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Abstract— In this paper we propose a novel approach for
estimating narrowband components from bioelectrical signals.
The approach is based on the notion of modulated quadratic
variation, introduced as a measure of variability for narrow-
band signals. The algorithm is the closed-form solution to a
constrained convex optimization problem, where narrowband
components are estimated tracking the slow variations around
a central frequency in the measured signal. The approach is
general and can be applied to any bioelectrical signal, either
for diagnostic or denoising purposes. In this paper we assess
its performance on ECG and EMG signals. Numerical results
show its effectiveness in removing narrowband artifacts, such
as power-line interference, while preserving signal morphology.
It greatly outperforms conventional notch filtering. Moreover,
it is also very fast, as its computational complexity is linear in
the size of the vector to process.

I. INTRODUCTION

Bioelectrical signals are highly susceptible to electromag-
netic interferences and can be contaminated by several kinds
of noise and artifacts. In particular, power-line interference
is ubiquitous in clinical environment. It is caused by supply
plugs and cables, and sometimes can mask the real signal, es-
pecially those portions having low amplitude, such as late or
evoked potentials in the case of electrocardiograms (ECGs)
or electroencephalograms (EEGs), respectively [1]. Although
various precautions can be taken (such as selection of a
recording location with few surrounding electrical devices or
appropriate shielding and grounding) and modern biomedical
amplifiers have a very high common mode rejection ratio,
recordings are often contaminated by residual power-line
interference [1]–[5]. Thus, power-line interference rejection
is an unavoidable step in any preprocessing of bioelectrical
signals before clinical interpretation.

Quite a few solutions have been proposed in the literature
addressing this problem. Most of them have been devised
for ECG signals and, then, applied to suppress power-line
noise from other bioelectrical signals [1], [3]. The standard
approach involves the use of linear time-invariant notch
filters [1], [5]–[7]. However, power-line amplitude and phase
are time-varying. This makes classical approaches based on
linear filtering ineffective, since they are unable to track slow
variations around the fundamental 50/60Hz and its harmon-
ics. This causes a spread of its spectrum around 50/60Hz.
Moreover, power-line interference is an in-band noise for
any bioelectrical signal. Thus, on the one hand, the stopband
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of notch filters should be as narrow as possible in order to
minimize distortions in the filtered signal; on the other hand,
a narrow stopband leads to ineffective filtering of power-line
interference. To tackle this problem, adaptive filtering [8]–
[13] and other techniques [2] have been proposed.

In this paper we propose a novel approach to the esti-
mation of narrowband components of bioelectrical signals,
which is based on the notion of modulated quadratic varia-
tion. This is a suitable measure of variability for narrowband
signals around a given frequency. The algorithm is the
closed-form solution to a constrained convex optimization
problem that exploits the modulated quadratic variation to
track the slowly varying components around the central
frequency. The approach is general and can be applied to
estimate narrowband components of any bioelectrical signal,
either for denoising or diagnostic purposes. Numerical results
on ECG and electromyographic (EMG) signals highlight the
effectiveness of the approach. Finally, the algorithm is also
very fast, as its computational complexity is linear in the
size of the vector to process. This makes it suitable for
real-time applications as well for applications on devices
with reduced computational complexity, such as handheld
devices. Moreover, it allows processing of long recordings
from Holter monitors.

II. RATIONALE AND METHOD

We consider sampled signals, so we will refer to the
frequency f considering the corresponding normalized fre-
quency f̂ = f/Fs, where Fs is the sampling rate. Nar-
rowband components around a generic frequency f̂ are
characterized by the fact that their “variability” relative to
the harmonic at f̂ is lower than the corresponding “variabil-
ity” of the measured bioelectric signal. Thus, provided that
we introduce a suitable measure of “variability” around f̂ ,
narrowband components can be estimated searching for the
signal closest, in some sense, to the measured signal, but
exhibiting reduced variability. In this regard, we introduce
the modulated quadratic variation (MQV) to measure the
variability of a generic (complex) vector around a (normal-
ized) central frequency f̂ .

Definition 1: Given a vector z = [z1 · · · zn]T ∈ Cn, the
modulated quadratic variation of z around f̂ ∈ (−0.5, 0.5)
is defined as

[z]f̂
.
=

n−1∑
k=1

∣∣∣zk − zk+1e
−j2πf̂

∣∣∣2 (1)

and is denoted by [z]f̂ .
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It is worth noting that the MQV generalizes the concept of
quadratic variation, which is defined in [14] as a measure of
variability for real vectors, and is used to effectively extract
slowly varying components from bioelectrical signals (e.g.,
baseline wander from ECG recordings). Indeed, when z is
real and f̂ = 0, (1) reduces to the quadratic variation. It is
possible to prove that the definition (1) is well posed and the
MQV is a consistent measure of variability for narrowband
signals around the central frequency f̂ .

Introducing the (n− 1)× n matrix F with entries

Fhk =


1 k = h

−e−j2πf̂ k = h+ 1

0 otherwise
(2)

the MQV of z can be equivalently expressed as

[z]f̂ = zHFHFz = ‖Fz‖2 (3)

where (·)H denotes the conjugate transpose and ‖·‖ is the
Euclidean norm for complex vectors.

Let q be the vector collecting n samples of a measured
signal and denote by z the vector of estimated narrowband
components around f̂ . These components can be estimated
searching for the signal components that, with respect to
the measured signal q, have reduced variability relative to
f̂ . This amounts to searching for the components that are
“close” to the observed signal, but have reduced MQV
around f̂ . Measuring closeness in terms of the l2 norm, we
propose to estimate the narrowband components of q around
f̂ by solving the following convex optimization problem{

minimize
z∈Cn

‖z − q‖2

subject to [z]f̂ ≤ ρ
(4)

where ρ is a nonnegative constant that controls the MQV
of the estimated components. Its value is chosen in accor-
dance with the peculiarity of the problem and should satisfy
ρ< [q]f̂ , to avoid trivial1 solutions. Note that we do not
need to know in advance the appropriate value for ρ in
any particular problem. In fact, the solution of (4) can be
expressed in terms of a parameter that is related to ρ. In
this way, narrowband components can be estimated without
caring about ρ, by parametrically reducing the MQV of the
solution z to the desired level.

The solution of (4) is given by

z =
(
I + λFHF

)−1
q (5)

where I denotes the n × n identity matrix, and λ is a
nonnegative parameter in one-to-one correspondence with ρ.
In (5) the matrix inverse exists for any λ ≥ 0, since FHF
is positive semidefinite. It is interesting that the solution
to (4) is a linear operator acting on q. The parameter λ
controls the MQV of the solution z, i.e., the degree of
variability of the estimated narrowband components. Note
that z ∈ Cn even though q ∈ Rn, as a consequence of

1When ρ ≥ [q] the solution z = q coincides with the measured signal.
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Fig. 1. Real reference ECG (q0, black) corrupted with narrowband artifacts
centered at 30Hz, 60Hz, and 120Hz (red), with SIR0 = 0 dB.
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Fig. 2. Denoised ECG (red) superimposed on the reference ECG (black).

the fact that (5) returns the narrowband components around
f̂ , where f̂ ∈ (−0.5, 0.5). Real signals have symmetric
spectrum and narrowband components are both at f̂ and −f̂ .
Thus, considering both the contributions around f̂ and -f̂ ,
it is possible to prove that to estimate the (real) narrowband
components of q ∈ Rn around

∣∣f̂ ∣∣, denoted by qf̂ ∈ Rn, the
following formula applies

qf̂ = 2Re {z}

where z is given by (5).
Finally, some remarks on computational issues. Since

I + λFHF is Hermitian, positive-definite, tridiagonal, (5)
can be computed very efficiently with complexity O(n)
[15], i.e., linear in the size of the vector q. Moreover,
complexity does not depend on the nature of the signal to be
processed. To give an idea of the performance, an efficient
implementation of (5) in MATLAB (ver. 8.3), running over a
PC equipped with a 2.6 GHz Core i5 processor, takes about
0.62 s to process a record of 107 double precision floating
point samples. This property makes the proposed approach
suitable for real-time applications as well as for applications
on devices with reduced computing power, e.g., handheld
devices.

III. SIMULATION RESULTS

The performance of the proposed approach has been
investigated on real ECG and EMG signals corrupted by
synthetic narrowband artifacts.

As regards ECG signals, we considered the ECG record
s0306lrem from the PTB Diagnostic ECG Database [16] of
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Fig. 3. Average SIR gain GSIR versus input SIR on ECG signals:
comparison between the proposed approach and a cascade of notch filters.

PhysioNet [17]. It was sampled at 1 kHz with 16-bit resolu-
tion and has been used as a reference in our simulations since
it has negligible harmonic components at 60Hz and multi-
ples. This reference signal, denoted by q0, was corrupted by
narrowband artifacts generated as sine waves having time-
varying amplitude, centered at 30Hz, 60Hz, and 120Hz:
they model a generic in-band artifact and the first and second
harmonics of power-line interference, respectively. Time-
varying amplitudes were rendered by low-pass filtering three
independent realizations of white Gaussian noise with cut-off
frequency 2Hz. Mean values and standard deviations of the
three realizations are in the ratio µ60/µ30 = σ60/σ30 = 2
and µ60/µ120 = σ60/σ120 = 3, where the subscript indicates
the central frequency of the artifacts. The resulting corrupted
signal is denoted by q = q0 + d, where d is the sum of the
three harmonic components, and has a signal-to-interference
ratio (SIR) SIR0 = 10 log ‖q0‖

2

‖d‖2 = 0 dB. A portion of the
corrupted signal q is reported (red) in Fig. 1 together with
the reference record q0 (black).

In Fig. 2 we show the ECG signal (red) after artifact
rejection using the proposed approach, denoted by x, super-
imposed on the reference ECG q0 (black). The parameter
λ was roughly set to 108 without any optimization. As
the figure highlights, the proposed approach effectively sup-
presses narrowband artifacts, without introducing noticeable
distortion in the ECG morphology.

Performance is measured in terms of SIR gain

GSIR = SIRs − SIR0 = 10 log
‖d‖2

‖x− q0‖
2 (6)

where SIRs = 10 log ‖q0‖
2

‖x−q0‖2
is the signal-to-interference

ratio after artifact suppression. By (x− q0) we regard as
noise affecting x both the residual interference and the
reconstruction error. Regarding the signals in Fig. 2, the
proposed approach achieves an improvement of about 26 dB,
over an initial SIR as low as 0 dB. In the same setting, a
cascade of three IIR notch filters with attenuations 26 dB,
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Fig. 4. Real reference EMG (q0, black) corrupted with narrowband artifacts
centered at 60Hz, 120Hz, and 180Hz (red), with SIR0 = −5 dB.
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Fig. 5. Denoised EMG (red) superimposed on the reference EMG (black).

54 dB and 54 dB, respectively, at the central frequencies of
the interference achieves an improvement of only 20 dB.

In order to evaluate how gain varies as input SIR changes,
in Fig. 3 we report the average SIR gain versus input SIR,
when the reference ECG q0 is corrupted by narrowband
artifacts with SIR ranging from −20 dB to 20 dB. For each
input SIR we averaged the gain GSIR over 30 realizations of
artifact. The parameter λ was set as the one that entails the
minimum of (6) for each noise realization. This choice is mo-
tivated by the need to determine the limit performance of the
proposed algorithm. However, it can be shown that the choice
of λ is not a critical issue. As Fig. 3 highlights, the proposed
algorithm is very effective in suppressing narrowband arti-
facts in ECG signals and achieves considerable gain over the
whole range of input SIR. It is worth noting that the approach
based on MQV reduction is able to reject both out-of-band
and in-band noise. In this regard, notch filtering cannot reject
in-band noise without altering the signal. In particular, it
introduces ringing artifacts at the offset of QRS complexes
[1]. For comparison, we report in Fig. 3 the average SIR gain
achieved by the cascade of notch filters considered above. As
the figure highlights, the proposed algorithm is very effective
in suppressing narrowband artifacts and greatly outperforms
notch filtering for all values of input SIR.

As regards EMG signals, we considered an EMG recorded
from a 44 years old man without history of neuromuscular
disease [17]. The record was sampled at 4 kHz and high-
pass filtered with cut-off frequency 20Hz. It does not present
noticeable power-line interference, and we used it as a
reference, denoted by q0. It was corrupted by narrowband
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Fig. 6. Average SIR gain GSIR versus input SIR on EMG signals:
comparison between the proposed approach and a cascade of notch filters.

artifacts generated as sine waves having time-varying am-
plitude, centered at 60Hz, 120Hz and 180Hz, modeling
the first three harmonics of power-line noise. Time-varying
amplitudes were generated as described above in the case
of ECG. Mean values and standard deviations of the three
realizations of noise are in the ratio µ60/µ120 = σ60/σ120 =
2 and µ60/µ180 = σ60/σ180 = 3. In Fig. 4 we show a
portion of the reference q0 (black) and the corresponding
corrupted record (red). It is heavily affected by artifacts and
exhibits SIR0 = −5 dB. The result of artifacts rejection
by means of MQV reduction (red) is reported in Fig. 5,
together with the reference EMG. The parameter λ was
roughly set to 108, as in the case of ECG. The gain GSIR
achieved by the proposed approach is 32 dB and, as Fig. 5
shows, the original waveform is restored without noticeable
distortion. In the same setting, a cascade of three IIR notch
filters with attenuations 15 dB, 15 dB and 23 dB at the central
frequencies of the interference returns a gain GSIR = 17 dB,
which is 15 dB less than the proposed approach.

Finally, we computed the average SIR gain versus input
SIR, when the reference EMG is corrupted by narrowband
artifacts with SIR ranging from −20 dB to 20 dB. Results
are shown in Fig. 6 in comparison with the cascade of
notch filters considered above. Gains are averaged over
30 realizations of artifact. The figure confirms the effec-
tiveness of the approach, which achieves remarkable gain
in comparison with the cascade of notch filters, over the
whole range of input SIR. The improvement exceeds 14 dB.
Moreover, considering separately all realizations of artifact
(30 realizations for each of the 9 input SIRs, for a total of
270 independent realizations), the minimum improvement of
the proposed algorithm over notch filtering exceeds 12 dB in
all cases, which is notable.

IV. CONCLUSIONS

In this paper we propose a novel approach for estimat-
ing narrowband components from bioelectrical signals. The
approach is based on the notion of modulated quadratic

variation, which is introduced as a consistent measure of
variability for narrowband signals. The algorithm is the
closed-form solution to a constrained convex optimization
problem that exploits the modulated quadratic variation
to track the slowly varying components around a
given central frequency. The approach is general and can be
applied to any bioelectrical signal, either for denoising or di-
agnostic purposes. Here we assess the performance on ECG
and EMG signals. Results confirm the effectiveness of the
approach and highlight its ability in removing narrowband
artifacts while preserving signal morphology. Moreover, it is
very fast, even on long recordings, thus being well suited for
real-time applications and implementation on devices with
reduced computational power, such as handheld devices.
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