to configure for their own created
contents.

As a result, a rule in an object (both a regular rule or an o-rule) stating that
an entity has certain permissions is effective only if there are not any o-rules, in
its guards chain or in the object itself, stating otherwise.

An ACL rule mentioning the others entity can be used to grant or deny
access to any user known to the system, when acting as an authenticated user.
Also, An ACL rule mentioning the nobody entity can be used instead to grant
access to any user connected to the system, but not having authenticated (yet).
However, authentication is only partially addressed in Pepys (e.g., server authen-
tication is unaddressed, so far), as a full mechanism will have to be integrated
with cryptography at the ΠP protocol level.

The type of supported permissions in the current design and implementation
is inspired to traditional UNIX file-systems: read and write of files, traversability
of guards, ACL management (co-ownership). However, this tentative set of
permissions can easily be extended to more complex permissions or permission
set (e.g., adding a delete permission or others, as found on NTFS file-systems).
It is noteworthy to mention that, whilst on traditional file-systems, the read
permission over a folder refers to the ability to read the folder contents, in
Pepys it is planned to provide distinct permissions to read a guard’s children (the
guarded/contained objects), and to read any files contained in the corresponding

6



sub-tree. Another feature that is being discussed, from the ACM perspective,
is the one in which there are multiple guards for the same object, a situation
resembling the concept of link in traditional UNIX file-systems.

3.2.1 Decision Algorithm

At the core of the Pepys ACM there is the algorithm deciding whether or not to
grant a given user access to a given file for a given operation. The central idea
for such algorithm is: “more specific rules take precedence over more generic
ones”. This means that, if the entity can reach an object, AC rules directly
attached to it have priority over AC rules inherited by guard objects or other
ancestors (the o-rules described above are the only exception, when present).

The decision algorithm locating the proper permissions applying to a given
entity for a given operation (e.g., write) on a given object, can be expressed
shortly in these few steps:

1. Traversability check: the system checks that the entity has the right to
traverse (e.g., ’x’ permission bit) all the existing guards going from the
file-system root down to the desired object, looking at those guards ACL
tables; the traversability permission, in such tables, can either be granted
directly to the entity attempting the access, or indirectly through any of
the entity parents or ancestors, in the belong-to relationship;

2. Check if there is a rule for the entity in the object ACL;

(a) if there is a match, its permissions mask are used to determine the
access;

3. Check if there is a rule for any ancestor of the entity (i.e., as due to the
belong-to specified relationships), giving priority to rules naming direct
ancestors, then 2nd level ancestors, etc.;

(a) as soon as a match is found, its permissions mask are used to deter-
mines the access;

4. Get the inherited rules from the object guard and start again the algorithm
from step 2;

5. If there are no rules about the entity or for one of its ancestors the access
is denied.

It is important to say that the o-rules affecting a given entity are combined with
the permissions mask returned by the algorithm above; this operation gives us
the effective permissions which the entity owns on the object.

Moreover, as we can see, it is been decided to give the priority to the entity
ancestors, named in the specific object, rather than a possible rule for the ap-
plicant entity in the object guard; this because we consider more accurate the
rules contained in the specific object rather than those in its guard.

7



Furthermore, since every entity belong to nobody entity, if the nobody ACL
rule is present, it allows to inhibit inheritance of guards rules; since the algorithm
would break at step 3. Same reasoning can be made for others applies to every
authenticated entity.

This makes the algorithm very flexible since is possible decide when the
decisional process has to stop.

3.2.2 Delegation

Entities can delegate others entities to act in their behalf, on a given object.
Each delegation is associated with a specific object and contains: the name

of the delegator, the name of the delegee, a set of permissions assigned to the
delegee and an expiration date. Clearly, the permissions granted by delegation
cannot be higher than the ones held by the delegator on the object.

Two kinds of delegation are possible:

1. On-line.

2. Off-line.

In the first one the delegator issues the delegation to the system, merely specify-
ing in it who is the delegee, its permissions and the file-system object on which
the delegation is applied. In the second method the delegator issues a signed
delegation to the delegee which, when it wants to perform an action on behalf
of the delegator, will present it to the system.

In the first case the signature is not required, since the system knows who is
the delegator and its permissions (for the anonymous cases see below); instead
in the second case the system, before approve the delegation, has to know who
is the issuer; hence the delegation has to be signed by the delegator.

The delegations are taken in account using the same algorithm described
above, and only if the access is denied using the regular ACL rules.

3.3 Authentication

Authentication of users has been temporarily realized as a simple (hashed) pass-
word verification. Authentication is not mandatory, to connect to the server.
An entity can have access to the system without having authenticated itself. In
this case, the system considers the connected entity as being the nobody entity,
thus the access-control permission specified for such entity throughout the file-
system apply. While being connected to the system, an entity can authenticate
itself whenever needed, upgrading its session from the rights corresponding to
the only nobody entity to the rights associated with its actual name.

One of the goals of the Pepys file-system is to become a content-distribution
platform. Supporting an unauthenticated state of the session is useful, in such
context, to realize a sort of “incognito” mode of access by which public contents
can be distributed worldwide without requiring users to reveal their identities.

8



Figure 4.1: Porting on Linux implementation.

Hence is clear that the system must be able to treat in a different way the
authenticated entities from the other ones; this is achieved by using the couple
others and nobody. Indeed others refers to entities which are logged into the
system, instead nobody to every entity present in the system (including both
authenticated and not).

To understand better how these two entities are used, consider an ACL table.
An ACL entry referring to the others entity applies to “every user logged and
authenticated into the system but for which no other ACL entries have been
found in the ACL table”; an ACL entry referring to the nobody entity, instead,
applies to “every user logged onto the system, either authenticated or not”. ACL
entries for others have priority over the ones for nobody, i.e., the AC engine
behaves as if the former entity were a subgroup of the latter one (see Figure 3.1).

Finally, if a server needs to authenticate users before allowing access to its
contents, this can always be done by specifying the permissions wanted for the
authenticated entities following the rules above (and using others if needed)
and no access rights for the nobody entity.

4 Implementation Notes

4.1 Porting on Linux

The first step in our work was to unplug the Pepys file-system from its original
structure (shown in figure 1.1) and therefore build a layer, called Lib Posix, in
order to make the Pepys file-system runnable on UNIX machines.

In order to allow operations of swapping/loading objects from/into RAM, a
new component has been added to the Pepys server, called Pipdiskfs (since the
original structure provided only a RAM file-system).

Our porting relies on FIFO queues, provided by UNIX file-systems, in order
to exchange ΠP messages between the server and the clients (however, we plan
to switch to UDP-based communications).

The implementation is shown in Figure 4.1.

9



Figure 4.2: File-System structure.

The developed software included, in addition to the Pepys server, a few other
tools:

1. Administration tool allowing for initializing the file-system, specifying:

(a) Entities allowed and their login password.

(b) Server name.

(c) Mount point (on the underlying Linux file-system) to allow for swap-
ping/loading of objects from/into the RAM.

(d) Path of directory that will contain temporary files (i.e., named FIFOs
currently used for client/server communications).

2. An interactive terminal in which is possible interact with the Pepys file-
system (create files, administer ACL settings).

3. A set of “ad-hoc tests” to test the main file-system features.

4.2 File-System Structure

Inside the file-system the entities are represented by special guards, which own
a set of special files. Moreover, as we can see in Figure 4.2, each entity is
associated with a home object (folder) over which it has full control.

Particularly each entity object guards (i.e., contains):

Ibelto/Beltome: necessary to establish a new relationship.

10



Approved: list of entities which the named one belongs to

Proxies: provides a mechanism for permissions delegations.

e-files: others entity files as, for example, entity public key.

Each entity guard is managed by the guard above called /entities, which holds
also a special file called Login in order to allow entities authentication.

An ACL table is represented by an object attribute, which can be changed
only by the co-owners as reported in such ACL.

Instead an object delegation is a special object attribute, managed by the
system, and hidden from the user’s point of view.

The motivations behind this implementation is discussed in Section 4.4.

4.3 Entities relationship

When an entity wants to become member of another entity’s users group, it
writes the name of the other entity in its Ibelto file (over which it normally
has write permission). The other entity (or the system administrator), on its
own, has to write the name of the first entity in its Beltome file, in order for
the new relationship to become effective. For each entity, the effective Ibelto

relationships are reported in the approved special object within the entity folder,
normally accessible to it for reading.

It is impossible for an entity to remove from its parents the system entities
nobody and others. Also, depending on how the system is being administered,
it is possible to allow users to write to their own Ibelto file, enabling them to
propose changes to their belong-to relationship, including their removal from
groups they belong to. On the other hand, it is equally possible to forbid such
write operations, leaving the administration of users and groups entirely to
system administrators, as it commonly happens in nowadays operating systems.

4.4 Delegation

As we said, two kinds of delegation are possible. In the on-line case, when
an entity wants to delegate other entities it has to write the delegation in its
proxies file. Specifically it has to indicate who is the delegee, its permission,
an expiration date and the object to which the delegator is referring to. After
that, the system will consider the delegation as effective only if it is compliant
with the delegator’s permissions on the specified object (i.e., an entity cannot
delegate permissions it does not possess over a file-system object).

In the off-line delegation method, the delegee must specify in its proxies

file who is the delegator and a valid path where the signed delegation is stored.
The system then checks the delegation signature using the public delegation
key available in the entity folder, and, only if the verification succeeds, is the
delegation considered effective.

A valid delegation acts like a temporary ACL entry. However, the delegee
might not have permissions to administer an object ACL, still be willing to

11



delegate some other entity to perform actions on its behalf on that object. The
proposed model allows for this kind of scenarios, merely allowing to each entity
to solely write/read its own proxies files. As a consequence, the system will
make the requested delegations effective, or ignore them, if they are invalid.

4.5 Authentication

When a client logs onto a Pepys server, it is not required to authenticate im-
mediately, resulting in a session being in an unauthenticated state. This means
that the nobody access rights apply for the client, whenever an operation on the
file-system is attempted. The client can authenticate itself at any time by using
the special file Login. Specifically, when an entity wants to upgrade its session,
it has to write its (SHA-256) hashed password using a write command. The
server compares the hashed password with the one stored in the entity pass-
word file, and, if they match, the entity session is upgraded to an authenticated
state. From now on, the actual name of the entity is used for checking the access
rights of the user.

Note that the Login file is a special file, in that it does not really store
any password. Such file can be opened by multiple remote clients concurrently
without problems, as in the implementation the authentication material being
provided by each client is kept into a separate buffer associated with each session.

Note that, thanks to the characteristics of the ΠP protocol to group multiple
requests in the same message, it is possible for a remote client to stuff, within a
single round-trip interaction with a Pepys server, the set-up of a session, opening
of the Login file and writing of the password, opening of the target file-system
file and issue of the desired read or write operation. However, the very simple
authentication protocol realized so far is also relatively weak, in that it is easily
subject to replay attacks, thus it can be improved by adding a time-stamp to the
hashed password to be written into the Login file, or a server-provided random
number (i.e., a nonce). Though, the last mechanism would require at least two
round-trips with the server.

Finally, we plan to review and improve the authentication mechanism by
integrating it with cryptographic extensions of the ΠP protocol which are being
designed at the time of writing, that will allow for having encrypted client-server
interactions.

5 Conclusions and Future Work

In this paper, an access-control model for the Pepys Internet-wide distributed
file-system has been proposed, highlighting the main characteristics of its design.
The proposed model takes into account the basic principles behind the well-
known POSIX ACL standard and other widely used file-systems, enriching the
model with characteristics that are inspired to the general principles of the
Pepys distributed file-system.

12



The paper provided also a few notes on how the model has been implemented
in a Linux port of the Pepys current code base.

Possible future work on the topic include: complete the implementation (un-
der way) of digitally signed delegations; extend the delegations features includ-
ing control of the delegation chain depth; integration of Pepys and particularly
of the current authentication mechanism with properly designed cryptographic
extensions to the ΠP protocol; evaluate the performance of the current ACM
features, and possibly optimize the most recurrently used code paths.

References

[1] IEEE Std 1003.1-2001, Open Group Technical Standard–Standard for In-
formation Technology–Portable Operating System Interface (POSIX), 2001.

[2] Goerge Coulouris, Jean Dollimore, and Tim Kindberg, editors. Distributed
Systems: Concepts and Design, chapter Amoeba. Addison-Wesley, 1994.

[3] Russ Cox, Eric Grosse, Rob Pike, David L. Presotto, and Sean Quinlan.
Security in plan 9. In Proceedings of the 11th USENIX Security Symposium,
pages 3–16, Berkeley, CA, USA, 2002. USENIX Association.

[4] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luoto-
nen, and L. Stewart. Http authentication: Basic and digest access authen-
tication. RFC 2617, jul 1999.

[5] Andreas Grünbacher. Posix access control list on linux. In Proceedings of
the USENIX Annual Technical Conference, June 2003.

[6] Butler Lampson, Martín Abadi, Michael Burrows, and Edward Wobber.
Authentication in distributed systems: theory and practice. ACM Trans.
Comput. Syst., 10(4):265–310, November 1992.

[7] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J.
Turner, and J. F. Farrell. The inevitability of failure: The flawed assump-
tion of security in modern computing environments. In Proceedings of the
21st National Information Systems Security Conference, pages 303–314,
Crystal City, Virginia, 1998.

[8] Sape J. Mullender and Andrew S. Tanenbaum. Protection and resource
control in distributed operating systems. Computer Networks, 8(5-6):421–
432, 1984.

[9] J. Sacha, J. Napper, S. Mullender, and J. McKie. Osprey: Operating
system for predictable clouds. In Proceedings of Dependable Systems and
Networks Workshops (DSN-W), 2012 IEEE/IFIP 42nd International Con-
ference on, pages 1 –6, june 2012.

13



[10] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The nist model for role-
based access control: towards a unified standard. In Proceedings of the fifth
ACM workshop on Role-based access control, RBAC ’00, pages 47–63, New
York, NY, USA, 2000. ACM.

[11] Guido Socher. File access permissions. 2000.

[12] William R. Stanek. File and folder permissions. In Microsoft Windows
2000 Administrator’s Pocket Consultant, page Chapter 13, 2002.

[13] Stephen Tweedie. Ext3, journaling filesystem, 2000.

[14] A. Vahdat, T. Anderson, M. Dahlin, E. Belani, D. Culler, P. Eastham, and
C. Yoshikawa. Webos: operating system services for wide area applica-
tions. In Proocedings of High Performance Distributed Computing, 1998.
The Seventh International Symposium on, pages 52 –63, jul 1998.

14


