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Abstract: In this paper, we present Confidential Domain of Execution (CDE), a mechanism for achieving confidential ex-

ecution of software in an otherwise untrusted environment, e.g., at a Cloud Service Provider. This is achieved

by using an isolated execution environment in which any communication with the outside untrusted world is

forcibly encrypted by trusted hardware. The mechanism can be useful to overcome the challenging issues in

guaranteeing confidential execution in virtualized infrastructures, including cloud computing and virtualized

network functions, among other scenarios. Moreover, the proposed mechanism does not suffer from the per-

formance drawbacks typical of other solutions proposed for secure computing, as highlighted by the presented

novel validation results.

1 INTRODUCTION

Information and communication technologies

(ICT) are undergoing a continuous and steep evolu-

tion and the wide availability of high-speed broad-

band connections is causing an inescapable shift to-

wards distributed computing models. The tradi-

tional idea of a personal computer able to process

data locally, is giving way to alternative computing

paradigms, e.g., cloud computing, where personal

computing devices are merely the point of access for

data and computing services offered elsewhere. In

this context, more and more often virtualization tech-

nology plays a major role in enabling new ICT sce-

narios. For example, in cloud computing it is used

to enable deployment of multiple Virtual Machines

(VMs) running on the same physical hosts. Network

technologies are following the same trend, with the

introduction of concepts such as Network function

Virtualization (NfV) (NFV Industry Specif. Group,

2012), Software-Defined Networking (SDN) (McK-

eown et al., 2008; O. M. E. Committee, 2012) and

Network Virtualization (Anderson et al., 2005).

Virtualizing (and sharing) network functions and

infrastructures allow network operators to (1) mini-

mize capital investments due to less expensive-longer

life cycle hardware, (2) decrease operational expen-

ditures due to, among others, reduced energy con-

sumption, maintenance and co-location costs, and (3)

speed-up the deployment of services. While oper-

ational confidentiality in shared network infrastruc-

ture has been widely investigated (Fukushima et al.,

2011), a similar problem needs to be addressed when

multiple operators are co-hosted and implement their

network activities within the same system.

For example, in mobile communication, solutions

have been presented to create multiple virtual base

stations (V-BTS) on a single base station hardware

platform (Sachs and Baucke, 2008; Chapin, 2002)

or to enable cellular processing virtualization in data

centers (Bhaumik et al., 2012). If a physical device is

compromised, an attacker can potentially eavesdrop

conversations, disrupt normal operations or even steal

cryptographic material. Also, malicious or buggy

software running on one virtual instance may leverage

possible security weaknesses in the isolation mecha-

nisms to compromise the confidentiality of other co-

located virtual instances.

Similar attacks can potentially be performed in a SDN

infrastructure when multiple controllers (e.g., Open-

Flow controllers) are deployed and co-hosted onto re-

mote shared servers. One of the major problems hin-

dering the uptake of such scenarios is therefore ensur-

ing the proper level of security and isolation for soft-

ware deployed by independent customers (a.k.a., ten-

ants) within a shared physical equipment owned by

others. Similarly, in cloud Infrastructure-as-a-Service

(IaaS) provisioning, customers deploy Virtual Ma-

chines (VMs) within physical infrastructures owned

by the provider (see Figure 1). If a user is using

the cloud merely as a remote storage provider, con-

fidentiality can readily be guaranteed through client-

side encryption. Often, this scenario is obtained when

deploying cloud encryption gateways, often coupled

with Software-as-a-Service (SaaS) clouds. However,

this way users cannot exploit computing facilities in
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Figure 1: The problem of confidential execution of cloud
services.

the cloud. The types of attack described above can

be mitigated by using trusted computing technolo-

gies coupled with a secure boot process, in which

a node is allowed to boot and run only after verify-

ing that its software and hardware configuration has

not been modified. However, the Trusted Computing

Base (TCB), i.e., the set of hardware, firmware and

software that a user needs to trust to keep data confi-

dential, may be quite large (see Section 2).

In this paper, we illustrate a minimum set of fea-

tures required to ensure confidential execution in an

otherwise untrusted physical infrastructure. Our point

is that all we need is a mechanism that completely iso-

lates a user’s execution environment, making its data

unreachable from the outside, and that guarantees that

all data exiting the environment is forcibly encrypted.

In the proposed architecture, called Confidential Do-

main of Execution (CDE) (Cucinotta et al., 2014), the

set of functionality to be trusted to ensure confiden-

tiality is so limited that it is straightforward to en-

vision a hardware-only implementation. Therefore,

we can reduce the software part of the TCB of the

provider to zero, and leave to the end-user full control

of the code to deploy within the execution environ-

ment. Our solution neither allows the owner or ad-

ministrator(s) of the physical infrastructure to control

anyway, nor to spy upon, the software and data being

deployed and processed within the CDE, so a CDE is

also protected from malicious insiders.

Note that, in addition to summarizing the general

architecture of our CDE solution that is going to ap-

pear on (Cucinotta et al., 2014), in this paper we also

present novel results that validate the approach, show-

ing that the CDE is not affected by the serious perfor-

mance drawbacks typical of other proposed solutions

for secure processing in untrusted environments.

2 RELATED WORK

We provide below a brief overview of solutions

for trustworthy execution of software in untrusted en-

vironments, in the three areas of OS/run-time robust-

ness, trusted computing, and secure processors.

OS/run-time Robustness – Traditionally, memory

protection hardware mechanisms (Memory Manage-

ment Units—MMUs) guarantee trust and isolation

between execution environments. MMUs allow an

Operating System (OS) kernel to isolate the execu-

tion environments of different users. However, the

CPU can still enter a special mode of operation (the

so-called Ring 0) in which malicious software can by-

pass normal OS security. Bugs in the OS kernel, in

system processes, and in system calls implementa-

tions, can be exploited to gain administrator’s privi-

leges and subvert any security policy in the system or

execute malicious code (Duflot et al., 2006). In addi-

tion, a malicious system administrator can overcome

any security restriction.

Similarly, in virtualized environments, memory

protection (including virtualization extensions (Uhlig

et al., 2005; Advanced Micro Devices, Inc., 2008;

Abramson et al., 2006)) can be leveraged to isolate

the execution of different Virtual Machines (VMs).

Still, the hypervisor embeds code that exploits the

special mode of operation of the available proces-

sor(s) as to perform system management actions, thus

bugs in the hypervisor can be exploited to break the

VMs isolation. To completely rule out such a possi-

bility, Szefer et al. (Szefer et al., 2011a) propose ex-

ploiting multi-core platforms in a way that allows a

VM to run without the hypervisor mediation on a sub-

set of the available hardware resources. However, the

administrator of the infrastructure can still arbitrarily

access any data managed by the hosted VMs. Novel

cryptographic mechanisms, such as homomorphic en-

cryption (Popa et al., 2011; Brenner et al., 2011), al-

low a provider to perform computations on encrypted

data without being able to understand the data con-

tents. However, applicability and wide adoption of

such technique seem limited.

Trusted Computing – Numerous projects (e.g.,

see (Singaravelu et al., 2006)) have shown how to de-

sign a small software TCB, decreasing the likelihood

of attacks. In OS designs, the historical idea of micro-

kernels (Liedtke, 1995; Rashid, 1986), proposed as an

alternative to monolithic OS architectures, aims to re-

duce the size of the critical part of a kernel which the

system stability relies upon. In (Steinberg and Kauer,

2010), the authors apply a similar idea to hypervi-

sors, developing the concept of micro-hypervisor. In

this case, however, one still has to trust a non-trivial

software TCB, i.e., the micro-hypervisor, albeit it is

smaller than regular hypervisors.

A partial remedy to these problems, comes from

the use of Trusted Platform Modules (TPMs) (TPM,

2011). For example, in (Correia, 2012), a Trusted Vir-

tualization Environment (TVE) has been proposed,



leveraging TPM technologies to allow remote users

check the software stack of a remote physical machine

before deploying their VMs. However, TPMs provide

no guarantees when bugs that can cause leakage of

confidential information are present in the TCB (Hao

and Cai, 2011). In (Keller et al., 2010), NoHype

was presented, an architecture where the hypervisor

is removed and the VMs have direct control on sys-

tem resources that are automatically reserved to each

of them. However, NoHype assumes that the server

provider and the guest operating system are fully

trusted and therefore it does not provide confidential-

ity of data and code running on the hosted VMs.

Secure Processors — In secure processor architec-

tures (Lie et al., 2000; Suh et al., 2003b; Chhabra

et al., 2010), data is kept in the main RAM memory in

encrypted form: it is decrypted only within the secure

processor when needed, then it is re-encrypted when

it is written back to memory. Therefore, a physical at-

tack aiming at spying on the traffic on the bus would

only manage to see encrypted data. The main problem

resides in the performance penalty incurred by the

processor each time data has to be exchanged with the

main-memory, i.e., at every cache-miss (for the cache

level(s) residing inside the processor chip), causing

the processor to stall waiting for data to be fetched

and decrypted. To mitigate this, counter-mode en-

cryption has been proposed (Suh et al., 2003a; Yang

et al., 2003), in which the encryption scheme is re-

alized as a XOR of the plain-text (cipher-text) and a

one-time pad. The degradation of performance can

be estimated as the additional cycles required for the

XOR operation. However, counter-mode solutions

have problems related to the management of the pads

used for the encryption processes, and may limit the

possibility to move blocks in the memory. Also, for

the scheme to be effective, the encryption operations

must complete within the memory access cycle, what

makes the encryption engine expensive to be realized.

Our CDE solution aims to guarantee confidential-

ity without requiring expensive encryption and de-

cryption operations at every memory access. It lever-

ages a hardware-based enforced encryption of the fi-

nal output only of the computations performed by the

software running within the CDE. The remote user

of the CDE has total control over the whole software

stack running within the CDE. Furthermore, it is not

possible to use any special mode of operation of any

processor outside of a CDE, to spy on its memory.

Figure 2: Overview of the Confidential Domains of Execu-
tion (CDE).

3 PROPOSED APPROACH

In this section, we briefly describe Confidential

Domain of Execution(CDE), an abstract architecture

that guarantees confidentiality in computing environ-

ments. For further details, the reader can refer to (Cu-

cinotta et al., 2014).

In the remaining of the paper, we use the follow-

ing conventions: the term owner (or provider, or ad-

ministrator) indicates the entity with physical control

over the computing machines. The term user (or cus-

tomer) is the remote user interested in handing over

computations to the provider’s computing machines.

Informal CDE Description. Figure 1 illustrates the

basic idea behind the CDE: to create, on a physical

computing machine, one or more protected comput-

ing areas (CDE) that can be exclusively accessed via

an encrypted channel. As shown in Figure 2, each

CDE includes one or more processing units along

with their caches (Domain CPUs), RAM memory

(Domain RAM), and peripherals (Domain Devices)

used for computations and data movement. The be-

havior of a CDE is summarized as follows:

1. inside the CDE, confidential data/code is pro-

cessed/executed in plain-text form (unencrypted),

at the native computing speed of the physical plat-

form;

2. any data flowing out of the CDE to the (potentially

untrusted) outside world is forcibly encrypted and

only the remote user (and other authorized users)

can decrypt it; similarly, any data entering the

CDE must be in encrypted form, and is decrypted

when injected within;

3. all encryption operations are performed by a hard-

ware Trusted Cryptographic Unit (TCU). Its func-

tion can neither be disabled nor worked around;

not even the administrator of the physical ma-

chines is able to overcome the security features

of a CDE;



4. a CDE can be reconfigured (reset) at any time by

its owner. Then, the entire contents of the CDE in-

cluding any memory and all CPU state is forcibly

cleared by the CDE hardware;

5. the cryptographic material, used by the TCU

to encrypt/decrypt any data crossing the CDE

boundaries, is established by the remote user by

using a cryptographic protocol (Cucinotta et al.,

2014), that guarantees that the TCU is the only

entity having access to it;

6. the CDE is manufactured with a built-in asymmet-

ric key pair, where the private key is embedded

in the TCU and is present nowhere else and the

public key is made available through a Public Key

Infrastructure.

Summarizing, as shown in Figure 1, a user can

exploit the proposed mechanism to move confiden-

tial code and data for processing purposes onto a re-

mote untrusted server owned by a (either trusted or

untrusted provider). Due to the use of the built-in

cryptographic material, the remote user can confiden-

tially communicate with the target CDE, despite the

traversal of untrusted networks and untrusted comput-

ing elements on the same physical machine where the

CDE resides (i.e., without the use of secure commu-

nication).

CDE Implementation. The CDE architecture as

depicted in Figure 2, can be implemented as a sin-

gle System-on-Chip (SoC) or in more cost effective,

but less secure, way by using Commercial-Off-The-

Shelf (COTS) hardware elements. For a more exhaus-

tive discussion of the different CDE implementations,

including the protocol used to exchange the crypto-

graphic keys, see (Cucinotta et al., 2014).

4 VALIDATION

Our proposed technique may also have a posi-

tive performance impact when compared to other so-

lutions discussed in Section 2. Particularly relevant

is comparison with secure processor architectures,

where the memory is kept in encrypted form in main

memory, and it is decrypted on-the-fly at every cache-

miss.

We validated our approach using micro-

benchmark use-cases that are used to give a rough

estimate of the performance advantage we achieve.

In the considered micro-benchmarks, the private

computations handed over to the remote computing

environment consist of: 1) Matrix Inversion: this

can be a common operation to be used for solving

big linear equations problems; 2) Eigenvalue Com-

putation: this may constitute a recurrent operation

in the context of physical simulations, where systems

of integral/differential equations need to be solved;

3) 2D Fast Fourier Transform: this is a common

operation in image and video processing, particularly

when applying linear filters. These benchmarks

have been realized using the open-source tool GNU

Octave1, and invoking the functions inv(), eig()

and fft2() on randomly generated square matrices.

Additionally, we considered a “macro-

benchmark” service consisting of a video transcoder

useful to change the resolution of a video so as to

scale it down to a number of lower resolutions. We

used the open-source ffmpeg software. All bench-

marks have been performed on a laptop equipped

with 4 logical cores Intel c© CoreTM i5-2520M and

4 GB of RAM, under the following conditions: 1)

CPU clock frequency locked to 2.50 GHz; 2) 3 logi-

cal cores disabled at kernel level; 3) real-time priority

(to minimize the impact of other running system

services). L2 cache-misses have been measured by

running the stat command of the Linux perf pro-

filer tool. Assuming a strong cipher such as AES-128

(AES, 2001), implemented in CBC mode, and a

32-bit data bus used to transfer a 64-byte data block,

the overall encryption and decryption operation

delays have been measured to be 97 and 141 CPU

cycles, respectively (Szefer et al., 2011b). Therefore,

given the above assumptions, the average number of

cache misses CM, the CPU clock frequency CPU f req

and the average execution time timeAV , then the

percentage encryption overhead of the XOM-type

architectures (Lie et al., 2000; Chhabra et al., 2010),

can be roughly estimated as:

OHenc = 97 ·
CM

CPU f req · timeAV

·100 (1)

and the correspondent percentage decryption over-

head is:

OHdec = 141 ·
CM

CPU f req · timeAV

·100 (2)

The considered benchmarks, along with the key

used parameters and the encryption and decryption

overheads, are summarized in Table 1. Results show

that the impact on performance of the additional cryp-

tographic operations is significant for most of the per-

formed benchmarks. Nevertheless, in case of CPU

greedy computations such as eig(), the time required

by the crypto-computation is larger (by a factor of

two) than the time required to perform the whole op-

eration in plain-text. The proposed CDE solution

1More information is available at: www.gnu.org/

software/octave/.



Table 1: Summary of the used benchmarks and configuration parameters, and obtained performance data.

Benchmark Matrix Average Cache-miss Cache-miss Encryption Decryption

Size Time [s] Average Ratio Overhead Overhead

inv() 2048x2048 3.894 21737705.7 16.15% 21.66% 31.48%

inv() 4096x4096 27.907 180510029.5 26.81% 25.10% 36.48%

eig() 512x512 1.278 22529316.4 22.90% 68.40% 99.43%

eig() 1024x1024 11.06 430773713.7 55.37% 151.12% 219.67%

fft2() 1024x1024 0.32 1402260.0 17.73% 17.00% 24.71%

fft2() 2048x2048 0.47 3447163.9 26.57% 28.46% 41.37%

Benchmark Matrix Average Cache-miss Cache-miss Encryption Decryption

Size Time [s] Average Ratio Overhead Overhead

ffmpeg 320x240 0.510 5704824.0 49.87% 43.40% 63.09%

ffmpeg 640x480 0.652 6729660.8 51.92% 40.05% 58.21%

does not have performance degradation due to cryp-

tographic overhead because the whole computation

is performed in plain text and cryptographic opera-

tions are required only when data or instructions en-

ter or leave the protected area. On the other hand, as

mentioned in Section 2, a significant performance im-

provement can be achieved using counter-mode AES

architectures. In this case the encryption/decryption

overhead can be estimated in the additional one-cycle

XOR operation (Yang et al., 2003) for every cache

miss. Still, the CDE presents advantages as compared

to this last solution. Indeed, the CDE does not require

the additional cycle operation, but more importantly

it does not present the memory management issues of

counter-mode AES architectures.

5 CONCLUSIONS

Virtualization of network functions onto stan-

dard servers creates potential confidentiality issues

when the infrastructure provider is either untrusted

or trusted but curious. Multi-tenancy adds a dimen-

sion of complexity to the confidentiality problem be-

cause an attack might actually come from software

deployed by other customers.

We have presented a solution enabling confiden-

tial processing of data and code in an untrusted envi-

ronment and shown that it keeps native performance

of the underlying hardware at the same time as guar-

anteeing high security levels. With our proposal, the

software TCB that an infrastructure provider must

provide is reduced to zero—we do not have to trust

a single line of code provided by the service provider.

What we do have to trust is the hardware manufac-

turer to accurately and reliably produce the necessary

hardware. Our less expensive realization using COTS

components requires us to place some extra trust in

the provider.

In the future, we plan to realize a working pro-

totype on FPGA, to get concrete overhead data, and

compare with other proposals. Also, a firmware-

based implementation of the TCU has to be investi-

gated, to provide upgradability of the cryptographic

algorithms in use.
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