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Accurate ab initio tight-binding Hamiltonians: Effective tools for electronic transport and optical
spectroscopy from first principles
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1Dipartimento di Fisica, Informatica e Matematica, Universitá di Modena and Reggio Emilia, Via Campi 213/a, 41125 Modena, Italy

2CNR-NANO Research Center S3, Via Campi 213/a, 41125 Modena, Italy
3Center for Materials Genomics, Duke University, Durham, North Carolina 27708, USA

4Department of Physics, University of North Texas, Denton, Texas 76203, USA
5Materials Science, Electrical Engineering, Physics and Chemistry, Duke University, Durham, North Carolina 27708, USA

6Department of Physics, Central Michigan University and Science of Advanced Materials Program, Mt. Pleasant, Michigan 48859, USA
7Department of Physics and Department of Chemistry, University of North Texas, Denton, Texas 76203, USA

(Received 19 August 2016; published 26 October 2016)

The calculations of electronic transport coefficients and optical properties require a very dense interpolation
of the electronic band structure in reciprocal space that is computationally expensive and may have issues with
band crossing and degeneracies. Capitalizing on a recently developed pseudoatomic orbital projection technique,
we exploit the exact tight-binding representation of the first-principles electronic structure for the purposes of (i)
providing an efficient strategy to explore the full band structure En(k), (ii) computing the momentum operator
differentiating directly the Hamiltonian, and (iii) calculating the imaginary part of the dielectric function. This
enables us to determine the Boltzmann transport coefficients and the optical properties within the independent
particle approximation. In addition, the local nature of the tight-binding representation facilitates the calculation
of the ballistic transport within the Landauer theory for systems with hundreds of atoms. In order to validate our
approach we study the multivalley band structure of CoSb3 and a large core-shell nanowire using the ACBN0
functional. In CoSb3 we point the many band minima contributing to the electronic transport that enhance
the thermoelectric properties; for the core-shell nanowire we identify possible mechanisms for photo-current
generation and justify the presence of protected transport channels in the wire.
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I. INTRODUCTION

The ability to efficiently generate and manage a combina-
tion of theoretical and experimental data is the foundation for
data-driven discovery of new materials and functions as well
as methods to control manufacturing processes [1,2]. This
formidable task requires a continuous feedback loop where
descriptors [2] of the functional properties are calculated for an
enormous number of materials configurations, integrated in the
databases [3–6], compared with the available experiments, and
exploited in the prediction cycle. In this paper we focus on a
broad class of descriptors derived from the electronic structure
calculations in order to provide easier integration with the
experimental data. We introduce tight-binding methodologies
for the calculation of electronic transport properties and the
simulation of optical spectroscopies in the broadest energy
range and with excellent accuracy as well as high computa-
tional efficiency.

The prerequisite for the simulation of both electron trans-
port and optical properties is the accurate evaluation of the
electronic structure of the system that is obtained by a fully
self-consistent quantum-mechanical calculation either within
density functional theory (DFT) or other first-principles ap-
proaches. The electronic structure of solids is often described
with Fourier basis functions that account naturally for the
periodicity and whose completeness is easily improvable up
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to any desirable accuracy. The delocalized character of plane
waves, however, is not appropriate for the description of highly
localized electronic systems unless a very large number of
basis functions is used. The development of minimal-space
solutions such as atomic orbital (AO) Bloch sums, which are
capable of capturing with satisfactory accuracy the properties
of solids and molecules on finite Hilbert spaces, has been
central to methodological developments in quantum chemistry
and solid-state physics for many decades.

Atomic orbital basis sets provide the foundation for meth-
ods, such as tight binding (TB), which combine an intuitive
physical representation of the interactions, low computational
cost, and interesting alternatives for the study of the electronic
structure of molecules and solids [7–9]. The TB Hamiltonian
matrix is the central quantity that provides a compact real space
representation of the many-body interactions, the accuracy
of the electronic structure relies on the quality of such
matrix. Albeit computationally inexpensive and very intuitive
for simple compounds, semiempirical TB implementations
often fail in the prediction of electronic structure of complex
materials and, in most cases, lack of predictive value when
dealing with structural and chemical modifications as well as
charge rearrangements. In recent years, the reliability of the
TB models has been largely improved with the introduction of
ab initio TB Hamiltonians derived from fully self-consistent
quantum-mechanical calculations through a mapping into a
much smaller space spanned by a set of atomic or atomiclike
orbitals. This procedure combines the accuracy and the
predictive value of first-principles approaches with the low
computational cost of TB techniques. Furthermore, it is
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particularly useful for the evaluation of properties such as the
electron conductivity and the optical absorption spectra that
require a precise and ultrafine reciprocal space integration,
typically very computationally expensive.

We recently developed a straightforward, noniterative
projection scheme that can exactly represent the first-principles
electronic structure of a periodic system on a finite AO-like
basis [10–12]. By filtering the projections of Bloch states with
high-kinetic-energy components and tuning the richness of
the finite Hilbert space, we construct fully first-principles TB
Hamiltonians where the number of exactly reproduced bands
with respect to the original DFT calculation can be selectively
increased at a negligible computational cost. This provides
cost-effective solutions to design efficient algorithms for
electronic structure simulations of realistic material systems
and massive high-throughput investigations. Our technique
does not seek construction of (heavily customized, localized)
basis functions. Its value resides on allowing noniterative
reproduction of a large number of energy bands using standard
quantum-chemistry basis sets or the pseudoatomic orbitals
(PAO) of a standard pseudopotential calculation. Practically,
the present methodology completely supersedes the need
for engineered basis functions such as maximally localized
Wannier functions [13] or muffin-tin orbitals of arbitrary order
(NMTO) [14] in the context of the evaluation of transport
[15–17] or optical properties. Moreover, the knowledge of
a localized orbital representation that maps seamlessly the
electronic structure onto a localized AO basis set that is
eventually fitted to a Gaussian basis set, opens the way to
the fast (analytical) computation of two-electron integrals for
solid-state applications and it is at the core of the development
of the accurate and efficient ACBN0 functional [18].

The paper is organized as follows: in Sec. II we will discuss
the theoretical background and the practical implementation
of the procedure with representative test cases. In Sec. III we
summarize the computational details of this study. In Sec. IV
we study, with our methodology, two significant materials
problems in order to show the importance of fine reciprocal
space sampling and the computational efficiency of the PAO
projection to deal with very large systems. We chose to study
the thermoelectric properties of CoSb3 and the transport and
optical properties of core-shell nanowire of ZnO and ZnS. Fi-
nally, in Sec. V we outline the conclusions of the present work.

II. METHODOLOGY

A. TB representation from PAO projections

Accurate TB Hamiltonian matrices can be built from
the direct projection of the Kohn-Sham (KS) Bloch states
|ψnk〉 onto a chosen basis set of fixed localized functions,
as we discussed extensively in Refs. [10–12]. There, we
have shown that the real space Hamiltonians Ĥ (rα) can
be directly calculated using atomic orbitals or PAOs from
the pseudopotential of any given element. The key in this
procedure is in the mapping of the ab initio electronic structure
(solved on a well-converged and large plane-waves basis set)
into a model that precisely reproduces a selected number of
bands of interest [10,11].

The crucial quantities that measure the accuracy of the basis
set are the projectabilities pnk = 〈ψnk|P̂ |ψnk〉 � 0 (P̂ is the

operator that projects onto the space of the PAO basis set,
as defined in Ref. [11]), which indicate the representability
of a Bloch state |ψnk〉 on the chosen PAO set. Maximum
projectability, pnk = 1, indicates that the particular Bloch state
can be perfectly represented in the chosen PAO set; contrarily,
pnk ≈ 0 indicates that the PAO set is insufficient and should be
augmented. Once the Bloch states with good projectabilities
have been identified, the TB Hamiltonian is constructed as:

Ĥ (k) = AEA† + κ(I − A(A†A)−1A†), (1)

where E is the diagonal matrix of KS eigenenergies and A is
the matrix of coefficients obtained from projecting the Bloch
wavefunctions onto the PAO set (see Ref. [11]). Since the
filtering procedure introduces a null space, the parameter κ is
used to shift all the unphysical solutions outside a given energy
range of interest.

The procedure provides an accurate real space represen-
tation of the ab initio Hamiltonian Ĥ (rα) as a TB matrix of
very small dimension, a crucial advantage for the accurate
calculation of any physical properties that requires the precise
integration in the reciprocal space.

By exploiting the PAO projection scheme described above
we can easily Fourier transform the TB real space rep-
resentation, interpolate to arbitrary precision, and perform
derivatives in reciprocal space. For example, the expectation
value of the momentum operator, which is the main quantity
in the definition of both and transport and optical descriptors
described below, is computed as:

pnm(k) = 〈ψn(k)|p̂|ψm(k)〉
= 〈un(k)|m0

�

�∇kĤ (k)|um(k)〉 (2)

with

�∇kĤ (k) =
∑

α

irα exp(ik · rα)Ĥ (rα), (3)

Ĥ (rα) being the real space TB matrix and |ψn(k)〉 =
exp(−ik · r)|un(k)〉 the Bloch’s functions.

B. Boltzmann transport

Within the semiclassical theory, the electrical conductivity
can be evaluated by solving the Boltzmann equation that
describes the evolution of the distribution function f of an
electron gas under external electric field and in presence of
scattering mechanisms [19–21]. In the so-called scattering-
time approximation, the conductivity tensor σij can be ex-
pressed as an integral over the Brillouin zone (BZ):

σij = e2

4π3

∫
BZ

τ
∑

n

vi
n(k)vj

n(k)

(
−∂f0

∂ε

)
dk, (4)

where τ is the constant relaxation time, vi
n(k) is the ith

component of the electron velocity (vn) corresponding to the
nth band for each k point in the BZ, f0 is the equilibrium
distribution function, and ε is the electron energy.

Generalizing Eq. (4) it is also possible to define analog
expressions for the Seebeck-coefficient S and the electron con-
tribution to thermal conductivity κel . Following the notation of

165166-2



ACCURATE AB INITIO TIGHT-BINDING . . . PHYSICAL REVIEW B 94, 165166 (2016)

0

1
σ/

τ 
(1

021
/ Ω

/m
/s

)

this work
BoltzWann

-6

0

6

S
(1

0-4
V

/K
)

-1 -0.5 0 0.5 1 1.5
 μ (eV)

0

4

 κ
/τ

 (1
015

W
/m

/K
/s

)

FIG. 1. Boltzmann conductivity, Seebeck coefficient, and elec-
tron thermal conductivity for silicon calculated with BOLTZWANN

and with our approach, both within the constant relaxation time
approximation.

Ref. [22], we introduce the generating tensors Lα (α = 0,1,2):

Lα = 1

4π3

∫
τ

∑
n

vn(k)vn(k)

(
−∂f0

∂ε

)
[εn − μ]αdk, (5)

where vn(k)vn(k) indicates the dyadic product and μ is the
chemical potential. The coefficients σ , S, and κel can be
expressed as follows:

σ = e2L0 S = − 1

T e
[L0]−1 · L1

(6)

κel = 1

T
(L2 − L1 · [L0]−1 · L1),

where T is the temperature. From Eqs. (4)–(5) it is evident that
the evaluation of the transport properties requires an accurate
integration over a fine grid of k point in the BZ, especially for
highly dispersive bands as in metal systems. This becomes
a trivial task using the TB representation from the PAO
projections and Eq. (3). As a validation of this approach we
have calculated the transport coefficients (σ , S, κel) of Silicon
and compared with the results of the code BOLTZWANN, where
the interpolation of the real space Hamiltonian is done in using
maximally localized Wannier functions as basis functions [17].
The results are summarized in Fig. 1 and show excellent
agreement between the two approaches.

C. Ballistic transport

Calculations of the ballistic electrical conductance in the
manner of Landauer are naturally built on a local represen-
tation of the electronic structure such as the one provided
by TB Hamiltonians. Our procedure reduces the problem of
calculating electron transport [16,23] to a computationally
inexpensive postprocessing maintaining the predictive power

and the accuracy of first-principles methods. Briefly, using
the Landauer approach the conductance is determined via the
transmission function that can be written as [23,24]:

Tel = Tr
(

LGr

C
RGa
C

)
,

where G
{r,a}
C are the retarded and advanced Green’s functions

of the conductor, respectively, and 
{L,R} are functions that
describe the coupling of the conductor to the leads. The Green’s
function for the whole system can be explicitly written as [25]:

GC = (ε − HC − �L − �R)−1, (7)

where �L and �R are the self-energy terms due to the semi-
infinite leads.

Once the self-energy functions are known, the coupling
functions 
{L,R} can be easily obtained as [25]


{L,R} = i
[
�r

{L,R} − �a
{L,R}

]
.

The expression of the self-energies can be deduced along
the lines of Ref. [23] using the formalism of principal layers
in the framework of the surface Green’s function matching
theory. We obtain:

�L = H
†
LC

(
ε − HL

00 − (
HL

01

)†
T L

)−1
HLC

(8)
�R = HCR

(
ε − HR

00 − HR
01TR

)−1
H

†
CR,

where HL,R
nm are the matrix elements of the Hamiltonian be-

tween the layer orbitals of the left and right leads respectively,
and TL,R and T L,R are the appropriate transfer matrices.
The latter are easily computed from the Hamiltonian matrix
elements via an iterative procedure [23]. This approach has
been extensively validated and it is standard procedure in many
electronic structure software packages such as WANT [16],
WANNIER90 [15], and SMEAGOL [26].

Acting as postprocessing of static electronic structure
calculations, the present implementation is not self-consistent
in the bias, as in the nonequilibrium Green’s function (NEGF)
framework. However, current-voltage characteristics can be
actually obtained very reliably in the linear response regime
for low applied bias (�1.0 eV) [25]. In most cases, this
is accurate enough to reproduce the experimental results,
as demonstrated, for instance, in the case of molecular
junctions [27], nanotubes [28], and thin nanowires [29].
Moreover, inelastic scattering contributions (e.g., el-el, el-ph)
can be easily included as self-energy contributions to the
conductor Green’s function, along the line proposed by Meir
and Wingreen [30] and successfully demonstrated for el-el
correlation in the present framework [31].

D. Dielectric function

The optical properties of a material are generally described
in semiclassical linear response theory by the dielectric tensor
ε(ω,q) that is a complex function describing the optical
response of the material in the presence of an external
electromagnetic field at a given frequency ω and momentum
q [19,32]. Quantities such as the refraction index and the
absorption spectrum are easily derived from the real and
imaginary part of the dielectric tensor. In the limit of long
wavelength (i.e., negligible momentum transfer q), the optical
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properties of the material depends only on the frequency of
the field. The dielectric tensor can then be expressed in terms
of the dielectric susceptibility χij (ω):

εij (ω) = 1 + 4πχij (ω). (9)

Following the seminal work by Graf and Vogl [33], the
imaginary part of χ (ω) in the single-particle approximation
can be written as:

Im χij (ω) = e2π

ω2�m2
0�

∑
n,m,k

[fn(k) − fm(k)]

×pi
nm(k)pj

mn(k)δ[ω − ωmn(k)], (10)

where m0 is the bare electron mass, � the unit cell volume, m,n

the band indices, f�(k) the Fermi-Dirac distribution evaluated
on the band with index � at energy E�(k), pi

nm(k) are the matrix
elements of the momentum operator calculated over the states
(both occupied and empty) with indices m and n and �ωmn =
Em(k) − En(k) is the energy of the optical transition. The real
part of the dielectric susceptibility can then be expressed as
the Kramers-Kronig transformation of the imaginary part

Re χ (ω) = 2

π

∫ ∞

0
z

Im χ (ω)

z − ω
dz. (11)

Equation (10) implicitly contains both intraband (n = m)
and interband (n �= m) transitions. Interband transitions are
associated to the usual optical absorption processes in the
UV-visible range, while intraband transitions are relevant
in the low-frequency regime. In the latter case, Eq. (10)
naturally discriminates the different trends of quasistatic
dielectric function [ε(ω → 0)] for insulating (finite behavior)
and metallic (diverging behavior) systems. In order to separate
the intraband and interband contributions, we rewrite the
expression [fn(k) − fm(k)] that appears in Eq. (10). The
presence of δ function selects the energy of the transitions
En(k + q) = En(k) + �ω and, consequently, it fixes the ar-
gument of the Fermi-Dirac distributions. Thus for n = m we
obtain:

fn(k) − fn(k + q) = f [En(k)] − f [En(k) + �ω]

≈ −�ω
∂f (E)

∂E
|E=En(k). (12)

In the case of undoped semiconductors and insulators
the intraband transitions do not contribute to Eq. (10), the
imaginary part of the dielectric function vanishes, while the
real part tends to static dielectric constant in the collisionless
limit. For metallic systems the presence of partially occupied
bands at the Fermi energy makes the derivative in Eq. (12)
converging to a finite quantity, while the term 1

ω2 in Eq. (10)
diverges. The divergency of the dielectric function gives rise to
the well-known Drude-like dc conductivity of metals, where
electrons close to Fermi-level can undergo electron transitions
with negligible momentum transfer in the quasistatic regime
(ω → 0).

The evaluation of the momentum matrix elements, pi
nm(k),

is a computational bottleneck since it requires an integration
over all the pairs of occupied and empty electronic states
across the whole BZ. If the single-particle wave functions are
expanded in large basis sets (e.g., plane waves), as in standard
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FIG. 2. Real and imaginary part of the dielectric function for
GaAs (left) and Al (right). Results are validated against experimental
data: Ref. [34] for Al and Ref. [35] for GaAs.

solid-state implementations, this integration rapidly becomes
a computational challenge. Once again, the momentum can
be efficiently evaluated using the TB Hamiltonian projected
on the PAOs, transforming the calculation of the frequency-
dependent dielectric function into a computationally trivial
postprocessing of the first-principles calculation.

We have validated the method for calculating the dielectric
function against well-known experimental results for GaAs
and Al. Results are summarized in Fig. 2 and the comparison
confirms the validity of our approach.

E. ACBN0 functional

The knowledge of first-principles-based localized orbital
representation of the electronic structure combined with
analytical expressions based on Gaussian basis set provides
an efficient strategy for the fast computation of two-electron
integrals for solid-state applications and the development of
local exchange functionals (LEX). This is a critical advantage
when dealing with the plethora of novel materials that are
characterized by strong electron localization and correlation
and vigorously sought for their rich physical and chemical
properties. For these materials the LDA+U method, intro-
duced by Liechtenstein and Anisimov [36,37], is the most
practical choice to compensate for the simplified, nearly
homogeneous electron-gas treatment of the electron density by
LDA. The success of LDA(GGA)+U confirms that preserving
the information of orbital localization from being averaged out
is prevalent to the correct prediction of the electronic structure
in compounds such as transition-metal oxides [38].

Our projection methodology allows the direct computation
of two-electron integrals and, when combined with a density-
matrix-based approach, the direct and self-consistent evalua-
tion of the on-site Coulomb U and exchange J parameters
needed in the treatment of correlated solid materials. This is
at the core of the definition of the ACBN0 functional, recently
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introduced by some of us [18]. ACBN0 satisfies the rather
ambitious criteria outlined by Pickett et al. [39] in one of
the seminal articles on LDA+U . Due to the projection on
AOs and the accurate TB representation, the evaluation of
the U and J for atoms in different chemical environments or
close to topological defects (surfaces, interfaces, impurities,
etc.) or for closed-shell atoms (like Zn) becomes trivial,
thus overcoming the limitations of traditional linear response
techniques [40]. Results so far are striking: comparisons with
available experimental and theoretical data show that the
proposed computation of the on-site Coulomb and exchange
parameters is a sound and high-throughput alternative to higher
levels of theory such as hybrid functionals and the GW

approach that systematically yields results with outstanding
accuracy [18,41]. ACBN0 only demands computational re-
sources comparable to a regular (LDA) PBE calculation.

III. COMPUTATIONAL DETAILS

Ground-state properties are obtained with density func-
tional theory as implemented in the QUANTUM ESPRESSO pack-
age [42]. The starting electronic structure has been determined
using ACBN0 and compared, when appropriate, with tradi-
tional PBE. Ionic potentials are described by pseudopotentials
with an extended basis set of pseudoatomic orbitals for an
improved TB mapping of the conduction bands [12]. The
workflow to perform all steps of the approach is part of
the AFLOWπ software infrastructure [43]. AFLOWπ has been
designed for high-throughput first-principles calculations and
exploits the projections on PAO and the TB representation for
the calculation of the band structure, density of states, trans-
port coefficients, and frequency-dependent dielectric constant.
AFLOWπ is integrated with AFLOW [4].

IV. RESULTS

Our TB representation enables studies that involve ex-
tremely fine sampling of the full En(k) electronic structure
and brings within reach nanostructured systems with hundreds
of atoms without compromising first-principles accuracy. As
examples to validate our methodology we will analyze with
unprecedented details the conduction manifold of CoSb3-
based thermoelectric materials (Sec. IV A) and a core-shell
nanowire with 588 atoms (Sec. IV B).

A. CoSb3

Materials with the skutterudite structure are of great
interest for their performance as thermoelectrics (TEs) since
they well represent the paradigmatic case of a phonon-
glass electron-crystal [20,44–47]. They exhibit low thermal
conductivity but also excellent electronic properties and
have been studied extensively both theoretically [48,49] and
experimentally [50,51]. The thermoelectric performances are
characterized by the so-called figure of merit, ZT = S2σT/κ ,
where S is the Seebeck coefficient, σ is the electrical conduc-
tivity, κ is the thermal conductivity, and T is the temperature at
which the device operates. The prototypical n-type compound
within the skutterudites family is CoSb3 [50,52,53]. Indeed,
the figure of merit of R-filled CoSb3 with R = Na, Yb, In,
Ba, Ce exceeds one in the temperature windows of practical
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FIG. 3. (Top) Electronic structure of CoSb3. The black-dashed
and the red-solid lines refers to PBE [57] and ACBN0 calculations.
(Bottom) Seebeck coefficient of CoSb3 measured experimentally
(black filled circles) [57] and computed theoretically (red filled
squares) with a two-effective-masses model. The energy is measured
from the bottom of the conduction band.

interest. Typical descriptors for enhanced TE electronic prop-
erties include reasonable large effective masses, which favor
large Seebeck coefficients and multivalley character of the
active bands to optimize the conductivity [20,54–56]. Doping
and filling the semiconducting CoSb3 with donor elements
activates the bands at the bottom of the conduction manifold
whose features critically contribute to optimize the value of
electronic transport coefficients. The enhanced performance
of RCoSb3 can be rationalized with a detailed analysis of the
full En(k) for all the bands in the proximity of the Fermi level.
Various experimental and theoretical investigations have been
performed in order to highlight the mechanisms responsible for
its good thermoelectrical performance and the physics of the
system is still under debate. In this paper we extend previous
studies on the conduction band of doped CoSb3 (Ref. [57]) by
taking advantage the improved band structure provided by the
ACBN0 functional discussed in Sec. II E and the Boltzmann
transport capabilities presented Sec. II B.

We have computed the starting electronic structure of
CoSb3 (prototype: A3B_cI32_204_g_c in Ref. [58]) using
a k-point grid of (9 × 9 × 9) [57]. The Boltzmann transport
coefficients have been then calculated using a much finer grid
with (100 × 100 × 100) k points. In Fig. 3(a) we compare
the band structure of the system calculated with PBE and
ACBN0. Qualitatively, the bands compare well with previous
calculations [48], however, in our ACBN0 calculations the
energy gap between the occupied and the unoccupied manifold
decreases from the PBE value of 0.23–0.16 eV. Both values

165166-5



PINO D’AMICO et al. PHYSICAL REVIEW B 94, 165166 (2016)

are consistent with the experimental findings that range from
0.05–0.22 eV [59], but the reduction of the energy gap may
be important to investigate effects associated with decreased
performance due to bipolar transport. The linearity of the
dispersion [48] at the top of the valence band (p-derived band
near 
) slightly increases and the occupied Co-d manifold
moves to lower energy. This is consistent with the fact that
the Sb Hubbard correction (USb = 0.648 eV) is small whereas
the value of U for the Co cation (UCo = 4.375 eV) leads to a
larger variation. This result is of particular importance when
chemical substitution is used to reduce the energy separation
between dispersive and flat bands in order to optimize the p-
type transport coefficients. The description of the conduction
manifold also improves. In Fig. 3 (top panel) the valleys at H
and along the 
-N direction in the BZ become quasidegenerate
(�EACBN0 = 10 meV) and flatten. It is remarkable that this
quasidegeneracy is not captured by standard PBE calculations
(�EPBE = 100 meV) [57]. Phenomenologically these effects
contribute to increase the number and the effective mass of
charge carriers with positive consequences on the conductivity
and Seebeck coefficient.

Within the rigid band approximation, we computed the
Seebeck coefficient at values of the chemical potential cor-
responding to the experimental electron density [57] and
we compare our theoretical prediction with the experimental
results as shown in Fig. 3 (bottom panel). In order to obtain
the value of μ corresponding to a given experimental electron
density ne, we have used the free-electron 3D gas relationship
μ = �

2

2m∗ (3π2ne)2/3 where we have employed two effective
masses calculated from the electronic structure at 
 and at
H assuming a parabolic dispersion. Results are summarized in
Fig. 3(b) where we observe an excellent agreement between the
calculated and experimental value of the Seebeck coefficient S.

B. Core-shell nanowire

Quasi-one-dimensional, vertically aligned nanowires can
be exploited to construct three-dimensional architectures with
demonstrated advantages over conventional planar devices.
Nanowires form building blocks for compact ultrafast elec-
tronics and optoelectronic devices (e.g., solar cells [60,61],
photodetectors [62], nanoscale lasers [63], and light-emitting
diodes [64,65]). One-dimensional (1D) component-modulated
materials, such as coaxial core-shell heterojunctions offer
the benefit of designing and fabricating nanodevices without
further assembling and provide unique and tunable proper-
ties [66–68].

To highlight the capability of our methodology in evaluating
the optical and transport properties of nanoscale systems, we
have chosen as a prototypical example a coaxial core-shell
(CCS) nanowire of ZnO and ZnS [see Fig. 4(b), left inner
panel] that has been recently synthesized [69–73].

ZnO has a wide band gap energy of 3.37 eV and it
possesses unique optical and electronic properties that make it
a promising candidate for UV lasers and detectors working
in the 320–400 nm wavelength range. Additionally, it is
transparent to visible light and can be made highly conductive
by doping [74]. ZnS is also a wide band gap semiconductor,
with band gap energy of 3.66 eV widely exploited for
optoelectronic devices and sensors. The electrical and the
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FIG. 4. (a) Total and material-projected density of states plot;
(b) quantum conductance. Left inner panel: geometry of the CCS
nanowire. Right inner panels: eigenchannels of the transmission
amplitude corresponding to the top of the valence and bottom of
conduction bands. Zero-energy reference is aligned to the Fermi level
of the system.

optical characterization of ZnS coated ZnO nanowires have
been studied extensively both experimentally [75–80] and
theoretically, although on much smaller diameter wires [81].

In this study, the core-shell nanowire is simulated using
the ACBN0 functional in a large cell (50.0 × 50.0 × 5.3) A3

with 588 atoms (i.e., 5300 electrons). The core is made of
ZnO and it has an internal radius rc = 1.1 nm, that is large
enough to correctly reproduce a realistic ZnO wire [82]. The
shell is made of ZnS, the total radius of the heterostructure
is rs = 1.9 nm, in agreement with experimental samples [75].
The wire is aligned along the polar c axis of the wurtzite ZnO
crystal. Due to the huge dimension of the system, we include
two bilayers of ZnS-ZnO wurtzite material along the wire
direction, i.e., the minimum to obtain a periodic wire. The CCS
structure has a hexagonal symmetry and exposes only nonpolar
(101̄0) faces. The geometry is fully relaxed until forces on all
atoms are lower than 0.03 eV/Å. In the optimized structure the
inner ZnO core almost maintains its ideal geometry, while the
external ZnS shell undergoes to remarkable distortion due to
the relaxation of the mismatch at the interface. Nonetheless the
outermost layer exhibits a buckled dimer arrangement, typical
of the ZnS(101̄0) surface (see inset of Fig. 4).

The resulting ACBN0 electronic structure is summarized
in Fig. 4(a), where we plot the total (black line), ZnO (red
shaded area), and ZnS (blue thin line) projected density of
states (DOS). Albeit ZnO and ZnS have similar band gap,
the different ionization potential causes the formation of a
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staggered type-II band alignment at the interface, with the
top of ZnS valence band lying in the pristine gap of ZnO
material. The ZnO core has a band gap Eg ∼ 3.1 eV very
similar to corresponding bulk, while the outer ZnS layer has
a band gap Eg ∼ 2.8 eV. This gap reduction derives from the
strong atomic deformation, which makes the final structure
sensitively different from the ground state bulk one. The total
band gap of the CCS nanowire is Eg ∼ 1.2 eV that lies in the
near-IR range.

By using the approach described in Sec. II C, we calculated
the coherent electron transport along the nanowire. In the
minimal TB representation the solution of the Landauer
problem reduces to matrix operations between (2940 × 2940)
on-site and hopping Hamiltonians, i.e., much smaller than
the corresponding plane-wave ones. This makes an otherwise
unsolvable problem computationally feasible.

For the nanowire we are considering here, the scattering
contributions with the boundaries, due to extremely high
surface-to-volume ratio, are the predominant effects that
control the electron transport [83]. Thus, the coherent regime is
a good first approximation for the description of transport, at
least at low temperature. The result for the CCS nanowire
is shown in Fig. 4(b). The quantum transmittance Tel is
proportional to the number of transmitting channels available
for electron mobility, which are equal to the number of
conducting bands at the same energy. Within the scattering
theory framework, the transmittance functionTel can be related
to the transmittance amplitude t through the relation Tel =
Tr[t†t]. The eigenvectors of matrix t are called eigenchannels
and are defined as the linear combinations of the incoming
modes in a lead that do not mix upon reflection on the scattering
region. Thus, the spatial representation of the eigenchannels
visually displays the path traveled by charge carriers in their
flow through the nanowire. The eigenchannels corresponding
to the top of the valence and bottom of conduction bands
are shown as inset in Fig. 4(b): hole carriers flow in the
external ZnS crown, while electrons move in the internal
ZnO core, confirming the intrinsic charge separation observed
experimentally [80].

Simulated optical properties are summarized in Fig. 5.
The peaks in the imaginary part of the dielectric function
ε correspond to single-particle valence-to-conduction
transitions. As expected, it is easy to recognize the valence-to-
conduction absorption edge in the external ZnS shell (2.8 eV,
blue arrow) and in the inner ZnO (3.1 eV, red arrow), which
correspond to the Eg values of each material, as discussed
above. However, other lower-energy transitions are present in
the range 1.2–2.8 eV, which correspond to intermaterial ZnO-
to-ZnS transition as depicted in the inset of the figure. Although
the frontiers orbitals are mostly localized in the core (electrons)
and in the shell (hole), the overlap and the symmetry of the
wave functions give low but not negligible oscillator strength
to the first four transition. Except for excitonic effects (not
included at this level of theory), this agrees well with dramatic
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FIG. 5. Imaginary part of dielectric function of ZnS/ZnO CCS
nanowire. Inset highlights band-alignment scheme and lowest-energy
vertical transitions.

red shift of the absorption edge (i.e., from UV to near-IR)
observed experimentally [78,79], also in agreement with
previous theoretical calculations on smaller CCS wires [81].
The facile photocharge injection and the intrinsic carrier
separation make this system a very promising photoconductor
candidate for optoelectronic and photovoltaic devices.

V. CONCLUSIONS

We have extended the PAO projection technique to allow for
the calculation of electronic transport and optical properties of
materials with extreme accuracy and negligible computational
cost. The exact tight-binding representation of the first-
principles electronic structure allows, on one hand, to produce
extremely dense band interpolations, an essential requirement
for the evaluation of Boltzmann transport or optical properties,
and on the other, the local Green’s function representation that
is at the foundation of quantum conductance calculations. We
have demonstrated the potentiality of the method by studying
the multivalley band structure of CoSb3 and a large ZnO-ZnS
core-shell nanowire.
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