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Purpose of review

The systematic analysis of the major candidate genes in autosomal dominant hypercholesterolemia (ADH)
and the use of next-generation sequencing (NGS) technology have made possible the discovery of several
rare gene variants whose pathogenic effect in most cases remains poorly defined.

Recent findings

One major advance in the field has been the adoption of a set of international guidelines for the
assignment of pathogenicity to low-density lipoprotein receptor (LDLR) gene variants based on the use of
softwares, complemented with data available from literature and public databases. The clinical impact of
several novel rare variants in LDLR, APOB, PCSK9, APOE genes have been reported in large studies
describing patients with ADH found to be homozygotes/compound heterozygotes, double heterozygotes,
or simple heterozygotes. In-vitro functional studies have been conducted to clarify the effect of some rare
ApoB variants on LDL binding to LDLR and the impact of a rare ApoE variant on the uptake of VLDL and
LDL by hepatocytes.

Summary

The update of the ADH gene variants database and the classification of variants in categories of
pathogenicity is a major advance in the understanding the pathophysiology of ADH and in the
management of this disorder. The studies of molecularly characterized patients with ADH have emphasized
the impact of a specific variant and the variable clinical expression of different genotypes. The functional
studies of some variants have increased our understanding of the molecular bases of some forms of ADH.
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INTRODUCTION

Autosomal dominant hypercholesterolemia
(ADH) is a monogenic disorder characterized phe-
notypically by isolated high levels of LDL. Rare
variants in the low-density lipoprotein receptor
(LDLR), APOB, and PCSK9 genes are well known
causes of the disease. Ex-vivo studies (using fibro-
blasts or lymphocytes) and in-vitro expression
assays are the preferred methods to assess the
pathogenic nature of rare gene variants of
unknown functionality identified in patients with
ADH. However, these studies have been performed
only in a small number of variants, as they are
costly, time-consuming, and require a specific
expertise not usually available in most molecular
diagnostic settings. Therefore, web-based tools
(also referred to as in-silico analysis) predicting
the effect on LDLR activity, ApoB100 binding prop-
erties, and PCSK9 functionality are frequently
used to determine whether or not a variant is
pathogenic. In the following sections we review
ht © 2017 Wolters Kluwe
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some recent studies, which focused on the assign-
ment of pathogenicity of rare variants in ADH
causing genes.
Classification of pathogenicity of LDLR
variants in ADH

ADH is, in most cases, because of variants in
the LDLR gene. The number of these variants has
r Health, Inc. All rights reserved.
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KEY POINTS

� Rare genetic variants have been reported in patients
with ADH which might impact on plasma LDL through a
variety of genetic mechanisms including loss or gain of
protein function.

� In most cases, the pathogenic impact of these variants
is mostly predicted on the bases of ‘in-silico’ analysis,
complemented with clinical data and co-segregation
analysis in families.

� In-vitro functional studies are of paramount importance
to properly define the mechanisms of the pathogenic
effect of rare variants.

Lipid metabolism
steadily increased and the UCL-LDLR database
started in 1997 (http://www.LOVD.nl/LDLR)
includes at present more than 1700 variants. One
of the major problems concerning these variants is
to establish whether they are pathogenic. In 2013,
the Association of Clinical Genetic Scientists
(ACGS) published guidelines for the classification
of novel variants, based on in-silico prediction [1].
ACGS identified five categories for the classification
of variants: categories 1 and 2 including variants
clearly not or unlikely pathogenic, respectively;
category 3 including variants of unknown signifi-
cance (VUS), and categories 4 and 5 representing
variants likely or clearly pathogenic, respectively.
Recently, the UCL group updated the UCL variant
database and classified the annotated variants
according to ACGS guidelines [2

&&

]. Nonsense sub-
stitutions, frame-shifting, small and large re-
arrangements were not subjected to in-silico
analyses, as they are accepted to be pathogenic/
likely pathogenic (categories 4 and 5). The pre-
dicted effects of missense variants were assessed
using open access software packages (e.g. Poly-
Phen-2, SIFT, Mutation Taster); the effect of
intronic and synonymous variants on splicing
was established using two softwares which give
predictive score for splice acceptor and donor
sequence for wild-type and variant sequences
[2

&&

]. In all these cases, the concordant prediction
of in silico tools was used to assign pathogenicity.
The pathogenic impact of promoter and 50 UTR
variants had been reviewed in a previous study of
the UCL group [3

&

].
Pathogenicity scores were assigned also by tak-

ing into account the family segregation of the var-
iant, the presence of the variant in other patients
with ADH and its absence or very low frequency in
sequence databases (e.g. the 1000 Genomes 2 and
Exome Aggregation Consortium (ExAC), and its
functional impact in vitro.
 Copyright © 2017 Wolters Kluwer 
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The updated UCL-LDLR database (http://
www.LOVD.nl/LDLR) [2

&&

] contains 1595 LDLR var-
iants which have been assigned to an ACGS patho-
genic category. Eighty-two percentage of these
(n¼1317) have been assigned to category 4 or 5,
whereas 7% (n¼112) were considered as VUS. At
present the number of functionally validated LDLR
variants is very low. For example out of 795 missense
variants annotated in the database only 75 (9%) had
been functionally characterized [2

&&

]. However, a
recent survey conducted by Bourbon et al. [4]
showed that less than 15% of 1891 variants,
reported in databases or found in recent literature
as the cause of ADH, have any kind of functional
evidence for being classified as a disease causing
mutations. However, the observation that the in-
silico predictions matched in-vitro evidence in 63/
73 missense variants [2

&&

] supports the value of the
‘in-silico’ approach as a starting point for assigning a
pathogenicity score in a disorder like ADH caused by
a large number of LDLR variants, whose in-vitro
functional characterization would require an extra-
ordinary effort, difficult to envisage at this stage.
Needless to say that development of new in-silico
tools and the more information emerging from in-
vitro functional studies and genomic surveys will
improve the assignment of pathogenicity of those
variants presently included in the ‘VUS limbo’.

With regard to in-vitro studies, a relevant con-
tribution to the understanding the pathogenic
impact of some rare LDLR variants frequently
observed in some cohorts of patients with ADH
was given by Etxebarria et al. [5

&

]. These authors
investigated seven variants located in various
domains of LDLR protein: p.(Cys155Tyr) in ligand
binding domain; p.(Arg416Trp), p.(Thr454Asn),
p.(Trp577Gly), and p.(Ile624del) in b-propeller
domain; p.(Asn825Lys) in FxNPxY motif and
p.(Phe800Glyfs�129) in cytoplasmic tail. Prelimi-
nary in-silico analysis had indicated that all variants
with the exception of p.(Thr454Asn) were classified
as pathogenic. Each variant was expressed in LDLR-
deficient Chinese Hamster ovary cells (CHO-ldlrA7)
and the encoded human LDLR protein was charac-
terized by a variety of methods including Western
blot analysis, flow cytometry, and confocal laser
scanning microscopy. This combined methodology
allowed the assignment of these variants to the
following LDLR functional classes: p.(Trp577Gly),
p.(Ile624del), and p.(Phe800Glyfs�129) to class 2
(defective intracellular transport of LDLR);
p.(Cys155Tyr) to class 3 (impaired binding of
LDL); p.(Asn825Lys) to class 4 (defective LDLR/
LDL internalization); p.(Arg416Trp) and
p.(Thr454Asn) to class 5 (impaired LDLR recycling),
respectively. Against in-silico prediction, in-vitro
Health, Inc. All rights reserved.
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studies convincingly demonstrated that the
p.(Thr454Asn) originally classified as VUS was
indeed pathogenic.
Molecular and clinical features of ADH
homozygotes or ADH double heterozygotes
identified in large cohorts

A study on the molecular and clinical characteristics
of homozygous ADH (HoADH) has recently been
carried out in Spain [6

&

]. Data were collected from
the Spanish Dyslipidemia Registry of the Spanish
Atherosclerosis Society and from all molecular diag-
noses performed for ADH in Spain between 1996
and 2015 (n¼16 751). A total of 92 patients were
identified as having ‘molecular HoADH’ – of whom,
42 were true homozygous (1 for APOB and 41 for
LDLR), 45 compound heterozygous for LDLR, 3
double heterozygous for LDLR and PSCK9, and 2
double heterozygous for LDLR and APOB. Overall,
84 rare variants in LDLR, 2 in APOB, 1 in PCSK9 were
found in these patients. In addition, five patients
were found to suffer from autosomal recessive
hypercholesterosterolemia (ARH) due to four
mutations in LDLRAP1 gene. Among all patients,
46.7% did not meet the classic criterion of baseline
LDL-C at least 500 mg/dl or 13 mmol/l for the
clinical diagnosis of HoADH [7]. The estimated
prevalence of molecularly characterized HoADH
turned out to be 1 : 450 000; a prevalence higher
than expected, but slightly lower than that reported
in an extensive molecular survey conducted in the
Netherlands [8]. The Spanish survey also confirmed
the presence of a more aggressive phenotype (higher
LDL-C and more CVD events) in LDLR negative
versus LDLR defective mutation carriers, in agree-
ment with previous studies [8,9], and also in true
homozygotes versus compound heterozygotes. The
latter observation is at variance with that of the
Dutch survey [8], which did not show phenotypic
difference between homozygous and compound
heterozygous LDLR mutation carriers.

Although the clinical features of carriers of
homozygous and compound heterozygous
mutation in one of the ADH causing genes have
been described in great detail, little is known about
the phenotype of ‘double-heterozygous carriers’,
resulting from a combination of a mutation in LDLR
and APOB or LDLR and PCSK9 or PCSK9 and APOB.
In the Netherlands, a large program for ADH identi-
fication has allowed the construction of a large
database of molecularly characterized patients
with ADH. In this context, Sjouke et al. [10

&&

]
collected the medical data from ADH double heter-
ozygotes and compared these with data from their
simple heterozygous and unaffected relatives and
 Copyright © 2017 Wolters Kluwe
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homozygous/compound heterozygous LDLR
mutation carriers identified previously [8]. A total
of 28 double heterozygotes (23 LDLR/APOB and
5 LDLR/PCSK9 mutation carriers) were identified.
Plasma LDL-C levels were significantly higher in
double heterozygotes compared with 28 heterozy-
gous and 18 unaffected relatives but lower compared
with homozygous/compound heterozygous LDLR
mutation carriers. Therefore, double heterozygotes
appear to show an ‘intermediate phenotype’ similar
to that occasionally observed in some heterozygous
patients with severe hypercholesterolemia [10

&&

].
The Dutch study provides a robust evidence to sup-
port the EAS consensus paper on homozygous ADH
[7], which states that LDL-C levels were lower in
LDLR/APOB double heterozygotes than in homozy-
gous/compound heterozygous carriers of LDLR
mutations. Finally, the Dutch study showed that
mean LDL-C level in LDLR/PCSK9 double heterozy-
gotes tended to be higher than that seen in LDLR/
APOB double heterozygotes, suggesting a stronger
LDL-C raising effect of PCSK9 mutations with
respect to APOB mutations.

Only four double heterozygous patients with
ADH (14% of the total cohort) [10

&&

] met the clinical
criteria for HoADH, defined as an LDL-C level at
least 13 mmol/l [7], thus confirming the large
heterogeneity of LDL levels among these patients.
The proportion of patients suffering from CVD
among double heterozygous patients with ADH
and homozygous/compound heterozygous LDLR
mutation carriers was not statistically different.
However, the average age of onset of CVD in homo-
zygous/compound heterozygous LDLR mutation
carriers was significantly lower compared to double
heterozygous patients with ADH [10

&&

]. The study
emphasizes the point that the number of double
heterozygous carriers of ADH mutations is probably
underreported [6

&

,9] due to selection bias.
Old and new gain of function variants
of PCSK9 gene

PCSK9 gain of function (GOF) variants are a rare
cause of ADH. A list of these rare GOF variants
reported since 2003 in patients with ADH is shown
in Supplemental Table 1, http://links.lww.com/
COL/A16 [11–24,25

&&

,26
&

,27–30]. To gain insight
on the impact of some of these variants on plasma
lipids and ADH phenotype, data of 164 patients
with ADH heterozygous for PCSK9 mutations
were collected from 12 lipid centers in eight
countries throughout the world [25

&&

]. Patients
carried 16 different PCSK9 variants, six of
which p.(Val4Ile), p.(Glu48Lys), p.(Pro71Leu),
p.(Arg96Cys), p.(Asp129Asn), and p.(Ser465Leu)
r Health, Inc. All rights reserved.
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Lipid metabolism
were novel [Supplemental Table 1, http://links.
lww.com/COL/A16]. The study demonstrated that
PCSK9 GOF variants exhibited significant pheno-
typic variability. Carriers of p.(Asp374Tyr) and
p.(Ser127Arg) variants (Supplemental Table 1,
http://links.lww.com/COL/A16) had severe dyslipi-
demia, whereas p.(Glu32Lys), p.(Arg215His), and
p.(Ser465Leu) carriers had a relatively mild pheno-
type, although substantial variation was present
in patients carrying the same mutation. Despite
variability in disease severity of individual
mutations, pooled analyses revealed significantly
greater LDL-C levels in PCSK9 GOF mutation
patients compared with patients with LDLR or APOB
mutations drawn from the Dutch Hypercholester-
olemia Registry [25

&&

].
Novel putative PCSK9 variants p.(Ala53Gly) and

p.(Arg476Cys) were reported by Siouke et al. [10
&&

] in
two double heterozygous patients with ADH and
p.(Ala62Asp)/p.(Pro467Ala) by Alves et al. [26

&

] in an
ADH compound heterozygote. Through a series of
in-vitro studies, Alves et al. [26

&

] demonstrated that
p.(Ala62Asp) and p.(Pro467Ala) variants reduced
the expression of LDLR by approximately 50% as
the positive control variant p.(Asp374Tyr) and
markedly decreased the cell uptake of LDL, thus
indicating that these variants are ‘bona fide’ gain
of function variants.
Rare APOB gene variants as the cause
of ADH

The most common mutation found in APOB as the
cause of ADH is a single amino acid substitution
of arginine for glutamine at position 3527
[p.(Arg3527Gln)] previously designated Arg3500Gln
(referred to the mature protein), which markedly
reduces the affinity of ApoB for the LDLR (Familial
Defective ApoB-100, FDB) [31,32

&

]. Other extremely
rare pathogenic ApoB variants have been described
such as p.(Arg3527Trp) and p.(Arg3558Cys)
[32

&

,33,34] and, more recently, other variants
p.(Arg3059Cys), p.(Lys3394Asn), p.(Arg50Trp),
p.(Arg1164Thr), and p.(Gln4494del) have been
added to the list [35–37] (Supplemental Table 2,
http://links.lww.com/COL/A16). Interestingly, the
latter three variants do not reside in the consensus
region of the LDLR binding domain. Fernández-
Higuero et al. [38

&

] investigated the biological and
physico-chemical properties of LDL particles con-
taining the two novel ApoB variants: p.(Arg1164Thr)
and p.(Gln4494del). They demonstrated a defective
binding of LDL/p.(Arg1164Thr) and LDL/
p.(Gln4494del) to human lymphocytes and HepG2
cells, which was comparable to that of LDL/
p.(Arg3527Gln). In addition, they showed that the
 Copyright © 2017 Wolters Kluwer 
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capacity of U937 cells of growing in the presence
of LDL/p.(Arg3527Gln), LDL/p.(Arg1164Thr), or
LDL/p.(Gln4494del) was reduced to a similar extent
(by 60%) compared with wild-type LDL. Secondary
structure of the human ApoB100 was investigated by
infrared spectroscopy and LDL particle size was
assessed by dynamic light scattering and electron
microscopy. The results showed differences in secon-
dary structure and/or in particle size of LDL/
p.(Arg1164Thr) and LDL/p.(Gln4494del) variants
compared with wild-type LDL. It is suggested that
these changes underlie the defective binding and
uptake of p.(Arg1164Thr) and p.(Gln4494del) ApoB
variants to LDLR.

The other rare APOB gene variant p.(Arg50Trp),
predicted in silico to be deleterious, was reported in
an ADH family by Thomas et al. [35] who found that
LDL/p.(Arg50Trp) accumulate in the circulation (as
compared to wild-type LDL), most likely as a result
of a defective hepatic uptake and clearance. How-
ever, cell binding studies of this ApoB mutant have
not been performed yet. Taken together these find-
ings suggest that in patients with ADH the analysis
of APOB gene should not be confined to exon 26
(containing the region encoding the LDLR binding
domain) but must include the whole gene to
identify rare variants along the ApoB molecule,
which may disrupt the binding capacity of ApoB
to the LDLR.
A rare APOE gene variant in ADH

In 2013, Mardue et al. [39] described a large French
family including 14 members with ADH, in whom no
mutations in LDLR, APOB, and PCSK9 genes had been
found. These patients were found to be heterozygous
carriers of a rare variant of APOE gene: an in-frame 3
base pairs deletion [c.500_502delTCC] resulting in
the elimination of a leucine residue at position 167,
p.(Leu167del), formerly designated D149Leu in ma-
ture protein. A similar observation was reported by
Awan et al. [40], who described a patient with ADH
phenotype who was also heterozygous for the
p.(Leu167del) variant. This variant had been pre-
viously reported in some patients with hypertrigly-
ceridemia to be associated with sea-blue histiocytosis
(OMIM #26960), a condition characterized by spleno-
megaly, mild thrombocytopenia, and, in the bone
marrow, numerous histiocytes containing cyto-
plasmic granules, which stained bright blue [41–43].
The ApoE p.(Leu167del) had also been reported in
patients with familial combined hyperlipidemia
(FCHL) and with type III dyslipoproteinemia, with
or without splenomegaly [44].

Recently, Cenarro et al. [45
&&

] performed a sys-
tematic study to determine the frequency of
Health, Inc. All rights reserved.
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p.(Leu167del) ApoE variant in patients with ADH, in
whom LDLR, APOB, and PCSK9 mutations had been
excluded. They sequenced APOE gene in 288
patients with ADH and 220 patients with normoli-
pidemia. Nine patients with ADH (3.1%) were het-
erozygous carriers of the p.(Leu167del) variant.
All available family members of probands with
p.(Leu167del) variant (30 patients from eight pedi-
grees) were investigated. Ten family members carry-
ing the variant were identified; among them, six
showed isolated hypercholesterolemia, three pre-
sented a mixed hyperlipidemia, and only one had
plasma cholesterol level less than 90th percentile.
The LDL cholesterol concentration was found to be
approximately 50 mg/dl lower in p.(Leu167del)
carriers than that reported for heterozygous ADH
because of LDLR mutations in the Spanish popu-
lation. This milder hypercholesterolemia was associ-
ated with absence of tendon xanthomas and lower
prevalence of cardiovascular disease.

The study also demonstrated that in VLDL of the
mutation carriers the wild-type ApoE3 was almost
five fold the level of ApoE p.(Leu167del). Further-
more, in-vitro studies indicated that VLDL of the
mutation carriers showed a significantly higher
uptake by HepG2 and TPH1 cells compared to VLDL
of patients with E3/E3 or E2/E3 genotype. This
increased cell uptake of carriers’ VLDL was associ-
ated with a reduction of the transcription of LDLR
gene, suggesting that reduced LDLR protein on cell
surface would be responsible for the raised LDL in
the circulation. In view of these findings, Cenarro
et al. [45

&&

] suggest that p.(Leu167del) of APOE gene
is a ‘gain of function’ variant for the lipoprotein
uptake by LDLR or other receptor of LDLR family
involved in VLDL catabolism. However, the mol-
ecular mechanism whereby p.(Leu167del) increases
VLDL uptake by the cells remains poorly under-
stood. In conclusion, these studies show that screen-
ing of the APOE gene is warranted in the setting of
molecular diagnosis of ADH (in patients with type
IIa and type IIb phenotype) along with the LDLR,
APOB, and PCSK9 genes [46].
CONCLUSION

Systematic sequencing of the major ADH candidate
genes (LDLR, APOB, and PCSK9) has revealed a large
number of rare variants, whose pathogenic impact
in most cases is not clearly defined. A set of criteria
for assignment of pathogenicity (as an alternative to
in-vitro assays) has been adopted in the updating of
the public database on ADH and in the survey of
patients with homozygous ADH (true homozygous/
compound heterozygous and double heterozy-
gotes). In addition, several rare variants of LDLR,
 Copyright © 2017 Wolters Kluwe
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APOB, PCSK9, and APOE have been reported in
patients with ADH and their biological impact docu-
mented in vitro.
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