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Abstract 

The Cana Brava, Niquelândia and Barro Alto complexes (Goiás, central Brazil) are three of the 

largest mafic-ultramafic layered complexes in the world and their origin has been a matter of debate 

for several decades. One hypothesis suggests that Niquelândia and Barro Alto were both formed by 

two distinct igneous events at 1.3 Ga and at 790 Ma and were later overlapped during tectonic 

exhumation at 650 Ma; according to this reconstruction Cana Brava belongs to the youngest 

intrusion at 790 Ma. A second hypothesis suggests that the three complexes formed during the same 

event. Here we provide new U-Pb SHRIMP-II zircon ages for the Cana Brava and Barro Alto 

complexes, constraining their intrusion age to the Neoproterozoic (between 770-800 Ma), coeval 

with Niquelândia. A review of new and literature ages indicate that these complexes formed during 

a single igneous event and were not modified by regional metamorphism. We propose that the 

complexes represent fragments of the larger Tonian Goiás Stratiform Complex, which was likely 
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part of a back-arc environment connected to the formation of the Goiás Magmatic Arc at about 790 

Ma, later disrupted and accreted to the São Francisco craton. 
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Introduction 

Barro Alto, Niquelândia and Cana Brava are three mafic-ultramafic layered complexes, which 

outcrop in a 350 km NNE trend alignment within the Brasilia Belt in the northern Goiás (central 

Brazil). They share several field, stratigraphic, geochemical and geochronological features that led 

to their interpretation as a cogenetic and coeval large intrusion (Ferreira Filho et al., 1998; 

Carminatti, 2006; Giovanardi et al., 2016). In contrast, several authors claim that Barro Alto and 

Niquelândia were both formed by two different intrusive events (a Meso- and a Neo- Proterozoic 

intrusion, with Cana Brava belonging to the Neoproterozoic event; Pimentel et al., 2004, 2006; 

Ferreira Filho et al., 2010; Della Giustina et al., 2011). According to this two-intrusions model, the 

Mesoproterozoic (~1.3 Ga) anorthositic upper units of Niquelândia and Barro Alto (formerly called, 

by these authors, the Serra das Borges and Serra da Malacacheta complexes) were emplaced in a 

continental rift setting during the formation of the upper metavolcanic-metasedimentary sequences 

of Indaianopólis and Juscelândia. The ultramafic and gabbroic lower units of Niquelândia and Barro 

Alto, along with Cana Brava, were instead emplaced during a later Neoproterozoic (~800 Ma) 

intrusion stage. The complexes were later metamorphosed during their accretion to the São 

Francisco craton (Pimentel et al., 2004, 2006; Moraes et al., 2006; Ferreira Filho et al., 2010; Della 

Giustina et al., 2011).  

Another model, based on zircon geochronology and petrological modelling of Niquelândia, 

suggests that the anorthosites were formed by fractionation of a plagioclase-rich crystal mush 

during the formation of the ultramafic units (Correia et al., 2007, 2012; Rivalenti et al., 2008). This 
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is the so-called one-intrusion model. Moreover, a careful inspection of Niquelândia and Cana Brava 

suggest that no high-grade metamorphism occurred and the superimposed foliation was due to 

hyper-to-sub- solidus deformation during the intrusive accretion of the complexes (Correia et al., 

2012; Giovanardi et al., 2016). 

Here, we present new U-Pb SHRIMP-II data on zircons from the Barro Alto and Cana Brava 

complexes to finally constrain their age and model of formation (one- versus two-intrusions). We 

studied four samples (three gabbros and one diorite) from Cana Brava, being the least studied 

among the three complexes and with poor intrusion ages, and two samples (one gabbro from the 

lower units and one anorthosite from the upper units) from Barro Alto. We carefully reviewed the 

geochronology and stratigraphy of both complexes and compared them with those of Niquelândia. 

We comprehensively discuss the one-intrusion model that best fits our data and the possible former 

existence of the Tonian Goiás Stratiform Complex (according to the new International 

Chronostratigraphic Chart, v2016/04; Cohen et al., 2013; Shield-Zhou et al., 2016), whose 

disruption might have originated the three mafic-ultramafic complexes. 

 

Geological setting 

The Barro Alto, Niquelândia and Cana Brava layered mafic-ultramafic intrusive complexes outcrop 

in the Goiás state (central Brazil). They form a c.a. 350 km belt with NNE direction within the 

Brasilia Belt (Fig. 1) and are considered part of the Goiás Massif. This is an exotic terrane, or 

microcontinent, disrupted and accreted to the São Francisco craton during the Neoproterozoic 

Brasiliano/Panafrican event that led to the formation of the Gondwana supercontinent (Brito Neves 

and Cordani, 1991; Pimentel and Fuck, 1992; Fuck et al., 1994; Pimentel et al., 2000).  

The three complexes overthrust to the E the rocks of the Rio Maranhão Thrust Zone, whereas to the 

W they exhibit intrusive contacts with the metamorphic volcano-sedimentary sequences of 

Palmeirópolis, Indaianópolis and Juscelândia, respectively (Figs. 2, 3 and 4).  
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Over the years, several names and stratigraphic subdivisions have been attributed to the three Goiás 

complexes (Girardi and Kurat, 1982; Girardi et al., 1986; Ferreira Filho et al., 1994; Correia and 

Girardi, 1998; Ferreira Filho et al., 2010; Giovanardi et al., 2015). A review of their literature 

names and subdivisions is reported in Table 1. Each stratigraphy begins with a basal gabbroic unit 

followed by one (or more) ultramafic unit and one (or more) mafic gabbroic unit. Above the latter, 

in Niquelândia and Barro Alto a gabbroic-anorthositic unit and a roof unit outcrop, which are 

alternatively considered as part of the complexes (one-intrusion model) or different intrusives (two-

intrusions model). 

A first attempt to simplify the stratigraphy of the three complexes was recently made based on the 

two-intrusions model (Ferreira Filho et al., 2010), which suggests that the complexes are formed by 

Meso- and Neoproterozoic intrusive events which have crystallized the upper and the lower parts of 

the complexes. This attempt has unified the names of the lower units of the complexes and 

differentiated the upper units as different intrusive. Conversely, according to the one-intrusion 

model (which suggests that complexes were formed during a single Neoproterozoic event), the 

Niquelândia complex is divided in a Lower Sequence (LS hereafter) and an Upper Sequence (US 

hereafter) with several sub units (Correia et al., 2007, 2012; Rivalenti et al., 2008). In this work, we 

revisit the classification of Ferreira Filho et al. (2010) for the lower units and the model of Correia 

et al. (2007, 2012) and Rivalenti et al. (2008) for the upper units and propose a new unified 

terminology as discussed throughout the paper. 

 

Field observations from Barro Alto 

In contrast to Niquelândia and Cana Brava and according to Ferreira Filho et al. (2010 and 

references therein) the stratigraphy of Barro Alto does not comprise ultramafic rocks between the 

lower and upper gabbroic units. Therefore, the gabbroic rocks outcropping in the Barro Alto 

complex have been always ascribed to the basal gabbroic unit (Ferreira Filho et al., 2010; Della 

Giustina et al., 2011). However, during our recent fieldwork, excavation for the enlargement of 
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highway GO338 near the city of Goianesia, has exposed levels of ultramafic rocks in the lower 

gabbroic sequence of Barro Alto (Fig. 5). Some small outcrops of ultramafic rocks have also been 

recognized in the lower part of the stratigraphic succession in the oblique segment of the Barro 

Alto, although the development of sugar cane crops in the region and the consequent dismantling of 

all outcrops have hampered mapping the dimensions, continuity and features of the stratigraphy in 

the lower part of the complex. These findings suggest that, at least in the E-W trending portion of 

the complex, the stratigraphy of Barro Alto is similar to the one of Cana Brava. 

This observation is supported also by rock features in the central and upper part of the stratigraphic 

succession (where the outcrops are more abundant), which are similar to the rocks of the upper 

gabbroic sequence of Niquelândia and Cana Brava complexes. In particular, the occurrence of 

magmatic amphibole and xenoliths are typical of gabbros in the upper gabbroic sequence (Rivalenti 

et al., 2008; Correia et al., 2012; Giovanardi et al., 2016). Magmatic amphibole has been recognized 

in the rocks of the central and upper stratigraphic sequence of the E-W trending part of Barro Alto, 

as well as xenoliths (Fig. 5). 

 

New unified stratigraphy 

According to our new stratigraphic evidence of Barro Alto, we assert the close similarity among the 

three complexes. Therefore, starting from the E, the LS of the Barro Alto, Niquelândia and Cana 

Brava complexes is composed by the following units (Figs. 2, 3 and 4): 

i) Lower Mafic Zone (LMZ), formed by gabbros mainly recrystallized in micro and mylonitic 

textures and/or epidote-bearing amphibolites. The recrystallization of this unit is commonly 

recognized as the consequence of tectonic emplacement of the complexes over the Rio Maranhão 

Thrust Zone, which also favoured a pervasive percolation of fluids in the lower units (Girardi et al., 

1986; Correia and Girardi, 1998; Correia et al., 1999; Biondi, 2014). 

ii) Ultramafic Zone (UZ), formed by serpentinites interlayered with amphibolites and subordinated 

gabbros and pyroxenites. Serpentinites and amphibolites originated from the percolation of fluid 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

6 
 

within peridotites (serpentinites) and pyroxenites and gabbros (amphibolites). Primary cumulus 

textures are commonly preserved in these rocks. Approaching the top of the unit, the 

recrystallization decreases and pyroxenites become predominant. The top of the unit consists of 

pyroxenites (mainly websterites and subordinate orthopyroxenites) interlayered with gabbros. The 

transition to the upper unit is characterized by an increase of gabbros and decrease of abundance of 

pyroxenite layers. 

iii) Mafic Zone (MZ), formed by gabbros, gabbro-norites and norites. Amphibole abundance 

increases discontinuously along the stratigraphic succession, reaching its maximum at the top of this 

unit (named by Girardi et al., 1986, as the 'Hydrous Zone' in Niquelândia). Together with 

amphibole, the rocks at the top are characterized by the occurrence of biotite. Discontinuous 

outcrops of diorites, sometimes containing garnet, occur in the sequence. Xenoliths embedded from 

the upper metavolcanic-metasedimentary sequence start also to appear in this unit. The first xenolith 

occurrence consists of decametres-long quartzite layers parallel to the foliation of the complexes, 

recognized in both Niquelândia and Cana Brava. Along the stratigraphic succession, xenoliths 

diminish their dimensions and lithologically are amphibolites, garnet-bearing amphibolites, 

gneisses, metapelite and calc-silicate rocks. Xenoliths maximum abundance is at the top of the MZ, 

in the Hydrous Zone (Correia et al., 2012; Giovanardi et al., 2016). 

The LS is common to all complexes, whereas the US outcrops only in Niquelândia and in the 

northern N-S sector of Barro Alto. Cana Brava and the southern E-W segment of Barro Alto end 

with the MZ, which, in both complexes, show intrusive contact with the upper metavolcanic-

metasedimentary sequence.  

The US is organized in the following units: 

iv) Upper Gabbro-Anorthosite Zone (UGAZ), formed by olivine gabbros grading into anorthosites 

and troctolites with local occurrence of layers and lenses of subophitic coarse grained isotropic 

gabbros. 
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v) Upper Amphibolite (UA), formed by amphibole-bearing gabbros interlayered with amphibolites, 

epidote-bearing gneisses and/or other lithologies of the metavolcanic-metasedimentary sequences.  

The contact with the stratigraphic upper metavolcanic-metasedimentary sequences (i.e. 

Palmeirópolis, Indaianopólis and Juscelândia) is magmatic in all the complexes and in both LS and 

US (Girardi and Kurat, 1982; Girardi et al., 1986; Correia and Girardi, 1998; Ferreira Filho et al., 

2010). 

The Palmeirópolis, Indaianopólis and Juscelândia sequences show similar stratigraphy and 

lithologies and are considered fragments of the same crustal sequence (Ferreira Filho et al. 2010 and 

references therein). The Palmeirópolis Sequence in contact with Cana Brava is the largest (c.a. 80 

km long and up to 35 km wide). 

These sequences mainly consist of metasedimentary successions (i.e. metacherts, metapelites and 

calc-silicate rocks) with interbedded amphibolites, gneisses and intrusive and sub-volcanic granites 

(Brod and Jost 1991; Araújo et al. 1995; Araújo 1996; Moraes and Fuck 1994, 1999; Moraes et al. 

2003, 2006; Ferreira Filho et al. 2010). The metavolcanic rocks show geochemical affinities with E-

MORB and N-MORB. This compositional variability might indicate a transitional setting from a 

continental rift to an aborted ocean basin (Araújo, 1996; Moraes et al. 2003, 2006). 

Geochronological data on the metavolcanic rocks suggest that the magmatic event occurred during 

the Mesoproterozoic, between 1.26-1.30 Ga (Pimentel et al., 2000; Moraes et al., 2006; Ferreira 

Filho et al., 2010). The rocks show metamorphic recrystallization from amphibolite-facies near the 

contacts with the complexes, where local granulite-facies conditions have also been observed as in 

the Cafelandia amphibolite (Moraes and Fuck, 1994), to greenschist-facies to the W (Araújo 1996; 

Moraes et al. 2003, 2006; Ferreira Filho et al. 2010 and references therein).  

 

Previous age data and intrusion models 
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Although the Barro Alto, Niquelândia and Cana Brava complexes have been the focus of several 

geochronological studies, a unique interpretation of the intrusion age is still a matter of debate. A 

review of intrusion age data currently available in the literature is reported in Table 2. 

Recent studies have demonstrated that the MZ unit of Niquelândia and Cana Brava during their 

growth have incorporated rocks from the metavolcanic-metasedimentary sequence (Rivalenti et al., 

2008; Correia et al., 2012; Giovanardi et al., 2016). This contamination calls into question the 

reliability of the whole-rock isochron method applied to date these rocks (contamination evidence 

are provided for the K-Ar, Ar-Ar, Rb-Sr and Sm-Nd isotopic systematics and for K content; 

Rivalenti et al., 2008; Correia et al., 2012; Giovanardi et al., 2016). In the frame of this evidence, 

the only reliable intrusion ages of the complexes are those provided by zircon.  

Ferreira Filho et al. (2010) published U-Pb TIMS analyses on zircon grains from gabbros of Cana 

Brava, obtaining two concordia ages at 782 ± 3 Ma and 779 ± 1 Ma. Giovanardi et al. (2015) 

published comparable U-Pb SHRIMP-II data, but with slightly older concordia ages, of 792 ± 9 Ma 

and 778 ± 7 Ma. Both authors have interpreted these ages as intrusion ages.  

The presence of inherited zircon cores that provide discordant older ages at 1553, 1493 and 1242 

Ma has also been reported (Giovanardi et al., 2015). These ages are consistent with those reported 

for the formation of the Palmeirópolis Sequence or their inherited sources (Moraes et al., 2003), and 

thus these cores of zircon grains are interpreted as inherited (Giovanardi et al., 2015). 

Similar Mesoproterozoic ages have been reported for zircon grains from the Barro Alto and 

Niquelândia complexes (Ferreira Filho et al., 1994, 1998; Pimentel et al., 2004, 2006; Correia et al., 

1999, 2007, 2012; Della Giustina et al., 2011), together with younger Neoproterozoic ages. The 

occurrence of two different age clusters (i.e., the Mesoproterozoic and the Neoproterozoic ones) has 

been interpreted up until now with two different models that are explained in details in the two 

following sections.  

 

Two-intrusions model 
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Danni and Leonardos (1981) and Danni et al. (1982) were the first to suggest that Niquelândia 

consisted of two different complexes with distinct ages, structural and metamorphic 

recrystallization history. According to them, the older complex represented by the LS was a proto-

ophiolitic sequence, while the younger one represented by the US was a metamorphed ocean-floor 

basalt sequence. 

Pimentel et al. (2004) reported U-Pb SHRIMP-RG zircon ages of two samples from the 

Niquelândia complex. Sample CF03 from the LS gave 24 
206

Pb/
238

U ages in the range 855-739 Ma 

and 14 ages distributed between 1035 Ma and 1959 Ma. Sample CF04 from the US yielded 13 

206
Pb/

238
U ages in the range 860-732 Ma and 10 ages distributed between 916 Ma and 1349 Ma. 

Ferreira Filho et al. (1994) previously dated the same samples by conventional U-Pb method 

obtaining the same bimodal age distribution. The Neoproterozoic age of the LS sample (CF03) has 

been interpreted as magmatic, while the older ages, up to 1959 Ma, have been interpreted as due to 

an inherited component given the correspondent low εNd values typical of crustal contamination 

(εNd= -5.8; Pimentel et al., 2004). Conversely, Neoproterozoic ages obtained on bright (in 

cathodoluminescence) zircon rims from sample CF04, representing the US, have been interpreted as 

metamorphic and the upper intercept of the concordia age at 1248 ± 23 Ma as indicative of the 

magmatic intrusion of the US. Based on these data, Pimentel et al. (2004, 2006) proposed that 

Niquelândia was formed by two distinct intrusions, a Mesoproterozoic intrusion and a 

Neoproterozoic intrusion (the US and the LS, respectively). The same interpretation was 

successively applied to Cana Brava and Barro Alto complexes (Ferreira Filho et al., 2010; Della 

Giustina et al., 2011). We note here that this interpretation is opposite to the one of Danni and 

Leonardos (1981) and Danni et al. (1982), whom consider the LS older than the US, thus reversing 

the ages of the two intrusions. 

Della Giustina et al. (2011) dated three samples from Barro Alto and one sample from the 

Cafelândia garnet-amphibolite (from the Palmeirópolis sequence) using U-Pb LA-ICPMS on zircon 

grains. For the US samples, 5 zircon grains from a leucogabbro (sample BAL-09) gave a mean age 
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of 1288 ± 14 Ma, while 5 zircon grains from a garnet-'metanorthosite' (sample BAL-04) yielded 

ages between 808-735 Ma together with 3 older ages at 904, 1031 and 1117 Ma. The 'mafic 

granulite' from the LS (sample BAL-05) gave a mean 
206

Pb/
238

U zircon age at 774 ± 67 Ma, similar 

to the one obtained from the Cafelândia garnet-amphibolite at 788 ± 46 Ma (Della Giustina et al., 

2011). These ages have been interpreted as intrusion ages: the average Mesoproterozoic age for the 

US intrusion and the Neoproterozoic age for the LS intrusion.  

The Mesoproterozoic age of the US intrusion at c.a. 1300 Ma is coeval with the extrusive 

magmatism recognizable in the upper metavolcano-metasedimentary sequences of Palmeirópolis, 

Indaianópolis and Juscelândia (Correia et al., 1999; Moraes et al. 2003, 2006; Pimentel et al., 2006; 

Ferreira Filho et al., 2010), thus relating in time the two events. Crustal contamination in the 

Neoproterozoic LS is probably related to the intrusion happening in an extensional tectonic event in 

continental crust (Ferreira Filho et al., 2010; Della Giustina et al., 2011). The mostly coeval age of 

the LS intrusion (c.a., 770-800 Ma) and magmatic events recorded by the Goiás Magmatic Arc 

(c.a., 790 Ma) were interpreted by Della Giustina et al. (2011) as the evidence of LS intrusion 

during an extensional tectonic related to the development of a subduction zone and the origin of a 

volcanic arc in the Goiás Magmatic Arc. 

According to the two-intrusion model, the US of the complexes was metamorphosed during the 

intrusion of the LS (c.a., 800 Ma) and both were successively recrystallized in granulite- and 

amphibolite-facies during a regional metamorphic event, which is responsible for the complexes 

foliation (Ferreira Filho et al., 1994, 2010; Pimentel et al., 2004, 2006; Della Giustina et al., 2011). 

The age of this metamorphic event is currently unconstrained. The complexes were juxtaposed at 

760-750 Ma, possibly during the accretion of the Goiás Magmatic Arc to the São Francisco craton 

(Della Giustina et al., 2011). 

 

One-intrusion model 
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Based on field and petrological evidences, Rivalenti et al. (1982) and Girardi et al. (1986) suggested 

that the LS and the US of Niquelândia represent a single intrusion. They attributed the differences 

between the LS and the US to polybaric fractionation and were the first to recognize the enrichment 

of hydrous phases in the MZ, in the US and up to the complex roof and the occurrence of xenoliths 

from the host Indaianópolis metavolcanic-metasedimentary sequence. 

Correia et al. (2007) reported U-Pb SHRIMP zircon ages of two anorthosites: sample Niq1551 from 

the US of Niquelândia and sample BA-1541 from the US of Barro Alto. The two samples yielded 

concordia ages of 833 ± 21 Ma and 733 ± 25 Ma, respectively. The authors interpreted them as 

crystallization ages of the US and, according to literature ages for the LS of Niquelândia and Barro 

Alto (Pimentel et al., 2004), reproposed the model of the complexes formed during the same 

igneous event.  

Rivalenti et al. (2008) investigated the development of crustal contamination in Niquelândia and 

modelled the intrusion of the complex suggesting that an anorthositic crystal mush, compatible with 

the US parent melt, was formed during the segregation of the UZ lithologies. 

Correia et al. (2012) provided further U-Pb SHRIMP concordia zircon age on an anorthosite from 

the Niquelândia US (sample Niq1552) of 780.8 ± 3.7 Ma. This age was interpreted as an intrusion 

age, although the data distribution suggests that the concordia age could have been affected by 

younger single-spot ages possibly related to the slow cooling of the complex, and thus they set the 

intrusion age slightly older at c.a. 790 Ma. In addition, Correia et al. (2012) revised the data of 

samples CF03 and CF04 and, based on the petrographic evidence provided by Pimentel et al. 

(2004), concluded that sample CF04 is an embedded xenolith of the metavolcanic-metasedimentary 

sequence. According to these authors, the Mesoproterozoic ages in Niquelândia US were obtained 

in inherited zircons (similarly to the interpretation of Mesoproterozoic ages in sample CF03 of 

Pimentel et al., 2004). They also were the first to report field evidence of late undeformed layers 

and domains with magmatic texture, which crosscut the over-imposed foliation interpreted as 

metamorphic in the literature. Correia et al. (2012) concluded that the LS and US of Niquelândia are 
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parts of the same body that intruded via multiple-melt pulses under syn-magmatic hyper- to sub-

solidus shear conditions. According to this model, the high-T recrystallization observed in several 

parts of the complex has occurred during the slow-cooling process and is not due to later 

metamorphic events. The metasomatic process that affected the three complexes, giving rise to 

serpentinites, talc-carbonate rocks, rodingites (in Cana Brava, Dreher et al. 1989), is a much later 

event associated to local fracturing at low temperature (about 400°; Girardi et al. 1991; Biondi, 

2014).  

Recent studies on Cana Brava have provided preliminary U-Pb SHRIMP zircon ages coeval to 

Niquelândia (4 samples concordia age at 788 ± 2.1 Ma; Giovanardi et al., 2015) and similar field 

structures suggesting that the complex has grown under hyper- to sub-solidus deformation 

(Giovanardi et al., 2016).  

 

Samples and analytical methods 

Zircons were separated after crushing, milling, magnetic and heavy liquid separation and hand 

picking from 4 samples of Cana Brava and 2 samples from Barro Alto.  

Zircons were separated from Cana Brava rocks to definitely constrain their age of intrusion: among 

the three complexes Cana Brava is the least known and only few and preliminary data are reported 

in literature. Samples from Cana Brava (named CB1030, CB1100, CB1175 and CB1382) are 

gabbros and a diorite from different stratigraphic levels in the MZ and were selected among the 

samples collected from limited available in place outcrop (the soil alteration and the vegetation of 

the area often cover the outcrops and only blocks are recognizable). 

Sample CB1175 is a granoblastic gabbro from the middle of the stratigraphic succession of the MZ, 

while samples CB1100 and CB1382 and sample CB1030, respectively, are representative of 

granoblastic gabbros and subordinated diorites outcropping near the roof of Cana Brava (Fig. 2). 

Gabbro CB1175 was collected at 13°28'0.01"S and 48°16'3.61"O; it shows a foliation parallel to the 

complex direction (i.e. NNE) due to the alignment of pyroxenes and plagioclase. Biotite is 
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commonly associated to amphibole, which is the most abundant hydrous phase. Minor amounts of 

K-feldspar and quartz are also recognized. Spinel and zircon occur as accessory phases. 

Sample CB1100, a non-foliated almost-anhydrous gabbro from the roof of the complex, was 

collected at 13°29'10.48"S and 48°18'38.12"O; amphibole is the only hydrous phase and it occurs in 

minor amount. Orthopyroxene is largely subordinated to clinopyroxene. Spinel is more abundant 

with respect to other samples. Sample CB1382, a hydrous foliated gabbro from the complex roof, 

was collected at 13°22'6.06"S and 48°15'32.05"O; Foliation results from alignment of pyroxenes, 

plagioclase and biotite. Biotite is the most abundant hydrous phase but amphibole also occurs. 

Spinel, quartz and K-Feldspar occur in minor amounts. Zircon and apatite occur as accessory 

phases. Sample CB1030, a diorite pod near the complex roof, was collected at 13°22'9.49"S and 

48°15'21.99"O. Orthopyroxene is more abundant than clinopyroxene. Biotite is the major hydrous 

phase, while amphibole is accessory. K-feldspar and quartz are more abundant than in gabbros. 

Apatite, titanite and zircons occur as accessory phases. 

Notwithstanding that Barro Alto is more studied than Cana Brava, its intrusion age is still debated. 

Therefore, we decided to separate zircons from one gabbro from the MZ (BA06T) and from one 

anorthosite from the UGAZ (BA01T) in order to constrain the ages of LS and US and clarify the 

correct model of formation of the complex. 

Sample BA06T is a granoblastic coarse-grained gabbro outcropping in the upper part of the MZ 

near the roof of the complex and the contact with the Palmeirópolis Sequence in the W-E part of 

Barro Alto (15°12'51.04"S and 49°11'23.94"O; Fig. 4). A magmatic stratification, parallel to the 

complex direction, is recognizable from an alternance of layers of femic minerals (pyroxenes and 

amphibole) and plagioclase. Amphibole occurs in minor amount often associated to clinopyroxene. 

Spinels are abundant as interstitial phase in femic layers. Zircon occurs as accessory phase. 

Sample BA01T is a granoblastic coarse-grained anorthosite from the UGAZ outcropping in the N-S 

part of Barro Alto (15°05'02.13"S and 48°59'17.91"O; Fig. 4). Clinopyroxene and amphibole occur 
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as interstitial phases along deformed bands. In these bands, minor amounts of spinel and 

orthopyroxene are also recognized. Apatite and rutile occur as accessory phases. 

After Au-coating, the polished zircon mounts were comprehensively examined with a FEI-

QUANTA 250 scanning electron microscope equipped with secondary-electron and 

cathodoluminescence (CL) detectors at IGc-CPGeo-USP. The most common conditions used in CL 

analysis were 60 μA of emission current, 15.0 kV of accelerating voltage, 7 μm of beam diameter, 

200 μs of acquisition time, and a resolution of 2048x1887 pixels and 345 dpi. The same mounts 

were afterwards analyzed for U-Pb isotopes by SHRIMP-IIe machine also at IGc-CPGeo, 

Universidade de São Paulo, following the analytical procedures presented in Williams (1998). 

Correction for common Pb was based on the measured 
204

Pb, and the typical error component for 

the 
206

Pb/
238

U ratio is less than 2%; U abundance and U-Pb ratios were calibrated against the 

TEMORA standard and age calculations were performed with Isoplot© 4.1 (Ludwig, 2009). Data 

are reported in Table 3. 

 

Results 

Cana Brava gabbros from the MZ of the Lower Sequence 

Zircon grains from sample CB1175 are colourless and have anhedral to sub-euhedral habits. CL 

images show complex structures composed by irregular chaotic oscillatory zoning and domains 

often superimposed by other structures (Fig. 6). When occurring, linear zoning is partially erased.  

Zircon grains from samples near the complex roof are colourless and commonly have sub-euhedral 

habits (Figs. 7, 8 and 9). Anhedral crystals are rare. CL images show similar structures among the 

three samples. Zircon grains often present black cores with partially deleted zoning or domains and 

a brighter magmatic oscillatory zoning or domains growth (Figs. 7, 8 and 9). Rarely, the cores are 

bright and show evidence of resorption with formation of a partially deleted complex structure. 

Often the core structures are truncated by one or more growth accretion of new domains or 
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oscillatory zoning. In sample CB1100, the rim structures are brighter and sometimes reabsorb the 

previous growth structure with superimposed accretion (Fig. 8).  

In all samples, zircon grains composed only by oscillatory zoning are recognizable (Figs. 7, 8 and 

9). 

Twenty-one U-Pb SHRIMP-II analyses were obtained from 15 zircon grains of sample CB1175, 28 

analyses from 17 zircon grains of sample CB1030, 7 analyses from 7 zircon grains of sample 

CB1100 and 5 analyses from 4 zircon grains of sample CB1382. 

Analyses from sample CB1175 show 
206

Pb/
238

U single spot ages ranging from 819 ± 14 Ma to 791 

± 14 Ma, defining a weighted average of 802 ± 7 Ma (2σ, MSWD = 0.20, probability of 

concordance = 1.00). However, the data give an extremely poor concordia age of 796 ±4 Ma (2σ, 

decay-const. errs included, MSWD = 6.8, probability of concordance = 0.009). 

206
Pb/

238
U single spot ages from sample CB1030 range from 801 ± 23 Ma to 756 ± 22 Ma, defining 

a weighted average of 778 ± 3 Ma (2σ, MSWD = 0.49, probability of concordance = 0.99) and a 

concordia age of 779 ± 3 Ma (2σ, decay-const. errs included, MSWD = 4.0, probability of 

concordance = 0.047). One core analysis yielded an older age of 1150 ± 8 Ma. 

Analyses from sample CB1100 gave 
206

Pb/
238

U single spot ages ranging from 795 ± 23 Ma to 762 ± 

22 Ma, defining a weighted average of 781 ± 7 Ma (2σ, MSWD = 0.26, probability of concordance 

= 0.96) and a concordia age of 783 ± 7 Ma (2σ, decay-const. errs included, MSWD = 1.2, 

probability of concordance = 0.27). Two older discordant analyses on zircon cores yielded ages of 

866 ± 7 Ma and 829 ± 7 Ma. 

206
Pb/

238
U single spot ages from sample CB1382 range from 786 ± 6 Ma to 774 ± 8 Ma, defining a 

weighted average of 780 ± 6 Ma (2σ, MSWD = 0.44, probability of concordance = 0.78) and a 

concordia age of 781 ± 6 Ma (2σ, decay-const. errs included, MSWD = 2.2, probability of 

concordance = 0.13). 

 

Barro Alto gabbro from the MZ of the Lower Sequence 
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Zircon grains from BA06T are colourless with euhedral to sub-euhedral habits. No inclusions were 

recognized. 

In CL, zircon grains show two different zoning: a darker internal linear zoning and, in the zircon 

rims, a brighter zoning commonly organized in domains (Fig. 10). The brighter external domain 

zoning commonly envelops the internal zoning but follows the same growth direction. 

Twenty-one analyses were carried out on 15 zircon grains. 

206
Pb/

238
U single spot ages range from 761 ± 20 Ma and 812 ± 14 Ma, with a weighted average of 

789 ± 6 Ma (2σ, MSWD = 0.73, probability of concordance = 0.76). Four analyses show older ages: 

three are from dark cores and are discordant; one is a concordant age from the rim of one of the 

crystals (analyses 6.1, 9.1, 9.2 and 12.1; Fig. 10). The two older discordant ages from the dark cores 

gave 
206

Pb/
238

U single spot ages of 1438 ± 43 Ma and 1083 ± 20 Ma. The rim yielded a concordant 

206
Pb/

238
U single spot age of 892 ± 14 Ma. Last, the core of zircon 12 gave a discordant 

206
Pb/

238
U 

single spot age of 836 ± 14 Ma. 

Excluding these four older analyses, zircon grains from sample BA06T define a concordia age of 

790 ± 6 Ma (2σ, decay-const. errs included, MSWD = 1.2, probability of concordance = 0.27). 

  

Barro Alto anorthosite from the UGAZ of the Upper Sequence 

Zircon grains from BA01T are colourless with rounded anhedral to subeuhedral habits. Small 

rounded inclusions have been identified in two crystals. CL images show different and complex 

structures (Fig. 11). Usually, zoning is partially to completely erased, and appears as a dark/grey 

homogeneous area. In the few zoned grains, the crystals have small cores with different internal 

structure and overgrowth zoning (Fig. 11). Extremely bright domains overgrow discordantly all the 

other structures (Fig. 11). 

Nineteen analyses were performed on 16 zircon grains. Eleven analyses gave concordant ages 

ranging between 842 ± 16 Ma and 770 ± 11 Ma (
206

Pb/
238

U single spot age, 1σ error), a weighted 

average of 802 ± 14 Ma (95% confidence error level, MSWD = 3.4) and a concordia age of 801 ± 9 
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Ma (95% confidence error level, decay-const. errs included, MSWD = 0.016, probability of 

concordance = 0.90). 

Three older discordant 
206

Pb/
238

U single spot ages of 2052 ± 25 Ma, 1318 ± 16 Ma and 889 ± 17 Ma 

were obtained in two zircons. Five younger discordant ages in three zircons released 
206

Pb/
238

U 

single spot ages ranging between 644 ± 8 Ma and 600 ± 8 Ma. 

 

Discussion 

Age of the complexes 

Our new ages of Cana Brava, ranging from 819 ± 14 Ma to 756 ± 22 Ma, are slightly older than 

previously reported  ages of 782-779 Ma (Ferreira Filho et al., 2010) and of 792-778 Ma 

(Giovanardi et al., 2015). However, all together these data suggest that the intrusion of Cana Brava 

took place in a time span of at least c.a. 30 Ma (800-770 Ma).  

Cana Brava ages reflect the stratigraphic position of the samples: gabbro CB1175 from the middle 

part of the MZ, yielded older ages than samples CB1100, CB1382 and CB1030 from near the roof 

of the complex (
206

Pb/
238

U average ages at 802 ± 7 Ma and 781-778 Ma respectively). Among 

samples from the complex roof, diorite CB1030 is slightly younger than gabbros CB1100 and 

CB1382 (
206

Pb/
238

U average ages at 778 ± 3 Ma and 780 ± 6 - 781 ± 7 Ma, respectively). Based on 

petrographic evidences, diorites in the Goiás complexes are interpreted in literature as formed by 

fractionation of a late melt (Correia et al., 2012; Giovanardi et al., 2016). The new U-Pb data 

support this hypothesis. The samples stratigraphic positions, the magmatic crystallization evidences 

and the U/Pb ages suggest that the Cana Brava intrusion occurred in a relatively long time span that 

permitted the partial closure of the zircon system before the end of the intrusion. Taken together 

new and literature ages from Cana Brava are equally distributed between 800-770 Ma and show 

comparatively younger ages between 770-750 Ma with a few data down to 700 Ma (Fig. 12). This 

constant sharp decrease could be associated to the slow cooling of the complex. The absence of 

younger, significantly separated age spikes from the intrusive event is consistent with the 
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hypothesis that Cana Brava has not been recrystallized by regional metamorphic events after its 

crystallization. This idea, previously suggested by Giovanardi et al. (2016) on structural evidence, is 

now supported by the equal distribution of ages between 800 and 770 Ma and the evidence that the 

age distribution is directly related to the stratigraphic position of the samples and their 

crystallization age. The few ages between 800 and 820 Ma are interpreted as related to the initial 

stage of the one-intrusion event, while older ages, always found in zircon cores, are interpreted to 

be inherited zircons from xenoliths of the metavolcanic-metasedimentary sequence.  

U/Pb zircon ages from the Barro Alto gabbro from the MZ of the LS (sample BA06T) show a 

restricted time span similar to the Cana Brava samples (between 800-770 Ma), suggesting a coeval 

intrusion age for the two complexes. Zircon grains from the Barro Alto anorthosite from the UGAZ 

of the US mainly gave slightly older concordant ages, but coeval within errors, with the Barro Alto 

gabbro (
206

Pb/
238

U average ages at 802 ± 14 Ma and 789 ± 6 Ma, respectively). This evidence 

supports the scenario that anorthosites and gabbros are part of the same intrusion, as previously 

suggested for Niquelândia (Correia et al., 2007, 2012; Rivalenti et al., 2008). The fact that 

anorthosite ages are slightly older than gabbro ages is also in agreement with the idea that the 

anorthosite crystallized from a plagioclase-rich crystal mush separated during the initial segregation 

of the ultramafic cumulates (i.e., the UZ)  (Rivalenti et al., 2008; Correia et al., 2012). We interpret 

few older ages in the MZ gabbro and in the UGAZ anorthosite as inherited zircon grains from the 

metavolcanic-metasedimentary sequence. The discordant nature of these ages is possibly ascribed to 

a rejuvenation effect of partial re-opening of the zircon system and/or Pb loss during residence in 

the magmatic chamber. This rejuvenation mechanism could have also affected four crystals in the 

anorthosite with discordant ages between 644-600 Ma. These ages are currently the youngest ever 

reported in the literature for the three complexes (e.g. Pimentel et al., 2004, 2006; Correia et al., 

2007, 2012; Ferreira Filho et al., 2010; Della Giustina et al., 2011; Giovanardi et al., 2015). 

However, their discordant nature and the absence of similar zircon data suggest that they could be 

the result of Pb loss during local tectonism (visible in the many faults and shear zones in the area), 
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possibly related to the bending/exhumation of the complex. A similar age at 650 Ma was obtained 

from U-Pb dating of rutile from Niquelândia and interpreted as consistent with the tectonic event 

responsible for the exhumation of the complex (Ferreira Filho et al., 1994, 1998). 

Our new data from Barro Alto suggest that the mafic-ultramafic LS and the US units are coeval and 

genetically related to the same intrusion event between 800-770 Ma, similarly to what observed in 

Niquelândia (Correia et al., 2007, 2012; Rivalenti et al., 2008). Our data also support the 

interpretation of a common exhumation scenario of the complexes between 600 and 650 Ma. 

 

Inconsistencies in Barro Alto US ages 

Although our data of Barro Alto definitely confirm a Neoproterozoic intrusion age for the US and 

LS units, literature ages of the US around 1.30-1.27 Ga and of supposed 'metamorphic ages' around 

800 Ma reveal a more complicated history (Table 2; Fig. 13), whereas the LS data are more 

consistent with the 800-770 Ma interval for the intrusion (Fig. 13).  

So far, four samples from the Barro Alto US have been studied: three anorthosites and one 

leucogabbro. The Neoproterozoic ages from our Barro Alto US anorthosite BA01T (
206

Pb/
238

U ages 

between 842 ± 16 Ma and 770 ± 11 Ma) are consistent with previously obtained ages from another 

anorthosite (sample BAL-04 of Della Giustina et al. 2011), with similar few older discordant ages. 

Ages reported from US anorthosite BA-1541 define discordant younger ages ranging from 799 ± 36 

Ma down to 726 ± 26 Ma (Correia et al., 2007), however, compatible with the two previous ages. 

Thus, these three anorthosites from the US indicate a coeval Neoproterozoic intrusion age with the 

LS gabbros (800-770 Ma; this study). Conversely, a US leucogabbro (sample BAL-09 of Della 

Giustina et al., 2011) defines Mesoproterozoic ages from 1301 ± 15 Ma down to 1127 ± 17 Ma, 

thus, suggesting that the intrusion age of the Barro Alto US occurred between 1.29 and 1.27 Ga 

(ages obtained from the average concordant ages of sample BAL-09 and from the upper intercept of 

sample BAL-04 considering the older discordant ages). Della Giustina et al. (2011) have also 

reported Lu-Hf isotopic ratios of zircons and have recalculated εHf(t) to the ages estimated by their 
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two-intrusion model: at 1.29 Ga for BAL-09 zircons (US), at 1.27 Ga for BAL-04 zircons (US) and 

at c.a. 800 GA for BAL-05 zircons (LS). The recalculated εHf(t) are indicative of mantle values for 

the US zircons and of crustal values for the LS (εHf(t) = 5.13 to 7.22 for BAL-09, 7.00 to 9.88 for 

BAL-04 and -7.84 to -12.76 for BAL-05). These results are consistent with Rb-Sr and Sm-Nd 

isotope systematics and indicate crustal contamination of the MZ of the LS in Niquelândia and 

Cana Brava, and none or poor contamination of the US (Rivalenti et al., 2008; Correia et al., 2012; 

Giovanardi et al., 2016). It is worth noticing that, the Neoproterozoic zircon grains from sample 

BAL-04 (Della Giustina et al., 2011) result in positive eHf(t) when recalculated to the age inferred 

by their model, however, they become mainly negative εHf(t) from 0.06 to -4.68, when recalculated 

to their measured U-Pb age (Fig. 14). The single Mesoproterozoic zircon grain from the same 

sample shows a positive εHf(t) at 6.04 consistent with values from the BAL-09 US leucogabbro 

(Fig. 14). Assuming the zircon ages as crystallization ages, Mesoproterozoic and Neoproterozoic 

zircon grains define two different εHf(t) groups, the first one with mantle values and the second one 

with more crustal values (Fig. 14). Similar εHf(t) positive mantle values have been found in zircon 

grains from the Cafelandia amphibolite (Della Giustina et al., 2011), commonly interpreted as part 

of the metavolcanic-metasedimentary sequence (Moraes and Fuck, 1994; Moraes et al., 2003, 

2006). This evidence suggests that, similarly to what observed in the LS and other complexes, the 

Mesoproterozoic zircon grains within the Barro Alto US are inherited from the metavolcanic-

metasedimentary sequence. This scenario is also supported by the anomalous morphology and CL 

structure of the BAL-09 zircon grains compared to other zircon grains showed in this work and in 

literature for gabbroic rocks of the three complexes. In particular, they are described as fragments 

with 'stubby habit with rounded terminations, which render oval morphologies' and with CL images 

revealing ‘texture indicating metamorphic recrystallization' (Della Giustina et al., 2011). These 

features are described in zircon grains from gabbroic rocks only in Mesoproterozoic cores from 

inherited zircons, which are commonly overgrowth by magmatic oscillatory CL zoning zircons with 
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euhedral to sub-euhedral habits (see Figs. 9 and 10 and CL images in Pimentel et al., 2004; Correia 

et al., 2007, 2012; Giovanardi et al., 2015). 

The εHf(t) from 0.06 to -4.68 of sample BAL-04 are consistent with Rb-Sr and Sm-Nd bulk rock 

data and suggest that anorthosites fractionated early during the complexes intrusion from poorly/un- 

contaminated melts during the segregation of the UZ (Rivalenti et al., 2008; Correia et al., 2012). 

Because zircon grains crystallize as a late phase during mafic intrusions, they can record, more 

accurately than other minerals, the contamination of the anorthositic residual melts. According to 

the different degrees of crustal contamination in the US and LS, Neoproterozoic zircons from the 

US anorthosite BAL-04 show εHf(t) values that are less contaminated than those from the LS 

sample BAL-05.  

In summary, according to U-Pb zircon data reported in this study, literature ages from Barro Alto 

anorthosites (US samples BAL-04 and BA-1541) and the review of literature Mesoproterozoic 

inherited zircon grains, we conclude that the Barro Alto LS and US are coeval and crystallized 

during the same igneous event during the Neoproterozoic. 

 

Which model? 

The new U-Pb zircon ages of Cana Brava and Barro Alto constrain the intrusion of the two 

complexes as coeval and between 770 and 800 Ma. Furthermore, the new Barro Alto data, together 

with literature data, indicate that the crystallization of LS and US in this complex occurred during 

the same igneous event. These evidences are in agreement with the one-intrusion event model and 

rule out the possibility that the Barro Alto and Niquelândia complexes were formed by two distinct 

igneous events as previously proposed. 

The U-Pb zircon age distribution in both Cana Brava and Barro Alto complexes and the absence of 

ages younger than the intrusive event further support the hypothesis that the complexes deformation 

occurred during their growth in hyper- to sub-solidus shear conditions and that regional 
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metamorphism does not overprint the Goiás complexes. Similar geochemical and structural 

evidences have been also discussed for Niquelândia (Correia et al., 2012).  

The fact that US anorthosites commonly show slightly older ages than MZ gabbros in both Barro 

Alto and Niquelândia complexes (Correia et al., 2012; this study) also suggests that these 

lithologies were formed from an anorthositic crystal mush probably separated during the 

segregation of the UZ at the beginning of the complexes crystallization. The least contaminated 

εHf(t) values for the Neoproterozoic zircon grains of the Barro Alto anorthosite with respect to the 

zircon grains of the gabbros are consistent with this scenario. 

Based on structural evidences such as the occurrence of late undeformed magmatic layers 

crosscutting the super-imposed foliation and layers repetition in the stratigraphy, it has been 

proposed that the large mafic-ultramafic Goiás complexes has grown via multiple melt pulses 

(Correia et al., 2012; Giovanardi et al., 2016). This hypothesis seems confirmed by the U-Pb ages of 

Cana Brava, which show a direct correlation between the age and the stratigraphic position of the 

sample. 

 

The Tonian Goiás Stratiform Complex and its geodynamic significance 

Because of their petrographic, chemical and isotopic similarities, the three Goiás complexes, 

together with the associated metavolcanic metasedimentary sequences, were long considered related 

to each other (Danni et al., 1982; Ferreira Filho, 1998; Ferreira Filho et al., 1994, 2010; Correia et 

al., 2007, 2012; Della Giustina et al., 2011; Giovanardi et al., 2016). Ferreira Filho (1998) was the 

first to suggest that the three complexes are fragments of a larger body, based on the almost 

identical stratigraphy of the three complexes (see chapter 'geological setting'), the geochemical and 

petrological similarities of their lithologies and the identical ‘metamorphic overprint’. However, 

this hypothesis was discarded after the re-introduction of the two-intrusions model (Pimentel et al., 

2004). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

23 
 

The idea of a single body was later reproposed based on geophysical and gravimetric data 

(Carminatti et al., 2006).  

However, the first U-Pb zircon ages obtained from Cana Brava (Tab. 2; Ferreira Filho et al., 2010) 

defined a slightly younger age (770 Ma) than the then available Barro Alto and Niquelândia 

literature ages (780-800 Ma; Pimentel et al., 2004, 2006; Correia et al., 2007). Thus, it was 

concluded that the three complexes were not only formed by two distinct events, but were also 

separated intrusions (Ferreira Filho et al., 2010). 

However, the new U-Pb zircon data of Cana Brava postdated the intrusion of the complex as coeval 

to the others (770-790 Ma). It has also been recognized that Cana Brava shows evidence of syn-

magmatic deformation similarly to Niquelândia (Correia et al., 2012; Giovanardi et al., 2016). 

Moreover, geochemical variations, xenolith occurrence and lithology and estimated thicknesses 

along the stratigraphic succession of Cana Brava are comparable to those of the LS of Niquelândia 

(Giovanardi et al, 2016). According to these evidences and to the bending of the layering in the 

south tectonic contact of Cana Brava (Fig. 2), Giovanardi et al. (2016) suggested, that the two 

complexes are part of the same body, which was fragmented in boudins possibly during the 

accretion at the São Francisco craton or earlier after the end of the complexes intrusion. 

Although some parts of the original body between Niquelândia and Cana Brava are missing, due to 

the later tectonic events that accreted, rotated and exhumed the complexes, the structure of the 

single large body comprising Cana Brava and Niquelândia is similar (but specular) to Barro Alto. 

Giovanardi et al. (2016) proposed that the body feeding centres were mainly located in 

correspondence of Niquelândia, where the stratigraphy is more evolved and complete. 

The new U-Pb data of Barro Alto and the constraints on the one-intrusion event model provided by 

this study all suggest that Barro Alto is coeval and geochemically similar to the Niquelândia-Cana 

Brava pluton and possibly represent the southern fragment of a unique giant intrusion. 

This scenario is also supported by similar stratigraphies, identical syn-magmatic deformation, 

specular shapes of Barro Alto and Niquelândia-Cana Brava pluton, and crustal contamination 
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recognized in zircons from Barro Alto similar to the contamination within Niquelândia and Cana 

Brava. We thus propose to name this single large body as the Tonian Goiás Stratiform Complex 

(TGSC hereafter; according to the new International Chronostratigraphic Chart, v2016/04; Cohen et 

al., 2013; Shield-Zhou et al., 2016). 

In this framework, the estimated structure of the TGSC is symmetrical, thicker in the centre 

(corresponding to the Niquelândia complex and the N-S oriented portion of Barro Alto) and thinned 

and almost disappearing at the margins (the E-W oriented portion of Barro Alto and the Cana Brava 

complex). The TGSC body had a length of at least c.a. 200 km with a maximum estimated thickness 

of c.a. 20 km. These are important dimensions, comparable to other large layered complexes 

recognized worldwide, such as the Bushveld (66000 km
2
), Dufek (50000 km

2
), Duluth (4700 km

2
), 

Stillwater (4400 km
2
), Muskox (3500 km

2
) complexes (and others). 

According to structural evidence in the Niquelândia and Cana Brava complexes, the TGSC has 

grown by multiple melt pulses that during the crystallization formed a crystal mush deformed by the 

stress field conditions derived from an active tectonic setting (Correia et al., 2012; Giovanardi et al., 

2016; this study). Given the stratigraphy of the Cana Brava MZ and the slightly older ages of the 

US compared to the LS, the age distribution supports the multiple pulses model and suggests that 

the time-span of the pulses was relatively slow compared to the crystallization and deformation 

processes. This timespan has allowed not only the crystallization of zircons, but also the closure of 

the U-Pb zircon system. Another evidence for this model is the full tectonic accommodation of the 

complex within continental crust, which differs from other layered complexes because it formed in 

active tectonic setting (e.g., the Val Sesia-Val Sessera mafic complex, Italy; Quick et al., 1992, 

1994; Sinigoi et al., 2010 and references therein) and, therefore, shows an extremely linear structure 

parallel to the deformation. The segregation model of the US of Niquelândia (Rivalenti et al., 2008), 

the increase in crustal contamination along the MZ of Niquelândia and Cana Brava and the increase 

of crustal delamination, as revealed by the highest abundance of xenoliths at the top of the MZ 

(Rivalenti et al., 2008; Correia et al., 2012; Giovanardi et al., 2016), all suggest that the heating of 
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the metavolcanic-metasedimentary sequence and the thermal and delamination effects of the TGSC 

occurred progressively, until the late stages of intrusion. 

Given that the US units occur only in Niquelândia and in the N-S segment of Barro Alto, we 

possibly identify the central and thickest part of the TGSC structure in this area. According to the 

model of segregation of the US units during the early magmatic stages (Rivalenti et al., 2008), we 

infer that the TGSC intrusion started in this central area, as the main feeding centre, and later 

expanded laterally. This lateral expansion and the segregation of the E-W Barro Alto segment and 

Cana Brava would have possibly helped to sustain the large TGSC body during its growth. 

Several geodynamic scenarios for the intrusion of the three Goiás complexes have been  proposed: 

oceanic ridge (Danni and Leonardos, 1981; Danni et al., 1982), continental rifting (Ferreira Filho et 

al., 1998; Pimentel et al., 2004, 2006; Ferreira Filho et al., 2010; Della Giustina et al., 2011) or 

back-arc extension in continental crust near a subduction setting (Della Giustina et al., 

2011).Among these hypotheses, the oceanic ridge scenario was discarded because it was quickly 

recognized that the Goiás complexes are not ophiolites (Rivalenti et al., 1982; Girardi et al., 1986) 

and that the metavolcanic metasedimentary sequence is representative of old continental crust 

(Araujo, 1996; Moraes et al., 2003, 2006). 

The evidence of syn-magmatic deformation during the TGSC growth, the large volume of magma 

accomodated during the intrusion and the evidence of crustal delamination suggest an active 

tectonic setting for the TGSC intrusion. However, as discussed by Kröner and Cordani (2003) and 

Cordani et al. (2003), no evidences for a Neoproterozoic rifting are visible in the outcrops of the 

Brasilia Belt. Instead, as suggested by Della Giustina et al. (2011), the intrusion of the TGSC is 

coeval with the extensive magmatism of the Goiás Magmatic Arc at c.a. 790 Ma and, in particular, 

within the Mara Rosa Arc outcropping in the central and northern parts of the Brasilia Belt to the E-

NE of the TGSC (Fig 1). Thus, we conclude that a back-arc extensional setting in continental crust, 

probably related to the subduction that originated the Goiás Magmatic Arc, is currently the best 

geodynamic scenario for the intrusion of the TGSC. 
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Concluding remarks 

New U-Pb zircon data on rocks from the Cana  Brava and Barro Alto complexes provide evidence 

for a coeval intrusion of the two igneous bodies during the Neoproterozoic, between 770-800 Ma 

and for a coeval history with Niquelândia. 

The new ages and a review of literature data constrain the intrusion of the lower and upper 

sequences of Barro Alto to the same igneous event, ending a long debate over the one- or two-

intrusions models for the emplacement of the complexes. 

The new ages, together with a review of the stratigraphy and geochemical evidence of the three 

complexes, suggest that the three Goiás layered complexes are fragments of a single large body, 

here called the Tonian Goiás Stratiform Complex, intruded at the bottom of a continental crust that 

consisted of a metavolcanic metasedimentary sequence in a back-arc setting during a subduction 

event that led to the formation of the Goiás Magmatic Arc at c.a. 790 Ma. 

The slightly older ages obtained from anorthosites of the upper sequences of both Barro Alto and 

Niquelândia support the idea that these rocks formed by a plagioclase-rich crystal mush that was 

separated during the segregation of the ultramafic unit at the early stages of intrusion.  

The age distribution of the Tonian Goiás Stratiform Complex supports a growth model via multiple 

pulses, forming a crystal mush under shear condition. The absence of significant age spikes younger 

than the complex intrusion, together with structural and field work evidence suggest that the high-T 

recrystallization that partially affected the Tonian Goiás Stratiform Complex occurred during the 

long cooling process and is not the consequence of metamorphic events. Few U-Pb zircon 

discordant ages between 600-640 Ma are comparable with a U-Pb rutile age at 650 Ma and are thus 

interpreted as exhumation ages of the Tonian Goiás Stratiform Complex. 
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Figure Captions 

Fig. 1: regional geotectonic setting of the Brasilia Belt modified after Pimentel et al. (2006). Each 

complex is identified with the number of the figure of the detailed geological map reported in this 

article. 

 

Fig. 2: geological map of the Cana Brava complex, modified after Correia et al. (1997) and Ferreira 

Filho et al. (2010). 

 

Fig. 3: geological map of the Niquelândia complex, modified after Correia et al. (2012). 
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Fig. 4: geological map of the Barro Alto complex, modified after Ferreira Filho et al. (2010). 

 

Fig. 5: field evidence from the Barro Alto complex; a) outcrop of altered ultramafic rocks 

(15°15'41.87"S, 49°08'27.53"O) within the basal gabbros; b) pyroxenite layers within basal gabbro; 

c) xenolith within the gabbro from upper MZ in the E-W segment of the complex; d) xenolith 

(amphibolite) within the anorthosite of UGAZ in the N-S segment of the complex. 

 

Fig. 6: CL images of zircon grains from MZ Cana Brava gabbro sample CB1175 with reported 

number of the single spot analysis; calculated concordia and average 
206

Pb/
238

U age (errors are 

calculated as 2σ). 

 

Fig. 7: CL images of zircon grains from MZ Cana Brava gabbro sample CB1030 with reported 

number of the single spot analysis; calculated concordia and average 
206

Pb/
238

U age (errors are 

calculated as 2σ). 

 

Fig. 8: CL images of zircon grains from MZ Cana Brava diorite sample CB1100 with reported 

number of the single spot analysis; calculated concordia and average 
206

Pb/
238

U age (errors are 

calculated as 2σ). 

 

Fig. 9: CL images of zircon grains from MZ Cana Brava gabbro sample CB1382 with reported 

number of the single spot analysis; calculated concordia and average 
206

Pb/
238

U age (errors are 

calculated as 2σ). 

 

Fig. 10: CL images of zircon grains from MZ Barro Alto gabbro sample BA06T with reported 

number of the single spot analysis; calculated concordia age (errors are calculated as 2σ) and 

probability density plot of 
206

Pb/
238

U ages. 
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Fig. 11: CL images of zircon grains from UGAZ Barro Alto anorthosite sample BA01T with 

reported number of the single spot analysis; calculated concordia age (errors are calculated as 2σ) 

and probability density plot of 
206

Pb/
238

U ages. 

 

Fig. 12: probability density plot of 
206

Pb/
238

U ages obtained for the Cana Brava complex: data are 

from samples CB1175, CB1030, CB1100 and CB1382 from this study and Giovanardi et al. (2015). 

 

Fig. 13: probability density plot of 
206

Pb/
238

U ages obtained for the Barro Alto complex in this study 

and literature: a) ages from the US rocks: sample BA01T (anorthosite) is from this study, (a) sample 

BAL-09 (leucogabbro) and sample BAL-04 (anorthosite) from Della Giustina et al. (2011), (b) 

sample BA-1541 (anorthosite) from Correia et al. (2007); b) ages from LS rocks: sample BA06T 

(gabbro) from this study, (a) sample BAL-05 (gabbro) from Della Giustina et al. (2011). 

 

Fig. 14: recalculated εHf(t) for zircon grains with measured U-Pb ages from Della Giustina et al. 

(2011). The depleted mantle (DM) evolution line is calculated using the values of present-day 

176
Hf/

177
Hf ratio of 0.28325 from Nowell et al. (1998) and 

176
Lu/

177
Hf ratio of 0.0384 from Griffin 

et al. (2000). CHUR values are from Blichert-Toft and Albarede (1997). 

 

Fig. 15: tectonic sketch of the Tonian Goiás Stratiform Complex intrusion and growth according to 

the proposed geodynamic model. The N-S dash line in the tectonic model represent the view section 

of the below growth model sketch. 

 

Table captions 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

35 
 

Table 1: comparison of the literature stratigraphies of the Goiás complexes and the new proposed 

lithologic subdivision. 

 

Table 2: summary of literature U-Pb zircon ages (Ma) of the Goiás complexes and of the 

metavolcanic-metasedimentary sequences. 

 

Table 3: SHRIMP-II analyses on zircons from the Cana Brava complex and calculated ages. 

 

Table 4: SHRIMP-II analyses on zircons from the Barro Alto complex and calculated ages. 
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Table 1: comparing of the Goiás literature stratigraphy. 
 

Complex Barro Alto 
 

 Niquelândia  Cana Brava  
Common stratigraphic 

units 

References 

Ferreira 

Filho et al. 
(2010) 

This work  

Ferreira 

Filho et al. 
(2010) 

Correia et al. 

(2012) 
 

Ferreira 

Filho et al. 
(2010) 

Giovanardi 

et al. (2015) 
 This Work 

Units 

Serra da 
Malacheta 

Complex 

Upper 

Gabbro 

Anorthosite 
Zone 

 
Serra dos 
Borges 

Complex 

Upper 

Amphibolites 
 

Missing Missing 

 

Upper 

Sequence 

Upper 

Gabbro 

Anorthosite 
Zone 

 
Upper Gabbro 

Anorthosite 

Zone 

  

Not 

recognized 

in the field 

Mafic Zone 

 

Upper 

Mafic Zone 

Hydrous Zone  

Upper 

Mafic Zone 

Upper 
Layered 

Gabbro 

Unit 

 

Lower 
Sequence 

Mafic Zone 

 
Layered 

Gabbro Zone 
 

Lower 

Layered 

Gabbro 
Unit 

 

Ultramafic 
Zone 

Ultramafic 
Zone 

 

Ultramafic 
Zone 

Layered 

Ultramafic 

Zone 

 

Ultramafic 
Zone 

Cumulitic 

Websterite 

Unit 

 

Ultramafic 
Zone 

 

Basal 

Peridotite 

Zone 

 
Ultramafic 

Unit 
 

Lower 
Mafic Zone 

Lower Mafic 
Zone 

 
Lower 

Mafic Zone 
Basal Gabbro 

Zone 
 

Lower 
Mafic Zone 

Basal Unit  
Lower 

Mafic Zone 
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Table 2: summary of literature U-Pb ages (Ma) of the Goias complexes and ages of the metavolcanic-

metasedimentary sequences. 

Reference 
Barro Alto Niquelândia Cana Brava Metavolcanic-

metasedimentary 
Sequence LS US LS US  

       
Ferreira Filho et 
al. 1994 

  794 ± 6   
 

Suita et al. 1994 780 
1235-1290 

820-770 
   

1730-1720 
1266 ± 17 

Araujo et al. 1996      1170–1270 
Correia et al. 
1999 

     
1299 ± 3 

Pimentel et al. 
2004 

  797 ± 10 1248 ± 23  
 

Moraes et al. 
2006 

     
1277 ± 15 
1263 ± 15 

Pimentel et al. 
2006 

  799 ± 6   
 

Correia et al. 
2007 

 733 ± 25  833 ± 21  
 

Ferreira Filho et 
al. 2010 

    
782 ± 3 
779 ± 1 

1242 ± 92 

Della Giustina et 
al. 2011 

774 ± 67 
1288 ± 14 
1271-720 

   
 

Correia et al. 
2012 

   781 ± 4  
 

Giovanardi et al. 
2015 

    
792 ± 9 
778 ± 7 
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Tab. 3: SHRIMP-II analyses on zircons from Cana Brava complex and ages. 

Sam
ple 

U 
(pp
m) 

Th 
(pp
m) 

Ratios Ages (Ma)  

206
Pb/

2

07
Pb 

1
σ 
(
%
) 

207
Pb/

235
U 

1
σ 
(
%
) 

206
Pb/

238
U 

1
σ 
(
%
) 

206
Pb/

2

07
Pb 

2σ 
207

Pb/
235

U 
2
σ 

206
Pb/

238
U 

2
σ 

Co
nc. 

2
σ 

% 
dis
c. 

CB1
175 

                 

1.1 
17
1 

47 
0.066
356 

2.
4 

1.215
04 

3.
2 

0.132
806 

2.
1 

818 
1
0
2 

808 
1
8 

804 
3
1 

80
8 

1
6 

2 

1.2 38
1 

19
3 

0.065
452 

1.
0 

1.203
65 

2.
1 

0.133
377 

1.
8 

789 
4
0 

802 
1
2 

807 
2
8 

80
2 

1
1 

-2 

2.1 13
82 

17
48 

0.065
391 

0.
5 

1.204
14 

1.
9 

0.133
555 

1.
8 

787 
2
0 

802 
1
0 

808 
2
8 

80
2 

5 -3 

3.1 17
86 

26
40 

0.065
335 

0.
3 

1.220
30 

1.
8 

0.135
462 

1.
8 

785 
1
4 

810 
1
0 

819 
2
8 

80
9 

3 -4 

4.1 
43
2 

33
6 

0.067
602 

2.
8 

1.233
72 

3.
4 

0.132
367 

1.
8 
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1
2
1 
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1
9 
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2
8 

81
7 

1
5 

7 

4.2 
15
4 

43 
0.066
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4.
5 

1.208
38 

5.
0 

0.132
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1.
9 
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1
9
2 

804 
2
8 
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2
9 

80
5 

1
6 

2 

5.2 11
03 

14
04 

0.065
715 

0.
5 

1.194
69 

1.
9 

0.131
853 

1.
8 

797 
2
1 

798 
1
0 

798 
2
7 

79
8 

6 0 

6.1 81
3 

11
4 

0.065
347 

0.
6 

1.181
07 

1.
9 

0.131
084 

1.
8 

786 
2
4 

792 
1
0 

794 
2
7 

79
2 

7 -1 

7.1 19
62 

30
93 

0.065
644 

0.
5 
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23 

1.
9 
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1.
8 
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2
1 
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1
0 
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2
7 
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0 
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46 
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98 
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4 
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84 

1.
8 
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1.
8 
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1
5 
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0 
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7 
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9 
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9 
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9 
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28 
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4 
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1.
9 
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6 
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4 
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5 

-3 
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58 
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8 
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1
5 
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1
0 
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2
7 
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9 

4 0 
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49 
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86 
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1.
0 

1.178
11 

2.
1 
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1.
8 
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4
1 
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1
1 
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7 
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0 

1
1 

0 
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9 
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1 
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9 
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8 
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8 
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8 
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Tab. 4: SHRIMP-II analyses on zircons from Barro Alto complex and age. 
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Highlights 
 
The Goias layered mafic-ultramafic complexes intruded between 770-800 Ma; 
The complexes are fragments of a larger complex, the Tonian Goias Stratiform Complex; 
The Tonian Goias Stratiform Complex intruded under shear conditions; 
The intrusion occurred in a back-arc setting related to the Goias Magmatic Arc; 
The Tonian Goias Stratiform Complex was disrupted during its exhumation at 600-650 Ma; 


