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GEOSTATISTICS AS A TOOL TO IMPROVE THE 1 

NATURAL BACKGROUND LEVEL DEFINITION: 2 

AN APPLICATION IN GROUNDWATER 3 

Dalla Libera Nico a), Fabbri Paolo a(*), Mason Leonardo b, Piccinini Leonardo a, Pola Marco a 4 

a Department of Geosciences, University of Padova, Padova, Via G. Gradenigo, 6 – 35131, Italy 5 

b ARPAV, Department of Venice, Mestre, Via Lissa, 6 – 30171, Italy 6 

ABSTRACT 7 

The UE BRIDGE project suggests calculating the Natural Background Level (NBL) as the 90th 8 

percentile of the distribution of the concentration data. This method is suited for large, spatially 9 

distributed datasets providing a regional value of NBL that could be higher than the Threshold 10 

Value (TV) set by every country. Therefore, the use of a unique regional NBL value, higher than 11 

TV, in dis-homogeneous areas from the hydro-geochemical perspective, could arise problems to 12 

distinguish between natural occurrences and anthropogenic contaminant sources. Hence, the goal of 13 

this study is to improve the NBL definition using the geostatistical approach, which allows 14 

reconstructing the contaminant spatial structure keeping in account geochemical and 15 

hydrogeological relationships. We retain this integrate mapping fundamental to evaluate the 16 

contaminant’s distribution impact on the NBL value, giving indications to improve it. We decided 17 

to test this method on the Drainage Basin of Venice Lagoon (DBVL), an area in northeastern Italy 18 

notoriously affected by naturally occurring arsenic contamination, where the existing NBL is seven 19 

times higher than the TV. An available geochemical dataset collected by 50 piezometers was used 20 



2 
 

to reconstruct the spatial distribution of arsenic in the densely populated area of the DBVL. A 21 

cokriging approach was applied exploiting the geochemical relationships among As, Fe and NH4
+. 22 

The obtained spatial predictions of arsenic concentrations was divided into three different zones: i) 23 

areas with an As concentration lower than the TV, ii) areas with an As concentration between the 24 

TV and the median of the values higher than the TV, and iii) areas with an As concentration higher 25 

than the median. Subsequently, following the BRIDGE suggestions, where enough samples were 26 

available, the 90th percentile for each zone was calculated to obtain a local NBL (LNBL). 27 

Differently from the original NBL, this local value gives more detailed water quality information 28 

accounting the hydrogeological and geochemical setting, and contaminant spatial variation. Hence, 29 

the definition of a LNBL could give more indications about the distinction between natural 30 

occurrence and anthropogenic contamination. 31 

Keywords: Local Natural Background Level (LNBL), cokriging (COK), Arsenic and Drainage 32 

Basin to the Venice Lagoon (DBVL). 33 

1. INTRODUCTION 34 

The assessment of the groundwater quality and the impact of the human activities are important 35 

worldwide challenges. Actually, the assessment of groundwater body qualitative status is related to 36 

the definition of Natural Background levels (NBLs) and Threshold values (TVs). The first one is 37 

mainly linked to the system’s hydro-geochemical settings, while the second is associated to the 38 

public health issue. The NBL definition is a well-known problem due to its complexity, its 39 

challenging estimation and the delicate consequences on the environmental protection. The NBL of 40 

an element or compound in groundwater represents the range of concentrations resulting from the 41 

interaction of different natural atmospheric, geological, chemical and biological process during the 42 

hydrological cycle, and it could be influenced by human activities (Edmunds and Shand, 2008; 43 

Hinsby et al., 2008a; Reimann and Garrett, 2005). By defining the NBL, it is necessary to know the 44 

extension and the hydro-geochemical characteristics of the groundwater body at risk, paying 45 
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attention to use data coming from the same aquifer body and collected far from anthropogenic 46 

sources of contamination, in order to obtain pristine water samples(Coetsier et al., 2009; Hinsby et 47 

al., 2008; Wendland et al., 2008). Many studies treat the problem of the NBL definition or the 48 

definition of new approaches to improve it (Coetsier et al., 2009; Ducci et al., 2016; Molinari et al., 49 

2012; Preziosi et al., 2010; Rotiroti et al., 2013, 2015), since the NBL assumes importance 50 

discriminating the anthropogenic contamination from the natural occurrence. A first approach to 51 

estimate the NBL value into European groundwater bodies was suggested by Edmunds and Shand 52 

(2008), and it was based on a geochemical prospective rather than a statistical one. Actually, the 53 

European Community in accordance with the European “BRIDGE” project (Background cRiteria 54 

for the Identification of Groundwater thrEsholds) (Müller et al., 2006) suggests two main statistical 55 

method to estimate the NBL. The first approach, the “Component Separation” method (CP), is 56 

based on the distinguishable data distributions produced by the natural and anthropogenic sources 57 

that can be distinguished by a statistical analysis. In this approach, the observed concentration 58 

frequency distribution is fitted by the superimposition of two different distributions that represent 59 

the natural and the anthropogenic concentrations. Once estimate the distribution (shape and 60 

statistical parameters) of the natural component, the data following it will be used to estimate the 61 

NBL. On the other hand, the second method suggests a pre-selection of the data basing on some 62 

markers’ concentration that point an anthropogenic contamination out (e.g. nitrate, salinity, etc.). 63 

The basic idea of this method is that there is a correlation between the markers’ concentrations and 64 

the presence of an anthropogenic pressure. Thus, where the markers show concentration values over 65 

the pre-defined limits, the groundwater samples are excluded from the NBL estimation. 66 

Subsequently, for both methods, the NBL is estimated as the 90th or 97th percentile of the modified 67 

distribution of the concentration data (Coetsiers et al., 2009; Müller et al., 2006; Wendland et al., 68 

2008b). These approaches give a unique NBL value for the entire area, which seems to be not 69 

capable to represent the local variation of the geochemical and environmental conditions. The 70 

definition of a unique NBL value for a large area, in fact, could make a considerable uncertainty 71 
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defining the contaminant’s natural occurrence against an anthropogenic source. Considering both 72 

the importance of the health problem related to the contaminant natural occurrence and the 73 

complexity to define an exhaustive NBL value, this study aims to improve the NBL concept by 74 

using geostatistical methodology such as cokriging predictor (COK). This method, like other types 75 

of kriging, allows redefining the NBL as function of the spatial distribution of contaminant 76 

concentration. However, the COK keeps also in consideration the relationships among the target 77 

contaminant and other, geochemically related, dissolved species in groundwater. This methodology 78 

is applied on the case of the Drainage Basin of the Venice lagoon (DBVL) notoriously affected by 79 

both high natural and anthropic concentrations of arsenic. Furthermore, the Regional Agency for 80 

Environmental Protection and Prevention of Veneto (ARPAV) through the “A.Li.Na” project 81 

(ARPAV, 2014) estimated an arsenic NBL of 74 μg/L that is seven times higher than the Threshold 82 

Value (TV=10 μg/L) defined by the annex III in the Commission Staff Working report of the EU’s 83 

Groundwater Directive (GWD 2006/118/EC). However, the results of this project pointed out the 84 

importance of a detailed and local NBL accounting the complex and laterally variable geological 85 

and hydro-chemical settings. The results of our study could be useful to improve the definition of 86 

the NBL because it exploit the knowledge about the spatial structure and uncertainty of the 87 

naturally occurring contaminant into groundwater, giving a local detail that considers the 88 

environmental background. In addition, they could be used by the stakeholders to perform a more 89 

complete and explanatory plan for the environmental management. 90 

2. KNOWLEDGE ABOUT ARSENIC CONTAMINATION 91 

High arsenic concentrations in groundwater have been documented in several countries, such as 92 

Bangladesh, India (McArthur et al., 2001; Nickson et al., 1998, 2000), Vietnam (Fendorf et al., 93 

2010), Hungary and the USA (Sorg et al., 2014; Welch et al., 2000). The natural occurrence of 94 

arsenic in these countries is often linked to the alluvial plain systems, but high arsenic 95 

concentrations can be found in volcanic environments or mining districts (e.g., Argentina, Chile, 96 
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Brazil, Ethiopia, Greece and Italy) (Nordstrom, 2003; Rango et al., 2013). In Italy, high natural 97 

concentrations of arsenic in groundwater have been documented in volcanic aquifers of the central 98 

and southern Italy related to the uprising of geothermal fluids (Baiocchi et al., 2011; Ducci et al., 99 

2016; Preziosi et al., 2010). Furthermore, in northern Italy, a high arsenic concentration can be 100 

found in the alluvial aquifers of the Po Plain (Molinari et al., 2013; Rotiroti and Fumagalli, 2013; 101 

Rotiroti et al., 2014; Zavatti et al., 1995) and the Venetian Plain (Carraro et al., 2013; Ungaro et al., 102 

2008). Few materials (e.g., gold or sulfide mineral deposits, volcanogenic sources, alluvial 103 

sediments and organic matter) are currently recognized as significant sources of arsenic or drivers 104 

for its mobilization in groundwater. Nevertheless, the occurrence of arsenic in groundwater could 105 

be caused by anthropic activities, such as mineral extraction, industrial processes or fertilizer use. 106 

Arsenic is a metalloid that has three oxidation states nevertheless the most common forms in 107 

groundwater are the followings: the first is oxidized with an oxidation number (ON) equal to + 5, 108 

whereas the second is reduced with an ON equal to + 3. The reduced form appears to be more 109 

movable than the oxidized form in an aqueous medium, although both species have good mobility. 110 

The arsenic toxicity is due to its affinity to Phosphorus (P) that could be replaced by arsenic (As) in 111 

the metabolic processes of RNA and DNA synthesis. Arsenic is not widespread in the Earth’s 112 

continental crust but is commonly concentrated in sulfide-bearing mineral deposits associated with 113 

Pyrite or Fe-hydroxides. Furthermore, many geothermal waters naturally exceed the TV of 10 µg/L. 114 

As determined in many studies, arsenic often is adsorbed onto Fe-Mn oxides or hydroxides, as well 115 

as into the organic matter (Baviskar et al., 2015; Carraro et al., 2015; McArthur et al., 2004, 2001, 116 

Molinari et al., 2015, 2013; Nickson et al., 2000; Rowland et al., 2007). Dissolution of these 117 

minerals in an acid-reducing environment causes the desorption processes that enable the release of 118 

As in an aqueous medium, exceeding its  threshold value (McArthur et al., 2016; Smedley and 119 

Kinniburgh, 2002). Therefore, the organic matter could be a source of As, in addition to its role as a 120 

redox driver (Rotiroti et al., 2014). In particular, the release of As in groundwater is influenced by 121 

the variation of physical and chemical parameters, such as the Oxidation-Reduction Potential (ORP) 122 
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and pH (Smedley and Kinniburgh, 2002; Sorg et al., 2014), as well as the presence of elements and 123 

compounds that can promote its release (e.g., NO3
-, NH4

+, HCO3
-, SO4

2-, PO4
3-) (Biswas et al., 2014). 124 

3. GEOLOGICAL AND HYDROGEOLOGICAL SETTINGS 125 

The study area is located in the middle-low Venetian Plain, including the Padua, Treviso and 126 

Venice provinces. The area covers approximately 2038 km2 with a topographic gradient ranging 127 

from 0.6% to 0.1% near the Venice lagoon (Figure 1A, B). Two primary alluvial hydrogeological 128 

units occur in the Venetian plain: a large unconfined aquifer extending 15-20 km in the upper 129 

region of the plain from the foot of Prealps, and a multi-layered confined aquifer system in the 130 

lower region of the plain towards the Adriatic Sea. These two units correspond, respectively, to the 131 

upper and middle-lower plain environments. The plain spring’s belt (named the “Fontanili” belt) 132 

shows the transition from the upper plain to the lower plain, where the water table is very shallow 133 

and locally intersects the topographic surface. From a geological perspective, the study area 134 

comprises gravelly and sandy alluvial deposits in the upper region near the “Fontanili” belt and 135 

silty-clayey deposits in the distal region (upper Pleistocene – Holocene) (Bondesan et al., 2004; 136 

Fontana et al., 2004, 2008; Mozzi et al., 2003). These fine sediments often contain peat layers 137 

formed in a floodplain environment, with a thickness of decimeters and a lateral extension of 138 

kilometers. The Drainage Basin to the Venice Lagoon (DBVL) extends to the lower plain 139 

environment, alternating silty layers with low permeability and sandy permeable layers, where the 140 

primary aquifers are located (Cambruzzi et al., 2009; Dal Prà et al., 1992; Fabbri and Piccinini, 141 

2013; Fabbri et al., 2011, 2013, 2016; Piccinini et al., 2015, 2016; Vorlicek et al., 2004) (Figure 142 

1C). Anyway, the subsoil structure of the DBVL is heterogeneous, due to the complex alluvial 143 

sedimentation processes that characterized the Brenta’s alluvial plain (Trevisani and Fabbri, 2010) 144 

and surely influences the spatial distribution of As-bearing materials. This is important because 145 

Arsenic may be concentrated in sulfide-minerals, such as Pyrite (FeS2), or adsorbed onto oxides or 146 

hydroxides composing the fine portion of the alluvial sediments (Baviskar et al., 2015; Rowland et 147 
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al., 2007). Therefore, the peat layers play an important role in the arsenic release mechanism 148 

because the degradation of the organic matter controls the aquifer’s redox conditions and the thus 149 

the dissolution of these As bearing minerals (Rotiroti et al., 2014). 150 

 151 
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Figure 1. A) The location of the Veneto region in Italy; B) The location of the study area in the 152 

Veneto region, which covers the entire Brenta’s Plain; C) A hydrogeological sketch of the low 153 

Brenta’s Plain along the “a-b cross-section”; D) The piezometer locations in the DBVL. All of the 154 

piezometers are in the shallow aquifer, between 10 and 20 meter below ground level (BGL). 155 

4. MATERIALS AND METHODS 156 

4.1.Dataset 157 

The data used in this work was obtained from the “A.Li.Na” project, which was developed to 158 

estimate the natural background levels (NBLs) of As, Fe, Mn and NH4
+ in the groundwater of the 159 

DBVL, according to the pre-selection method suggested by BRIDGE project. The hydro-160 

geochemical sampling network (50 piezometers) was established with a variable spacing grid, 161 

covering all of the investigated area (Figure 1D). The sampled piezometers, used for NBL 162 

definition, are located far from the anthropogenic pollutant sources in order to obtain some pristine 163 

water samples. The piezometers tap the shallow aquifer at a depth of 10 – 20 meters below ground 164 

level (BGL). The hydro-geochemical parameters were collected during four seasonal surveys 165 

conducted from 2013 to 2014. The groundwater sampling was performed according to the standard 166 

protocols established by the Italian Environment Protection and Technical Services Agency (APAT, 167 

2006). In addition, the physical parameters (e.g., pH, ORP, electric conductivity, temperature and 168 

dissolved oxygen) were measured by a multi-parametric probe YSI mod. 556 MPS. The chemical 169 

parameters were estimated in the laboratory through standardized methods. Arsenic and Manganese 170 

were estimated by the UNI EN ISO 17294-2:2005 (revised by ISO 17294-2:2016) method, Iron by 171 

the APAT CNR IRSA 3160 Man 29 2003 method and Ammonium by the APAT CNR IRSA 4030 172 

A1 Man 29 2003 method (APAT, 2003). Furthermore, each sampling point was georeferenced in 173 

the Gauss-Boaga coordinate system (Roma 1940 datum, West zone). According to BRIDGE 174 

suggestions, the data were processed to estimate the average values from each available 175 

concentration time series, in order to create an average dataset that depicts the average system 176 
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behavior. Therefore, an average dataset was determined, depicting. Afterwards, the concentration 177 

values below the limit of quantification (i.e., As < 1 µg/L) were changed to make the entire 178 

“A.Li.Na” dataset suitable for mapping purposes. In such a case, the As concentrations below this 179 

limit were set equal to 0.5 µg/L. The DBVL shows high concentrations of arsenic  in reducing 180 

environments and often in association with rich organic matter reservoirs (Carraro et al., 2015; 181 

Molinari et al., 2015; Rotiroti et al., 2014), according with the geological genesis of the area. 182 

Looking at the Figure 2, the major part of the arsenic data show an ORP values from 0 mV to -150 183 

mV and a pH between 7 and 8 according with the releasing as reduced forms.  184 

 185 

Figure 2. A Pourbaix diagram of Arsenic species built under the conditions of T = 298.15 [°K] and 186 

P = 105 [Pa]. The red dots represent the experimental data used for this study. The majority of the 187 

sample data falls into the arsenic reduced species stability field (Takeno, 2005).  188 
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4.2.Geostatistical methods 189 

The arsenic concentration in groundwater is linked to complex hydro-geochemical processes not yet 190 

well understood, hence its distribution in groundwater can be more usefully approached by 191 

geostatistical methods than by deterministic ones (e.g., Inverse Distance Weighting and Natural 192 

Neighbors). The geostatistical kriging predictor is based on a mixed model [1]: 193 

�̂�(𝒖𝒊) = 𝑅(𝒖𝒊) + 𝑚(𝒖𝒊)   [1] 

where the predicted concentration Ẑ(𝐮𝐢), at location ui, is composed of a residual component R(ui) 194 

plus the mean m(ui), representing, respectively, the stochastic component and the deterministic 195 

component of the predicted geostatistical concentration. Moreover, the kriging method needs to 196 

assume  the stationary condition, considering the spatial correlation of the variable Z independent of 197 

their spatial position (ui) but dependent only on the separation distance (h)(Bivand et al., 2008; 198 

Isaak and Srivastava, 1989; Posa and De Iaco, 2009). Because the kriging predictor was built 199 

according to Equation [1], the problem is to define the mean m dependent on the position (ui). 200 

Depending on the mean characteristics, three types of predictors can be considered as follows: i) 201 

Simple (co)kriging (m(ui)=m, the mean is known and constant), ii) Ordinary (co)kriging (m(ui)=m, 202 

the mean is unknown but constant), and iii) Universal (co)kriging (m(ui), the mean is not constant 203 

but defined by a spatial function). In the context of this study, the more acceptable condition was a 204 

mean that was constant within a moving search neighborhood but unknown, and thus, the selected 205 

prediction was an ordinary kriging approximation of �̂�(𝒖𝒐). 206 

�̂�(𝒖𝒐) =∑𝜔(𝒖𝒊) 𝑍(𝒖𝒊)

𝑛

𝑖=1

   [2] 

If auxiliary variables correlated to the primary variable are available, a cokriging approach can be 207 

considered. Theoretically, it gives a prediction enhancement respect to ordinary kriging application. 208 

Cokriging is based on the same principles of kriging but also uses correlated auxiliary variables (in 209 

our case Fe and NH4
+) to predict the primary variable (in our case As).  210 
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�̂�(𝒖𝒐) =∑𝜔(𝒖𝒊) 𝑍(𝒖𝒊)

𝑛

𝑖=1

+∑𝜏

𝑛

𝑗=1

(𝒖𝒋) 𝑉(𝒖𝒋)   [3]. 

As evidenced in Equation [3], the cokriging predictor uses a weighted linear combination of the 211 

principal variable Z(ui) and of the auxiliary variables V(uj) in the different position (ui) and (uj). In 212 

this manner, improving the principal variable prediction is possible. Using the matrix notation the 213 

cokriging system is written as 214 

𝑲𝑪𝑲 𝑳𝑪𝑲(𝒖) =  𝒌𝑪𝑲   [4]. 

Where KCK is the n(u) x n(u) matrix of data covariances, LCK(u) is the vector of the weights ω(ui) 215 

and τ(uj), kCK represents the vector of data-to-unknown covariances. Basing on the [4], the 216 

cokriging weights required by the COK estimator [3] are obtained by multiplying the inverse of the 217 

data covariance matrix by the vector of data-to-unknown covariances: 218 

𝑳𝑪𝑲(𝒖) =  𝑲𝑪𝑲
−𝟏  𝒌𝑪𝑲   [5]. 

Furthermore, to satisfy the stationary and unbiased conditions, the estimated weights from [5] have 219 

to undergo the following constrains: 220 

{
 
 

 
 ∑𝜔𝑖(𝑢)

𝑛

𝑖=1

= 1,

∑𝜏𝑗(𝑢)

𝑛

𝑗=1

= 0.

   [6]. 

As reported in literature, cokriging method work better when the primary variable is less sampled 221 

respect to the auxiliary one. Furthermore, one could also use it when main and auxiliary variable are 222 

sampled in the same location (collocated cokriging) even if it gives lower prediction advantage than 223 

the classical application. Nevertheless, in our study we consider the collocated cokriging method 224 

because it produces a reduction on prediction error around 10% respect to OK. The geostatistical 225 

analysis was conducted in the R environment (R Core Team, 2015), in particular with the gstat 226 

package (Pebesma, 2004). The logical process (Figure 3) to estimate the arsenic spatial distribution 227 
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was composed of four primary steps: Exploratory Data Analysis, Variographic Analysis, Cross-228 

validation, Ordinary cokriging. 229 

 230 

Figure 3. The flow chart of the classical logical process implemented in the geostatistical analysis. 231 

E.D.A = Exploratory Data Analysis, Var.A. = Variographic Analysis, X.V. = Cross–Validation, 232 

COK = Ordinary cokriging, Map. = Mapping the predicted principal variable. 233 

  234 
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5. RESULTS AND DISCUSSION 235 

5.1.Geostatistical analysis 236 

According to the goal of this study, the average dataset was considered. Initially, a study of the 237 

correlations between arsenic and other related chemical components (i.e., iron and ammonium) was 238 

performed. The robust correlation among As and other parameters indicated that the cokriging 239 

(COK) approach might be appropriate. To evaluate the correlation, we used a Spearman’s 240 

correlation test and scatterplots. The Spearman’s correlation test was selected because the 241 

experimental data do not have a normal distribution and the relation among the variables is not 242 

linear, so the Pearson’s coefficient could be less exhaustive (Isaak and Srivastava, 1989).  In that 243 

case, the Spearman’s test, basing on ranks correlation, allows evaluating the strength of the 244 

correlation among the variables even if it is not linear. In addition, the scatterplot graphically 245 

explores linear correlations. The relationships among As, Fe and NH4
+ are illustrated in Figure 4 in 246 

which the scatterplots show the poor linear correlation between two variables emphasized by the 247 

local regression function LOESS (red line) and the numerical coefficients represent the Spearman’s 248 

ρ. The juxtaposition of these elements allow showing the poor relevance of the linear correlation on 249 

our data. The Spearman’s  is greater than 0.5 and statistically meaningful (p-value < 5% 250 

significance level). Based on these relationships, we decided to use Fe and NH4
+ as the auxiliary 251 

variables in the COK prediction process of As. Subsequently, histograms, scatterplots explored the 252 

statistical structure of the raw data. In this manner, estimating the statistical parameters of the data 253 

(i.e., means, standard deviation, variance, skewness, etc.) was possible. Arsenic, iron and 254 

ammonium data followed a lognormal distribution with positive skewness coefficients (3.13, 2.20, 255 

1.87, respectively; Figure 5). The raw data were transformed to a normal score in order to perform a 256 

COK prediction with lower error as possible. Furthermore, the normal score transformation allows 257 

an easier back-transformation of the processed data, giving lower error respect to the use of log-258 

transformation. 259 
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 260 

Figure 4. A correlation scatterplot matrix based on Spearman’s method, providing the  261 

coefficients for the pairs As-Fe, As-NH4
+ and Fe-NH4

+. In the lower part of the matrix, the 262 

scatterplot related to the variable pairs are shown. They represent the poor linear correlation 263 

emphasized by the red line that represents the local regression function LOESS (Cleveland, 1979). 264 

The correlation coefficients  are shown in the upper part of the matrix. The used dataset is the 265 

average of the four surveys and the Spearman’s correlation test was conducted with the 266 

experimental concentration variables. 267 

 268 

 269 

Figure 5. The three histograms represent the distributions of the average data of As, Fe and NH4+, 270 

respectively. 271 
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The second step of the geostatistical process was the Variographic Analysis of the transformed data. 272 

The variogram (h) describes how spatial continuity changes with the distance (h) and the direction. 273 

In addition, the cokriging approach requires the variogram and the cross-variogram analyses. An 274 

analysis of the surface variograms in Figure 6A did not reveal any anisotropy in the continuity 275 

structures of the studied variables. Considering this, only omnidirectional variograms and cross-276 

variograms were considered (Figure 6B). A Linear Model of Co-regionalization (LMC) fits a 277 

theoretical variogram model with both experimental variograms and cross-variograms. The LMC 278 

provides authorized theoretical models of variograms and cross-variograms of two or more 279 

variables so that the variance of any possible linear combination of these variables is always 280 

positive (Isaak and Srivastava, 1989). The resulting theoretical variograms (Figure 6) were used 281 

during the cokriging prediction. The variogram model used in this study was spherical both for 282 

auto- and cross-variograms:  283 

𝛾(ℎ) = {

𝑛𝑢 + 𝑐;                                      |ℎ| > 𝑎

𝑛𝑢 + 𝑐 [
3

2

|ℎ|

𝑎
−
1

2
(
|ℎ|

𝑎
)

3

] ;   |ℎ| ≤ 𝑎
           [7]. 

where nu is the nugget effect, c represents the partial sill and a represents the range. The variogram 284 

models referred to As, Fe and NH4
+, and the three cross-variogram models of As-Fe, As-NH4

+ and 285 

Fe-NH4
+ are visible in Table 1. 286 

 287 

Table 1. The variogram and cross-variogram models used to predict the arsenic spatial 288 

distribution. 289 

Variogram model Parameter 

𝛾(ℎ) = {

0.486 + 0.523 ;                                             |ℎ| > 8000

0.486 + 0.523 [
3

2

|ℎ|

8000
−
1

2
(
|ℎ|

8000
)

3

] ;  |ℎ| ≤ 8000
 [As] 

𝛾(ℎ) = {

0.730 + 0.260 ;                                             |ℎ| > 8000

0.730 + 0.260 [
3

2

|ℎ|

8000
−
1

2
(
|ℎ|

8000
)

3

] ;  |ℎ| ≤ 8000
 [Fe] 
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𝛾(ℎ) = {

0.055 + 0.884 ;                                             |ℎ| > 8000

0.055 + 0.884 [
3

2

|ℎ|

8000
−
1

2
(
|ℎ|

8000
)

3

] ;  |ℎ| ≤ 8000
 [NH4

+] 

𝛾(ℎ) = {

0.581 + 0.148 ;                                             |ℎ| > 8000

0.581 + 0.148 [
3

2

|ℎ|

8000
−
1

2
(
|ℎ|

8000
)

3

] ;  |ℎ| ≤ 8000
 [As-Fe] 

𝛾(ℎ) = {

0.034 + 0.521 ;                                             |ℎ| > 8000

0.034 + 0.521 [
3

2

|ℎ|

8000
−
1

2
(
|ℎ|

8000
)

3

] ;  |ℎ| ≤ 8000
 [As-NH4

+] 

𝛾(ℎ) = {

−0.004 + 0.429 ;                                             |ℎ| > 8000

−0.004 + 0.429 [
3

2

|ℎ|

8000
−
1

2
(
|ℎ|

8000
)

3

] ;  |ℎ| ≤ 8000
 [Fe-NH4

+] 

 290 

 291 
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Figure 6. A) The surface variograms and cross-variograms. The surface variograms are shown in 292 

the first column. B) The omnidirectional variogram and cross-variograms. The variograms are on 293 

the diagonal, and the associated cross-variograms (referred to the average values of surveys) are 294 

below the diagonal. 295 

Following the above variogram analysis, a cross-validation procedure was applied. The cross-296 

validation tests the ability of the model to reproduce the spatial continuity structure by the 297 

prediction of the used dataset. The cross-validation, applied on our data, gives a mean estimation 298 

error equal to 0.001 µg/L, confirming the good prediction given by the chosen variogram model 299 

(Isaak and Srivastava, 1989). Looking the Figure 7, it is evident the normality of the estimation 300 

errors and the good reproduction of the experimental data, highlighting the model’s goodness. 301 

Furthermore, in our case, the cross-validation resulted in an acceptable normalized root mean 302 

square error (nRMSE) equal to 13.3%, which is around 10% lower than the nRMSE obtained by the 303 

ordinary kriging prediction on the same data. A similar nRMSE is likely linked to the presence of 304 

punctual high values of arsenic (hot spots), influencing the prediction process. Generally, the 305 

problems linked to the hot spots are common in environmental datasets. 306 
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 307 

Figure 7: Graphical representation of the arsenic residuals coming from the cross-validation 308 
process by assessing the goodness of the chosen spatial model. Moving from the upper left corner 309 
toward the lower right one, there are the probability density function of residuals, the distribution 310 

around the zero value, the QQ-norm plot and the scatterplot observed As vs. predicted As. In the 311 

last diagram, the red line represents the linear trend line (correlation coeff. = 0.67)  312 
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5.2.Arsenic distribution 313 

Following the previous geostatistical analysis, an ordinary cokriging predictor was applied. The 314 

prediction process allowed mapping the arsenic distribution on the shallow groundwater of the 315 

DBVL (Figure 8). By improving the NBL concept and getting a more detailed value, we decided to 316 

consider the TV and the median (M) of the original dataset as thresholds to reclassify the 317 

distribution map. The reclassification process is necessary to identify the data that have similar 318 

arsenic values and then estimate some Local NBL following the 90th percentile method. In our case, 319 

the median was chosen because the “A.Li.Na” NBL value is several times higher than the TV and it 320 

seems adequate as intermediate threshold, separating the 50% of the data. However, the choice of 321 

the intermediate threshold is linked to both the dataset structure and the gap between the existing 322 

NBL and TV. In this way, we are able to define some sub-area in which estimate, effectively, some 323 

local NBL (LNBL) values (Table 2). A unique value of NBL does not seem to be realistic in 324 

regional environments with a large variation of concentrations. 325 

Table 2. Arsenic concentration classes used to evaluate the LNBLs. 326 

1st As ≤ 10 µg/L (TV) Lower (LNBLL) 

2nd 10 < As ≤31.4 µg/L (M) Intermediate (LNBLI) 

3rd As > 31.4 µg/L Higher (LNBLH) 

 327 

According to the above-described thresholds, the map in Figure 8 (related to the average values of 328 

the four surveys) shows that many zones (about 49% of the study area) exceeded the threshold 329 

value (TV) set in the Annex III of the Commission staff working document of the GWD 330 

2006/118/EC. In some of these zones (9% of the domain), the predicted values also exceeded the 331 

natural background level (NBL) of 74 µg/L suggested by the “A.Li.Na” project. In particular, in the 332 

central-western region of the area between the Padua and Venice provinces (including Piezometers 333 

9, 10, 20, 37, 40 and 44), the predicted arsenic concentrations were greater than the TV, ranging 334 

from 33.75 to 224 µg/L. Similarly, arsenic concentrations reached the maximum value of 95 µg/L in 335 
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the eastern region of the study area, near the Venice airport (Piezometer 15). Examining the ORP 336 

overlaid post-map, the ORP values denoted a reducing environment in these areas, in agreement 337 

with the results of several studies on the role of ORP in As release (Carraro et al., 2015, 2013; Dalla 338 

Libera et al., In Press; McArthur et al., 2001; Molinari et al., 2015; Nickson et al., 2000; Rotiroti et 339 

al., 2014). These reducing conditions occur also in some “green” and “yellow” zones but in this 340 

case arsenic is low cause the As-bearing material are missing in the subsoil. Otherwise, analyzing 341 

the available  stratigraphic logs (Figure 9), the presence of peat layers is evident in the areas with 342 

high concentrations, confirming the role of organic matter as a redox driver of As release (Dalla 343 

Libera et al., In Press; Molinari et al., 2013; Nickson et al., 2000; Rotiroti and Fumagalli, 2013; 344 

Rotiroti et al., 2014; Ungaro et al., 2008). From a hydrogeological perspective, a map analysis 345 

suggested that the arsenic contamination disagreed with the groundwater natural drainage and did 346 

not spread in accordance with the groundwater flow directions (NW-SE) (Fabbri, 2013). 347 
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 348 

Figure 8. Original prediction of arsenic concentration within the DBVL. This map shows the raw 349 
prediction results obtained by the COK method. The contour lines represent the arsenic 350 
concentration values basing on the COK prediction with an interval of 5 µg/L. The bold lines are 351 

the main contours. 352 
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 353 

Figure 9. The reclassified arsenic prediction , obtained from the raw prediction in figure 8, and the 354 

ORP post-map. The stratigraphic log shows some peat layers corresponding to the zones with high 355 

arsenic values. The red boxes highlight the peat layers. 356 

5.3.Implications for water and environmental management 357 

Groundwater arsenic pollution in alluvial systems can result from natural processes, such as 358 

weathering, the interaction between groundwater and mineral deposits or the degradation of organic 359 

matter deposits (e.g., peat layers). The distinction between anthropogenic and natural sources of 360 

contamination is important for approaching the contamination issues. Therefore, the evaluation of 361 

an NBL value plays an important role in highlighting anthropogenic pollution. The methods, 362 

suggested by the EU BRIDGE project, provide a statistically representative value for the entire 363 

study area but does not take into consideration the spatial distribution of the data. Our approach 364 

suggests a Local Natural Background Levels (LNBLs), combining the 90th percentile concept and 365 

the spatial data distribution and defining two or three classes (depending to the difference between 366 

TV and NBL), in which we can estimate the LNBLs. In this way, the errors between the natural 367 
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occurrence and the man-made pollution are minimized. By considering a unique NBL value for the 368 

entire area, an incorrect distinction between natural occurrence and pollution could occur. For 369 

example, in zones with a concentration lower than the NBL, we risk accepting an external pollution 370 

as a natural occurrence. However, in an area belonging to a higher class, we risk misinterpreting a 371 

natural occurrence as pollution. Therefore, we suggest calculating a local NBL using only the data 372 

inside the areas, defined by concentration classes established using a geostatistical prediction (e.g., 373 

the green areas in Figure 6 with predicted values between 0.5 and 10 µg/L). This step could be 374 

easily conducted if the number of available data is significantly adequate in each class (n ≥ 30) 375 

(Müller et al., 2006). If the number of data is lower than 30, the sampling network should be 376 

enhanced. Referring to the DBVL area, all three identified zones have a number of piezometers 377 

fewer than 30 in the “A.Li.Na” sampling network. Therefore, a significant calculation of the LNBL 378 

was not performed. However, in the green areas (about 51% of the study area, Figure 9) with a 379 

predicted arsenic concentration between 0.5 to 10 µg/L (TV), 24 piezometers are available. For 380 

example, in these areas, the LNBL was estimated to be equal to 6.68 µg/L, according to the 381 

BRIDGE project method. Such a result shows that the LNBL value is not only much lower than the 382 

“A.Li.Na” NBL value (74 µg/L) but is also lower than the TV (10 µg/L). 383 

6. CONCLUSIONS 384 

The results presented in this paper show how a geostatistical spatial approach allows for the 385 

application of the 90th percentile method (NBL) in a more critical way. The map of the natural 386 

distribution of arsenic allows for the identification of critical areas, highlighting where the As 387 

values exceed the TV. In particular, this result illustrates the usefulness of calculating a local NBL 388 

(LNBL) related to the different defined areas. Using the cokriging approach, the definition of 389 

LNBLs takes advantage of the arsenic spatial distribution and the geochemical relationships among 390 

arsenic and other related parameters. In fact, the correlations between arsenic and auxiliary 391 

variables, such as Fe and NH4
+, are taken into consideration for cokriging prediction. The results of 392 
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this study highlight the critical issues related to the application of a single NBL value at the regional 393 

scale. Through the BRIDGE suggestions, the European GWD proposes a NBL value without 394 

considering the spatial distribution of the parameter concentration or the geochemical relations 395 

among the correlated parameters. The LNBL concept aims to reduce the error associated with the 396 

distinction between the natural occurrence of arsenic and anthropogenic pollution. By defining a 397 

LNBL for every class of concentration, monitoring the anthropogenic pollution events is easy, 398 

particularly for the lower and intermediate classes (see Table 2). In addition, the proposed approach 399 

might be applied to a global view of the study area, informing decisions about water and 400 

environmental management and improving the characterization plan necessary to evaluate 401 

potentially contaminated sites. Finally, the suggested approach is easily applicable to estimate the 402 

LNBL of any kind of elements or compound deriving from natural processes, both in groundwater 403 

and soil.  404 
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