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Abstract. Markowitz portfolios often result in an unsatisfying out-of-sample performance, due
to the presence of estimation errors in inputs parameters, and in extreme and unstable asset
weights, especially when the number of securities is large. Recently, it has been shown that
imposing a penalty on the 1-norm of the asset weights vector not only regularizes the problem,
thereby improving the out-of-sample performance, but also allows to automatically select a
subset of assets to invest in. Here, we propose a new, simple type of penalty that explicitly
considers financial information and consider several alternative non-convex penalties, that allow
to improve on the 1-norm penalization approach. Empirical results on U.S.-stock market data
support the validity of the proposed penalized least squares methods in selecting portfolios with
superior out-of-sample performance with respect to several state-of-art benchmarks.
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1 Introduction

The Markowitz mean-variance portfolio model [1] is the cornerstone of modern portfolio the-
ory. Given a set of assets with expected return vector µ and covariance matrix Σ, Markowitz’s
model aims to find the optimal asset weight vector that minimizes the portfolio variance, sub-
ject to the constraint that the portfolio exhibits a desired portfolio return. Since µ and Σ are
unknown, some estimates µ̂ and Σ̂ must be obtained from a finite sample of data to compute
the optimal asset allocation vector. As financial literature has largely shown, using sample es-
timates can hardly provide reliable out-of-sample asset allocations in practical implementations
[2],[3],[4],[5],[6]. [7], [8], [2], and [9] already provided strong empirical evidence that estimates of
the expected portfolio return and variance are very unreliable. Here, we focus on the minimum-
variance portfolio (MVP), which relies solely on the covariance structure and neglects the es-
timation of expected returns altogether [10],[11],[12],[13],[14],[15],[16]. Somewhat surprisingly,
MVPs are usually found to perform better out-of-sample than portfolios that consider asset
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2 Optimal Sparse Portfolios

means [17, 11, 6], because the (co)variances can be estimated more accurately than the means.
A superior performance also prevails when performance measures consider both portfolio means
and variances. Nevertheless, MVPs still suffer considerably from estimation errors [10],[11],[12].

One stream of research has recently focused on shrinking asset allocation weights by using
penalized least squares methods. Among the first contributors, [18] and [19] use `1-penalization
to obtain stable and sparse (i.e. with few active weights) portfolios, which is an adaptation of
the Least Absolute Shrinkage and Selection Operator (LASSO) by [20]. The LASSO relies on
imposing a constraint on the `1-norm the regression coefficients β ∈ RK , where `1 = |β1| +
... + |βK |. Recently, [14] provide both theoretical and empirical evidence supporting the use of
`1-penalization to identify sparse and stable portfolios by limiting the gross exposure, showing
that this causes no accumulation of estimation errors, the result of which is an outperformance
compared to standard Markowitz portfolios. Further examples of penalised methods applied in
the Markowitz framework are [21, 22, 23], and [15].

Despite the appeal of using `1-penalization in portfolio optimization to estimate (numerically
stable) asset weights and select the portfolio constituents in a single step by solving a convex
optimization problem, [24] show that the `1-penalty, as a linear function of absolute coefficients,
tends to produce biased estimates for large (absolute) coefficients. As a remedy, they suggest
using penalties that are singular at the origin, just like the `1-penalty, in order to promote
sparsity, but non-convex, in order to countervail bias. Ideally, a good penalty function should
result in an estimator with three properties: unbiasedness, sparsity, and continuity. Then, new
non-convex penalties such as the so-called Smoothly Clipped Absolute Deviation (SCAD) , the
Zhang-penalty, the Log-penalty and the `q-penalties with 0< q < 1 were introduced (e.g. see
[25] for a comparison). The seemingly nice properties of non-convex penalties come at the
cost of posing a difficult optimization challenge, which, however, can nowadays be solved quite
efficiently by using a dual-convex appraoch, as suggested by [25]. An alternative to non-convex
approaches, which can still retain the oracle property, has been suggested by [26]. His approach
is now known as the adaptive LASSO and has proven to be able to prevent bias while preserving
convexity of the optimization problem, and thus clearly alleviates the optimization challenge as
compared to the non-convex approaches.

This work contributes to the literature on portfolio regularization by proposing a new, simple
type of convex penalty, which is inspired by the adaptive LASSO and explicitly considers financial
information to optimally determine the portfolio composition. Moreover, we are the first to apply
non-convex penalties in the Markowitz framework to identify sparse and stable portfolios with
desiderable out-of-sample properties, when dealing with a large number of assets.

2 Penalized Approaches for Minimum Variance Portfolios

Given a set of K assets and a penalty function ρ(·), the regularized minimum-variance problem
can be stated as:

w∗ = argmin
w∈RK

{
w′Σw + λ

K∑
i=1

ρ(wi)

}
(1)

subject to 1′Kw = 1 , (2)

where w∗ is the optimal (and potentially sparse) (K×1)-vector of asset weights, 1K is a (K×1)-
vector of ones and λ is the regularization parameter that controls the intensity of the penalty and
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thereby the sparsity of the optimal portfolio. The optimization problem (1) can be re-written
as a penalized least square problem.

Assuming we estimate Σ by Σ̂ and we set λ=0, the solution to problem (1)-(2) is the MVP,
where the optimized portfolio weights vector w∗ is (over)fitted to the correlation structure in
Σ̂, thereby assuming absence of estimation error and unlimited trust in the precision of the
estimate Σ̂, which is obviously very naive. On the contrary, whenever λ> 0, the penalty term∑K

i=1 ρ(wi) will allow to control for the estimation error by selecting only few active weights.
The larger λ, the smaller the number of active weights and the total amount of shorting. The
optimal solution w∗ is thus determined by a trade-off between the estimated portfolio risk and
the corresponding penalty term, whose magnitude is controlled by λ.

In this work, we focus on penalty functions ρ(·) that are singular at the origin and thus allow
a shrinkage of the components in w to exactly zero. Hence, the corresponding approaches not
only stabilize the problem to improve the out-of-sample performance, but simultaneously also
conduct the asset selection step. Table 1 reports the definition of the six penalties functions we
consider.

The Least Absolute Shrinkage and Selection Operator (LASSO) has already received consid-
erable attention in the portfolio optimization context and therefore we choose it as a benchmark
to test the validity of the newly proposed approaches. Due to the budget constraint, the mini-
mum value that ||w||1 can be shrunk to is one. This is possible only when the portfolio weights
are shrunk towards zero until they are all non-negative, identifying the so-called no-shortsale
portfolio. Increasing values of λ cause the construction of portfolios with less shorting, or more
precisely, with a shrunken `1-norm of the portfolio weight vector. This prevents the estimation
errors contained in Σ̂ from entering unhindered in the portfolio weight vector. Note that while
the intensity of shrinkage is controlled by the value of λ, the decision as to which assets to shrink
and to which relative extent is determined by the estimated correlation structure.

The weighted Lasso approach, henceforth w8Las, was proposed in its statistical formulation
by [26] to countervail the difficulties of the LASSO that are related to potentially biased esti-
mates of large true coefficients [24]. The idea is to replace the equal penalty that is applied
to all coefficients (here portfolio weights) with a penalization-scheme that can vary among the
K portfolio weights. This can be achieved by introducing a weight ωi for each of the absolute
portfolio weights |wi|. In general, the intuition is to over- or underweight some assets in com-
parison to the LASSO in order to improve performance. Specifically, this intuition depends on
the method used to determine the ωi, for which no “blueprint” exists in a portfolio optimiza-
tion context. We suggest determining the (individual) regularization weights λi by considering
specific financial time series properties that are ignored when many, e.g. T = 250, historical
observations are used to estimate one (constant) covariance matrix. In particular, we focus on
comparing short-term and log-term estimates of the volatilities to extract some signals, such
that if the short term volatility is below the long-term volatility estimate, a smaller penalty
λi is applied and, consequently, a larger portfolio weight in comparison to the LASSO. Due to
space limitations, we refer to [27] for a detailed description of the implementation of the w8Las
penalty.

While LASSO and w8Las are convex penalties, as Figure 1 shows, the remaining four penal-
ties (i.e. SCAD, Zhang, Log and `q with 0 < q < 1) are non-convex and allow to deal with
the potentially biased LASSO estimates of large absolute coefficients. The economic intuition
behind the non-convex penalties is as follows: if the true correlation of assets is high, shorting
can reduce the risk, since it accounts for true similarities of the assets instead of being the result
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4 Optimal Sparse Portfolios

Table 1: Penalties

penalty λρ(wi) domains

LASSO = λ|wi| all

w8Las = λωi|wi| all

SCAD =


λ|wi|
−|wi|2+2aλ|wi|−λ2

2(a−1)
(a+1)λ2

2

|wi| ≤ λ
λ < |wi| ≤ aλ

aλ < |wi|

Zhang =

{
λ|wi|
λη

|wi| < η
η ≤ |wi|

Lq = λ|wi|q , 0<q<1 all

Log =
λln(|wi|+φ)
−λln(φ)

all
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Figure 1: The six (non-)convex penalty functions under consideration in this work.
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Table 2: U.S. stock market datasets for the period 23.08.02 to 27.03.08

dataset source obs K r̄ σ̂ Ŝ K̂

S&P200: largest firms (w.r.t. ME) Datastream 1401 200 6.57 14.79 0.0487 5.32
S&P500: largest firms (w.r.t. ME) Datastream 1401 500 6.57 14.77 0.0410 5.13
S&P1036: largest firms (w.r.t. ME) Datastream 1401 1036 6.39 14.88 0.0380 4.99

Table 2 reports the datasets under consideration, the source of the data, the number of assets (K), and the
number of observations (obs) in each dataset. For the S&P datasets, value weighted indices are computed whose

return distributions are characterized by the mean p.a. r̄, the standard deviation p.a. (σ̂), the skewness (Ŝ),

and the kurtosis (K̂) given in the last four columns. The S&P indices are market value weighted. The weighting
schemes are updated daily and applied the following day.

of overfitting. Analogously, large portfolio weights tend to be appropriate if the true correla-
tions are small. Now, if a correlation structure is “strong enough” to grow absolute portfolio
weights – against the counteracting penalty – large enough, it is considered reliable and should
therefore enter the portfolio to a greater extend. The main differences between them, as pointed
out by Figure 1 is on the intensity on penalizing the different asset weights. The `q- and the
Log-penalty provide a particularly strong incentive to avoid small and presumably dispensable
positions in favor of selecting a small subset of presumably indispensable assets. This tendency
to construct very sparse and less diversified portfolios coincides with the suggestion of [28] to
use the `q-norm as a diversity measure for portfolios.

3 Empirical Analysis

Data and Experimental Set-Up

We consider daily observations of five different datasets shown in Table 2 that represent the U.S.
stock market at different levels of aggregation. Datasets are characterized by a different number
of constituents, which include the 200, 500, and 1036 largest individual firms (with respect to
the market value on March 27, 2008) of the S&P 1500, which we label as large datasets. We
refer to [27] for results also on the 48 industry portfolios and the 98 firm portfolios provided by
Kenneth French, which could be considered as small dataset.

We backtest the out-of-sample performance of the proposed methods with a moving time
window procedure, where τ = 250 in-sample observations (corresponding to one year of market
data) are used to form a portfolio. The optimized portfolio allocations are then kept unchanged
for the subsequent 21 trading days (corresponding to one month of market data) and the out-
of-sample returns are recorded. After holding the portfolios unchanged for one month, the time
window is moved forward, so that the formerly out-of-sample days become part of the in-sample
window and the oldest observations drop out. The updated in-sample window is then used to
form a new portfolio, according to which the funds are reallocated. The T = 1401 observations
allow for the construction of Γ=54 portfolios with the corresponding out-of-sample returns.

Table 3 shows the different measures we use to evaluate the out-of-sample performance and
the composition of the portfolios, where F−1

r (p) is the value of the inverse cumulated empirical
distribution function of the daily out-of-sample returns at point p.
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6 Optimal Sparse Portfolios

Table 3: Portfolio evaluation measures

Measures based on the out-of-sample portfolio returns

Portfolio variance (s2) Sharpe ratio (SR) 95% Value-at-Risk (VaR)
1

T−τ−1

∑T
t=τ+1(rt − r̄)2 r̄√

s2
|F−1
r (0.05)|

Measures based on the portfolio composition

No. active positions (No. act.) Shorting (Short) Turnover (TO)

1
Γ

∑Γ
γ=1 |{i | wi,γ 6= 0 ∀ i}| 1

Γ

∑
j={i | wi,γ<0 ∀ i}−wj,γ

1
Γ−1

∑Γ
γ=2

∑K
i=1

∣∣∣∣wi,γ − wi,γ−1

∣∣∣∣

For comparative evaluations, we also implement the following standard benchmarks: (i)
the shortsale-unconstrained MVP, denoted MVPssu, the shortsale-constrained MVP, denoted
MVPssc, the market value weighted portfolio, denoted mvw, and the equally weighted portfolio,
denoted 1oK.

To determine the optimal minimum variance portfolio, we choose to focus on three types of
frequently used covariance matrix estimators: (i) the sample estimator, (ii) a three-factor model
estimator [10] and (iii) the Ledoit-Wolf estimator [12]. However, we report in the following
results related to the three-factor model and refer the reader to [27] for a complete empirical
analysis.

Determining the Regularization Parameter

Prior to optimizing problem formulation (1)-(2) for any of the six penalization approaches, a
value of the regularization parameter λ must be chosen. Since the optimal values λ∗ for the
various penalties are unknown, we try for each approach a set of 30 ascending values starting
from zero. The largest element in each set is chosen such that the resulting portfolios exhibit
only few active positions and a high out-of-sample portfolio variance. In this manner, it is most
likely that the intervals spanned by zero and the largest regularization parameters cover λ∗.

Each of the 30 regularization parameters corresponds to one specific (optimized) portfolio,
which demands a decision about in which one to eventually invest. This difficult decision is the
reason we split the empirical experiments into two setups: (i) we keep track of all 30 portfolios
that correspond to the entire spectrum of 30 regularization parameters over all periods; (ii) we
invest in only one portfolio by applying ten-fold cross-validation to choose a suited value of
λ prior to the investment decision in each period. While procedure (ii) is more realistic from
an investment perspective,1 procedure (i) provides valuable insights into the potential benefit
of regularization and how different values of λ affect the portfolio performance. However, due
to space limitations, we refer the reader to [27] for results related to the entire spectrum of
regularization parameters and we focus in the next section on results related to the cross-
validation procedure.

1The cross-validation procedure is as follows: 21 observations are randomly picked from the in-sample data,
portfolios are optimized on the remaining 229 observations for all 30 regularization parameters, and the portfolio
variance is computed using the 21 picked observations. This is done ten times and the λ is chosen that corresponds
to smallest average portfolio variance.
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Table 4: Three-factor model covariance matrix (cross-validation experiment)

MVPssu MVPssc mvw 1oK∗∗ Lasso∗ w8Las∗ Log∗∗ `q
∗∗ Zhang∗ SCAD∗∗

Panel A: S&P 200 individual firms

s2 · 105 3.007∗∗∗ 3.162∗∗∗ 6.023∗∗∗ 6.524∗∗∗ 2.843∗∗∗ 2.808∗∗∗ 3.017∗∗∗ 3.009∗∗∗ 2.777∗∗∗ 2.942∗∗∗

VaR·102 0.885∗∗∗ 0.898∗∗∗ 1.312∗∗∗ 1.348∗∗∗ 0.828∗∗∗ 0.824∗∗∗ 0.893∗∗∗ 0.916∗∗∗ 0.843∗∗∗ 0.881∗∗∗

SR 0.054∗∗∗ 0.062∗∗∗ 0.018∗∗∗ 0.050∗∗∗ 0.049∗∗∗ 0.050∗∗∗ 0.054∗∗∗ 0.048∗∗∗ 0.049∗∗∗ 0.054∗∗∗

No. act. 200.0∗∗∗ 54.9∗∗∗ 200.0∗∗∗ 200.0∗∗∗ 82.6∗∗∗ 91.1∗∗∗ 66.1∗∗∗ 65.6∗∗∗ 93.9∗∗∗ 64.8∗∗∗

Short 0.75∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.26∗∗∗ 0.29∗∗∗ 0.38∗∗∗ 0.38∗∗∗ 0.32∗∗∗ 0.39∗∗∗

TO 0.57∗∗∗ 0.52∗∗∗ 0.04∗∗∗ 0.00∗∗∗ 0.59∗∗∗ 0.68∗∗∗ 0.96∗∗∗ 0.98∗∗∗ 0.73∗∗∗ 0.90∗∗∗

Panel B: S&P 500 individual firms

s2 · 105 2.883∗∗∗ 3.796∗∗∗ 6.081∗∗∗ 6.799∗∗∗ 2.529∗∗∗ 2.495∗∗∗ 2.617∗∗∗ 2.601∗∗∗ 2.538∗∗∗ 2.643∗∗∗

VaR·102 0.923∗∗∗ 1.071∗∗∗ 1.335∗∗∗ 1.385∗∗∗ 0.834∗∗∗ 0.835∗∗∗ 0.794∗∗∗ 0.814∗∗∗ 0.847∗∗∗ 0.842∗∗∗

SR 0.031∗∗∗ 0.042∗∗∗ 0.018∗∗∗ 0.045∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.049∗∗∗ 0.042∗∗∗ 0.036∗∗∗

No. act. 500.0∗∗∗ 278.6∗∗∗ 500.0∗∗∗ 500.0∗∗∗ 131.9∗∗∗ 147.6∗∗∗ 102.8∗∗∗ 108.1∗∗∗ 151.6∗∗∗ 101.0∗∗∗

Short 0.83∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.20∗∗∗ 0.24∗∗∗ 0.33∗∗∗ 0.35∗∗∗ 0.24∗∗∗ 0.33∗∗∗

TO 0.61∗∗∗ 0.22∗∗∗ 0.04∗∗∗ 0.00∗∗∗ 0.69∗∗∗ 0.75∗∗∗ 1.11∗∗∗ 1.04∗∗∗ 0.80∗∗∗ 1.09∗∗∗

Panel C: S&P 1036 individual firms

s2 · 105 2.649∗∗∗ 4.593∗∗∗ 6.254∗∗∗ 9.001∗∗∗ 2.382∗∗∗ 2.379∗∗∗ 2.343∗∗∗ 2.356∗∗∗ 2.485∗∗∗ 2.369∗∗∗

VaR·102 0.833∗∗∗ 1.166∗∗∗ 1.352∗∗∗ 1.566∗∗∗ 0.802∗∗∗ 0.792∗∗∗ 0.775∗∗∗ 0.789∗∗∗ 0.819∗∗∗ 0.754∗∗∗

SR 0.031∗∗∗ 0.031∗∗∗ 0.016∗∗∗ 0.028∗∗∗ 0.054∗∗∗ 0.050∗∗∗ 0.041∗∗∗ 0.045∗∗∗ 0.050∗∗∗ 0.044∗∗∗

No. act. 1036.0∗ 572.4∗ 1036.0∗ 1036.0∗ 276.7∗ 308.3∗ 179.6∗ 153.8∗ 298.7∗ 161.3∗

Short 0.84∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.26∗∗∗ 0.30∗∗∗ 0.33∗∗∗ 0.31∗∗∗ 0.28∗∗∗ 0.31∗∗∗

TO 0.65∗∗∗ 0.22∗∗∗ 0.04∗∗∗ 0.00∗∗∗ 0.84∗∗∗ 0.89∗∗∗ 1.30∗∗∗ 1.13∗∗∗ 0.87∗∗∗ 1.26∗∗∗

Table 4 shows results of the four benchmarks and the six regularization approaches for the three large datasets
and the three-factor model covariance matrix.

Empirical Results

Table 4 shows that the cross-validation approach works well for the considered large datasets.
The out-of-sample variances of the penalized approaches are always lower than the constraned
minimum variance approach (MVPssc) and the equally weighted (mvw) and often also than the
unconstrained minimum variance portfolio (MVPssu). This shows that the possibility of having
a stronger shrinkage in some periods but not in others is beneficial. The only exception is for
the S&P 200 dataset in Panel A, where the Log- and the `q-regularized portfolios exhibit even
higher risks than the MVPssu. However, this fits the picture that the non-convex approaches
perform the better the larger the number of constituents compared to the number of observations,
which corresponds to a window size of 250. The w8Las reaches the smallest variance for both
S&P200 and S&P500, while the Log-penalty outperforms for S&P1036. In terms of Sharpe
Ratio, the equally weighted portfolio is a tough benchmark, especially for S&P500, where only
the `q-penalty allows to reach a slightly larger value by using just an average subset of 108.1
active components. Lasso, w8Las and Zhang penalty reach the largest Sharpe Ratios values for
S&P1036, while still investing in an average number of assets much larger than the Log, `q and
SCAD penalties. Clearly, as the non-convex penalties lead often to sparser solutions than other
methods, they end up paying a price in terms of turnover rates and identify optimal portfolios
with larger shorting amounts, while the extreme risks, as captured by VaR and ES, are still
often smaller than the MVPssu, MVPssc and Mvw portfolios.
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4 Conclusions

Introducing a penalty in the Markowitz minimum variance framework can allow to determine
optimal portfolios that better control for estimation error and have superior out-of-sample per-
formances than the unconstrained approach and the equally weighted benchmark. In particular,
we propose a new type of a (convex) penalty whose construction allows for easy processing of
all kinds of signals to optimized portfolios, may they be gained from (time series) econometrics,
fundamental or technical analysis, or expert knowledge. Moreover, we consider four non-convex
penalty functions that have not yet been examined in a portfolio optimization context. It turned
out that these approaches perform very well when dealing with very large datasets, where they
not only outperformed standard benchmarks but also the (convex) “state-of-the-art” LASSO
approach. The success of these approaches stems from their ability to maintain relevant as-
sets in the portfolio with large absolute weights, while only the weights of the remaining assets
are shrunk. This allows for a better exploitation of the higher potential to diversify portfolio
risk in larger datasets. Further research aims to further develop the underlying signal extraction
that could be operationalized in the w8Las approach and investigate alternative cross-validation
criteria, which likely will allow for a further improvement of the results.
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