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Drought stress affects anthocyanin accumulation and modification in vegetative and reproductive plant
tissues. Anthocyanins are the most abundant flavonoids in grape (Vitis vinifera L.) coloured berry ge-
notypes and are essential markers of grape winemaking quality. They are mostly mono- and di-
methylated, such modifications increase their stability and improve berry quality for winemaking.
Anthocyanin methylation in grape berries is induced by drought stress. A few caffeoyl-CoA O-methyl-
transferases (CCOAOMTSs) active on anthocyanins have been described in grape. However, no drought-
activated O-methyltransferases have been described in grape berries yet.

In this study, we characterized VwCCoAOMT, a grapevine gene known to induce methylation of CoA
esters in cultured grape cells. Transcript accumulation of VwCCoAOMT was detected in berry skins, and
increased during berry ripening on the plant, and in cultured berries treated with ABA, concomitantly
with accumulation of methylated anthocyanins, suggesting that anthocyanins may be substrates of this
enzyme. Contrary as previously observed in cell cultures, biotic stress (Botrytis cinerea inoculation) did
not affect VwCCoAOMT gene expression in leaves or berries, while drought stress increased VvCCoAOMT
transcript in berries. The recombinant VwCCoAOMT protein showed in vitro methylating activity on
cyanidin 3-0-glucoside. We conclude that VwvCCoAOMT is a multifunctional O-methyltransferase that
may contribute to anthocyanin methylation activity in grape berries, in particular under drought stress
conditions.
© 2016 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

quality, in particular increasing berry concentration of sugars and
polyphenols (Chaves et al., 2010). The sequencing of the grape

Grapevine (Vitis vinifera L.) is the world's most important fruit
crop and is cultivated under a wide range of climates. One reason
for the worldwide success of grape growing is the adaptability of
this species to stressful conditions, due to a large and still poorly
explored array of responses to drought, heat, and chilling condi-
tions. As concerns drought, grapes are considered relatively
tolerant, due to morphological, physiological, and biochemical
mechanisms that are also diversified in the many existing cultivars
(Ferrandino and Lovisolo, 2014). In vineyard management, a mild
drought stress is even considered beneficial as it enhances berry
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genome has opened the era of genomic investigation on the mo-
lecular reactions of grape to stress: these studies have unveiled an
unexpected wealth of genes differentially regulated in response to
drought (Cramer et al., 2007; Deluc et al., 2009).

Grape berries contain different classes of polyphenols: antho-
cyanins (in coloured varieties), flavonols, flavan-3-ols, proantho-
cyanidins, and non-flavonoid phenols, such as hydroxycinnamoyl
tartrates (Adams, 2006). Anthocyanins are responsible for the
characteristic red-blue colour of many plant tissues, where they
play an important role as animal attractors for seed dispersion, as
protectants against UV irradiation, and as antioxidants (Harborne
and Williams, 2000). In grapevine the molecular signals control-
ling anthocyanin accumulation in berries have not been completely
defined yet, but abscisic acid (ABA), whose concentration increases
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at the beginning of ripening (Davies et al., 1997), is a favoured
candidate (Jeong et al., 2004). In the berry skins, anthocyanins are
accumulated in vacuoles as 3-O-glucosides. All anthocyanin agly-
cones are hydroxylated at the 4’ carbon of the B ring, but they differ
in the level of further hydroxylation of the 3’ and 5’ carbon atoms.
One or both hydroxylated carbons can then be O-methylated,
inducing a slight reddening effect and reducing the chemical
reactivity of phenolic hydroxyl groups (Sarni et al., 1995). Methyl-
ation increases anthocyanin stability and affects colour intensity
and hue, both pivotal quality parameters for the red wine industry.

The response to drought stress in plants is a multifaceted pro-
cess, involving among other metabolic events an increase in
anthocyanin content (Sperdouli and Moustakas, 2012; Nakabayashi
et al,, 2014). Modifications in the concentration of anthocyanins
have been recognized as responses to water stress in grape:
drought increases berry anthocyanin content, and this effect is due
to an increased biosynthesis (Castellarin et al., 2007a, 2007b). A
further effect of drought in the grape berry is a modification of the
methylation profile, as a higher concentration of methylated forms
at the expense of the non-methylated ones is observed in berry skin
upon long-term drought stress in the field (Castellarin et al., 2007b;
Deluc et al., 2009). However, the molecular events at the base of
such response to drought have not been clarified yet.

Caffeoyl-CoA O-methyltransferases (CCoAOMTs) have been iso-
lated and characterized in many plants, including Medicago sativa L.
(Inoue et al., 1998), Nicotiana tabacum L. (Martz et al., 1998), Pinus
taeda L. (Li et al.,, 1999), Populus spp. (Meyermans et al., 2000),
Mesembryanthemum crystallinum L. (Ibdah et al., 2003). Although
the main role of the CCOAOMT family has been initially ascribed to
lignin biosynthesis (Day et al., 2009), and to provision of feruloyl-
CoA for other biosynthetic pathways (Kai et al., 2008), some
CCoAOMTs also show significant activity on substrates other than
CoA esters, as in the case of flavonols in Arabidopsis (Do et al., 2007)
and ice plant (Ibdah et al., 2003). These proteins represent a sub-
group of multifunctional CCOAOMTs.

A few CCoAOMTs have been studied in grape. A CCoOAOMT was
first isolated by Busam et al. (1997), who demonstrated the activity
of the encoded protein on CoA thioesters and observed that its
expression was activated in grape cell suspension cultures by biotic
stress elicitors. Nevertheless, these authors did not further char-
acterize this gene, and provided no data on its expression in berry
tissues. Later on, an O-methyltransferase (VWWAOMT) was shown, by
in vitro and in vivo studies, to control anthocyanin methylation in
berry skins during ripening (Hugueney et al., 2009). Sequence
alignment included VWvAOMT within the CCoAOMT subfamily, and
accordingly its activity on CoA thioesters was demonstrated in vitro
(Liicker et al., 2010), confirming its multifunctional nature. Finally, a
QTL approach lead to the characterization of two further genes on
the same chromosome (VVAOMTZ2 and 3), the former proposed to
contribute to the control of anthocyanin methylation in berry skins
(Fournier-Level et al., 2011).

While VWAOMT is thought to play a major role in the ripening-
dependent activation of anthocyanin methylation in grape berry
skin, it seems not to be responsive to drought stress (Castellarin
et al,, 2007a). Other, stress-responsive methyltransferases must
thus contribute to the stress-dependent reshaping of the antho-
cyanin methylation profile. In this context, the biotic stress-
responsive CCOAOMT, first isolated by Busam et al. (1997), should
be a promising candidate if it was shown to respond to abiotic
stress and to behave as a multifunctional CCoOAOMT.

The aim of this study was to functionally characterize
VvCCoAOMT and to study its role in anthocyanin methylation in
grape berries. We analysed the in vitro activity of VvCCoAOMT on
anthocyanins, demonstrating its multifunctional nature. Further-
more, we measured expression of VvCCoAOMT in berries during

development and under stressful conditions, and we show that
transcript level is increased during ripening and by drought stress.
Our results suggest that the encoded enzyme may significantly
contribute to anthocyanin methylation in berry skin upon abiotic
stress.

2. Materials and methods
2.1. Protein alignments and phylogenetic analysis

In order to establish the structure of the CCoAOMT protein
family in grape, a BLAST search on the grapevine “PN40024” 12X
genome draft, V1 annotation (http://genomes.cribi.unipd.it/grape/)
was performed using VvCCoAOMT (CAA90969.1) as query. Putative
caffeoyl-CoA O-methyltransferases characterized by score values
higher than 200 were used for the following steps. Sequence
identity percentages among plant OMTs and, separately, among
grape CCoAOMTs, were investigated by running the MEGA 4.0
software (www.megasoftware.net), incorporating the BLOSUM
series protein weight matrix with ClustalW alignment and setting
gap opening penalty at 10 and gap extension penalty at 0.2.
Phylogenetic trees were built by applying the Neighbour-Joining
method with the Bootstrap analysis set at 1000 replicates. Data
obtained from the alignment of VvCCoAOMT amino acid sequences
were edited and marked by applying the BOXSHADE 3.21 software
(http://www.ch.embnet.org/software/BOX_form.html).

2.2. Plant material and treatments

Berries of V. vinifera cv. Barbera (coloured, anthocyanin profile
dominated by mono- and di-methylated forms) and Moscato
(uncoloured) were sampled from an experimental vineyard located
in Grugliasco (Piedmont, Italy, 45°03'55”N 7°35'35”E) every two
weeks, starting 15 days after flowering (DAF). Véraison (onset of
ripening and accumulation of skin anthocyanins) took place at 45
DAF. Gene expression was measured in the berry skins, except for
ripe Barbera berries (90 DAF), where skin, pulp and seeds were
analysed. Gene expression levels were also assessed in blades and
petioles of fully expanded Barbera leaves, sampled at 75 DAF.

The effect of treatment with ABA was tested on cultured berries
of the coloured genotype Merlot, whose anthocyanin profile is also
dominated by mono- and di-methylated forms. Berry culture fol-
lowed a modification of the protocol by Gambetta et al. (2010).
Briefly, berries from a vineyard of the University of Udine (Italy)
experimental farm (46°01'52”N, 13°13/31”E) were sampled just
before véraison, surface-sterilized with 70% ethanol for 10 s,
washed with 1% NaClO for 10 min, and placed, after removing the
petiole with a scalpel, in glass jars with their cut surface inserted in
sterile agar containing 8% sucrose and either 0 or 200 uM (+)-ABA.
Berries were thus incubated at 20 °C in an illuminated hood, and
three replicates of two-berry samples each were taken at 4 day
intervals, up to 12 days.

Barbera fully expanded leaves and ripe berries (90 DAF) were
used for the induction of biotic stress with Botrytis cinerea Pers. The
fungal pathogen was first grown on MEA (Malt Extract Agar) me-
dium for three days at 25 °C. Plugs of colonized agar (6 mm
diameter) were placed upon leaves and berries whose surface had
previously been slightly injured with a sterile needle, and then
incubated at 25 °C in closed and regularly moistened 20 cm Petri
dishes (one leaf or 10 berries per dish). Plugs of non-inoculated
MEA were placed upon control (mock-inoculated) berries and
leaves. Leaf and berry samples were collected from each of three
replicate Petri dishes per treatment at the beginning of incubation
and respectively after 36 and 72 h for leaves, and 29, 53, and 94 h
for berries. Only tissue portions close to fungal plugs were


http://genomes.cribi.unipd.it/grape/
http://www.megasoftware.net
http://www.ch.embnet.org/software/BOX_form.html

D. Giordano et al. / Plant Physiology and Biochemistry 101 (2016) 23—32 25

collected, avoiding necrotic areas.

Drought stress was induced on two-year-old V. vinifera cv.
Grenache plants grafted onto Vitis riparia x Vitis berlandieri 420A,
grown in 10 L pots in a greenhouse under partially controlled
climate conditions. The air temperature and relative humidity in
the greenhouse ranged between 18 and 36 °C and 55—80%,
respectively. Photosynthetic active radiation reached 1800 pmol
photons m~2 s~!, and the day/night cycle was 16—8 h. Irrigation
was withheld for eight days on three pots to induce drought stress,
while three pots were irrigated daily to maintain water container
capacity and used as control. Water container capacity was
computed following the method described by Hochberg et al.
(2013), using as bulk density of our substrate 0.356 kg L~I. Water
container capacity in irrigated pots ranged between 55 and 45% v/v
(maximum capacity in our substrate 55%), while in drought-
stressed pots it was lower than 30% at the last sampling date.

Leaf water potential (Wje,r) was measured between 10:00 and
12:00 AM on fully expanded leaves collected from primary stems at
2-day intervals, by using a Scholander-type pressure chamber (Soil
Moisture Equipment Corp.). Stomatal conductance (gs) was
assessed at the same time points on fully expanded leaves with a
portable Gas Exchange Fluorescence System (GFS-3000, Heinz
Walz GmbH). In the leaf chamber photosynthetic active radiation
(PAR: 1200 pmol m~2 s~1) and temperature (25 °C) were main-
tained constant. A zero-point for CO, was set at the beginning of
each experimental day. Three replicate samples (one per plant) of
mature leaves and berries (75 DAF) were taken at the beginning of
drought stress and after four and eight days.

All samples were quickly frozen in liquid nitrogen, ground in
sterile mortars with liquid nitrogen, and stored at —80 °C until use.

2.3. RNA extraction and quantitative PCR (qPCR) analysis of gene
transcript

Total RNA was extracted from the different grape tissues (peti-
oles, berry skin, pulp and seeds: 2 g) collected following the pro-
tocol by Carra et al., 2007 while total RNA from leaves (0.5 g) was
extracted according with Gambino et al. (2008). RNA integrity and
quantity were checked using a 2100 Bioanalyzer (Agilent). Only
samples with a RIN (RNA Integrity Number) value higher than 7.5
were chosen for quantitative expression analyses. After a treatment
with DNase I RNase-free (Fermentas), RNA was reverse transcribed
in duplicate using the High Capacity cDNA Reverse Transcription kit
(Applied Biosystems); duplicates were then pooled before qPCR
analysis. Gene-specific primers were designed using the Primer3
software (http://primer3.ut.ee). In order to confirm the induction
responses to either biotic or abiotic stress at the molecular level,
transcripts of a stilbene synthase [VWSTS27: (Vannozzi et al., 2012)]
and of a dehydrin [VwDHN1a: (Perrone et al., 2012)] were quantified
respectively. Reactions were carried out in a StepOnePlus™ RT-
qPCR System (Applied Biosystems), and the SYBR Green method
(Power SYBR® Green PCR Master Mix, Applied Biosystems) was
used for quantifying amplification results (Perrone et al., 2012).
Three technical replicates were run for each sample. Thermal
cycling conditions were as follows: an initial denaturation phase at
95 °C for 10 min, followed by 40 cycles at 95 °C for 15 s and 60 °C for
1 min. Specific annealing of primers was checked on dissociation
kinetics performed at the end of each RT-qPCR run. Identity of
amplicons was checked by sequencing when needed. Expression of
target transcripts was quantified after normalization of the cycle
threshold to ubiquitin (VvUBI). Gene expression data were calcu-
lated as transcript quantity ratios (relative quantity, RQ) by
applying the 2-AACT method. Each analysis was performed in
triplicate. Primer sequences used in qPCR experiments are reported
in Tab. S1.

2.4. Heterologous expression of VwCCoAOMT in Escherichia coli and
enzymatic assay

The full length VvCCoAOMT cDNA was amplified from cv. Barbera
using the VvCCoAOMT-FL primers (Tab. S1), containing a EcoRI (5'-
end) and a Xhol (3’-end) restriction site respectively. Amplification
was performed using the AccuPrime™ Taq DNA Polymerase High
Fidelity (Invitrogen) with the following thermal cycling conditions:
95 °C for 2 min, followed by 40 cycles at 94 °C for 30 s, 55 °Cfor 30 s,
68 °C for 45 s, and a final step of 68 °C for 5 min. Identity of the
amplicon was checked by sequencing. The amplified fragment was
digested with EcoRI and Xhol, and cloned in-frame with a N-ter-
minal glutathione S-transferase tag into the pGEX-4T-1 vector (GE
Healthcare). E. coli DH50a competent cells were transformed for
sequencing purposes, in order to verify the correct frame of the
target sequence and the absence of any introduced mutation.
Plasmids were then transferred into E. coli BL21 (DE3) protein
expression-competent cells. The pGEX-4T-1 empty vector was used
as negative control. Recombinant GST-VvCCoAOMT was extracted
using the following modified version of the method described by
Tolia and Joshua-Tor (2006). The glycerol stock of transformed
E. coli BL21 was used to create a starter culture in 20 mL YTA (Yeast
Triptone Agar) supplemented with ampicillin (250 mg mL™'). The
starter culture was incubated at 37 °C for 12—15 h, and then
employed for the inoculation of 400 mL YTA supplemented with
ampicillin (250 mg mL~1). The culture was incubated at 37 °C until
Agoo was 0.5—0.6, and recombinant protein expression was induced
by adding 4 mL of 100 mM IPTG; the incubation was continued for
2 h. Bacterial cells were harvested by centrifugation at 5000 rpm for
6 min at 4 °C, and the supernatant was discarded. After re-
suspension of the pellet in 24 mL of a preheated 4 M NaCl, 1 M
Tris—HCI, 0.5 M EDTA solution supplemented with 0.1 mg mL™!
lysozyme, the mixture was kept on ice for 15 min and then added
with 120 pL dithiothreitol 1 M, 240 uL phenylmethanesulfonyl
fluoride 100 mM, and 2.9 mL of 0.1 g L~ N-lauroylsarcosine sodium
salt. Subsequently, cells were lysed by sonication until the cloudy
suspension became translucent, and cell debris were precipitated
by centrifugation at 5000 rpm for 30 min at 4 °C. The collected
supernatant was added with 200 pL Triton X-100 and incubated in
continuous agitation at 4 °C for 1 h.

The recombinant protein was purified by a batch system using
Glutathione Sepharose 4B (GE Healthcare-Amersham Biosciences)
following the manufacturer's protocol. Protein concentration was
determined by the Bradford method (Sigma Aldrich) according
with manufacturer's instructions. SDS-polyacrylamide gel electro-
phoresis (SDS-PAGE) was used to assess the purity of the recom-
binant protein.

The activity of recombinant GST-VvCCoAOMT (20 pg) was
assayed on cyanidin 3-O-glucoside chloride and on caffeoyl-CoA. In
the first case, a final volume of 150 pL with 2.5 mM S-adeno-
sylmethionine (Sigma), 5 mM MgCly, and 250 uM cyanidin 3-0O-
glucoside chloride (Extrasynthese) in 0.1 M Tris, pH 8.5 containing
10 mM PEG 4000, 2 mM DTT, and 14 mM B-mercaptoethanol was
used. After incubating for 60 min at 30 °C, reactions were stopped
by adding 75 pL of 5% HCI. The activity on caffeoyl-CoA (TransMIT)
was assayed in the same conditions and with the same substrate
concentration. Reactions where the enzyme or the substrate were
replaced with buffer were used as control blanks. The pH depen-
dence of GST-VwCCoAOMT activity on cyanidin 3-O-glucoside and
caffeoyl-CoA was assessed in the pH range between 5.4 and 9.4
using the following buffers: MES (5.4—6.25), PIPES (6.6), HEPES
(6.0—7.5), and Tris—HCI (8.0—9.4). Metal inhibition of enzyme ac-
tivity was determined by adding ZnCl,, CaCl, or MnCl, (10 mM) to
the reaction mixture.

In order to obtain purified VvCCoAOMT protein, the N-terminal
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GST tag of recombinant GST-VwCCoAOMT obtained by a column
purification (GE Healthcare) was removed using thrombin (GE
Healthcare). Kinetic studies were performed both on the recom-
binant GST-VvCCoAOMT fusion protein, and on VvCCoAOMT. Sub-
strate concentrations between 0.001 and 2 mM were used.
Reactions were incubated at pH 8.5 for 60 min. Kinetic calculations
(determination of Km, Vmax and Kcat) were carried out by applying
the Lineweaver—Burk transformation.

The enzymatic reaction products were analysed by HPLC-DAD.
Anthocyanin separation was performed using a 1260 Infinity
HPLC-DAD system (Agilent Technologies) on a Lichrocart® 250-4
HPLC-Cartridge Purospher® STAR RP-18 (5 pm) with a guard col-
umn, operating at 30 °C. The mobile phase consisted in water:
formic acid (90:10, v/v; eluent A) and methanol: formic acid: water
(50:10:40, v/v/v; eluent B); flow rate was 0.8 mL min~. For the
recombinant GST-VWWCCoAOMT enzyme reaction product, the
elution program was as follows: 72%—55% A (0—15 min), 55%—30%
A (15—35 min), 30%—10% A (35—45 min), 10%—1% A (45—50 min),
1%—72% A (50—55 min). For the VwCCoAOMT enzyme reaction
product, a faster elution program was set up: 55% A (0—15 min),
55%—30% A (15—20 min), 30%—72% A (20—23 min); flow rate was
1.0 mL min~'. Hydroxycinnamoyl-CoA esters separation was per-
formed on a Lichrocart® 250 HPLC-Cartridge Lichrospher® 100 RP-
18 (5 wm) with a guard column, operating at 30 °C. The mobile
phase consisted in water: acetonitrile: formic acid (90:9.9:0.1, v/v/
v; eluent A) and acetonitrile: water: acetic acid (80:19.9:0.1, v/v/v;
eluent B). The elution program was as follows: 95% A (0—3 min),
95%—60% A (3—18 min), 60%—0% A (18—28 min), 0% A (28—30 min),
0%—95% A (30—32 min); flow rate was 0.5 mL min~.

Quantitative determinations were performed using external
standard calibration curves. Substrate and reaction products were
identified by comparison of their retention times and UV spectra
with those of standards (cyanidin 3-O-glucoside chloride and
peonidin 3-0-glucoside chloride by Extrasynthese; caffeoyl-CoA
and feruloyl-CoA by TransMIT) under the same chromatographic
conditions. Calibration curves with a good linearity (R* > 0.998),
obtained from a seven-point plot, were used to determine the
concentration of reaction products.

3. Results
3.1. Phylogenetic analysis

The interrogation of the Grape Genome Browser with the
CAA90969.1 protein sequence (here referred to as VvCCoAOMT)
yielded the proteins encoded by six gene models (Tab. S2) and the
VVAOMT (Hugueney et al., 2009) and VWWAOMT2 (Fournier-Level
et al,, 2011) proteins. The VVCCoAOMT2 (VIT_01s0010g03470) gene
model partly corresponds in sequence to VWAOMT3 of Fournier-
Level et al. (2011). Phylogenetic analysis of the family of putative
VvCCoAOMT proteins (Fig. S1) showed that they group into two
clades. One clade includes VvCCoAOMT (chromosome 3),
VvCCoAOMT3 (chromosome 7), VvCCoAOMT4 and 5 (chromosome
11) and VwCCoAOMT6 (chromosome 12). In the second clade,
VvCCoAOMT1 and 2, VWAOMT, and VWAOMT2 are all localized to
chromosome 1, and enclose the anthocyanin methyltransferase
cluster described by Fournier-Level et al. (2011). Phylogenetic
analysis of putative VvCCoAOMT proteins together with other plant
OMTs confirms that they all belong to type 2, low-MW and cation-
dependent OMTs (Noel et al., 2003) (Fig. 1). Many members of this
family methylate CoA esters of phenylpropanoids and are
commonly called CCOAOMTs.

All VWWwCCoAOMTs contain characteristic dimerization domains,
mostly involving hydrophobic residues, and probably form homo-
dimers in solution. They also contain specific amino acid residues
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Fig. 1. Neighbour-Joining tree of selected plant OMT proteins. Type 2 OMTs include
caffeoyl-CoA OMTs from Arabidopsis thaliana (AtCCoAOMT; accession no. AEE30559),
Medicago sativa (MsCCoAOMT; AAC28973), Mesembryanthemum crystallinum
(McPFOMT; AAN61072.1), Nicotiana tabacum (NtCCoA; AAC49913.1), Oryza sativa
(OsROMT15; XM_483167), Petroselinum crispum (PcCCoA; AAA33851.1), Pinus taeda
(PtCCoA; AAD02050.1), Populus tremuloides (PtreCCoA; AAA80651.1), Populus tri-
chocarpa (PtriCCoA; CAA12198.1), Stellaria longipes (SICCoA; AAB61680.1), Vitis
vinifera (VvCCoAOMT; CAA90969.1 and VVAOMT; AC052469.1), Zinnia violacea
(ZvCCoA; AAA59389.1). Type 1 OMTs include flavonoid 4’-O-methyltransferase from
Catharanthus roseus (CrFlv4; AAR02419.1), caffeic acid 3-O-methyltransferase from M.
sativa (MsHCA; AAB46623.1), flavonoid 7-O-methyltransferase from Mentha x piperita
(MpFIv7B; AAR09598.1), methoxypyrazine O-methyltransferase from V. vinifera
(VvMethox1; ADJ66850.1). The significance of each node was tested using 1000
bootstrap replicates.

and the insertion loop required to bind the substrates SAM and
caffeoyl-CoA as described by Ferrer et al. (2005) for a Medicago
sativa CCOAOMT (Fig. S2).

3.2. Quantification of VwCCoAOMT transcript in grape tissues and
upon stress application

The transcription of VvCCoAOMT was analysed by RT-qPCR in
different grape tissues, along berry ripening, upon ABA treatment
of berries, and after induction of either biotic or abiotic stress.

In Barbera, VvCCoAOMT transcripts were detected in vegetative
tissues (leaf blades and petioles) and in green berries (15 DAF) at
higher concentrations than in berries at véraison (45 DAF). In ripe
berries (90 DAF) expression was about 10 times higher in skin than
in pulp or seeds (Fig. 2A). An expression study was performed in
berry skins during the ripening process. In the coloured genotype
Barbera, VvCCoAOMT transcript level increased after véraison,
peaked at 75 DAF, and decreased thereafter (Fig. 2B). On the con-
trary, in the uncoloured Moscato grapes, VvCCoAOMT transcript
concentration was relatively stable throughout the berry ripening
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course (Fig. 2B).

In berries of Merlot sampled before véraison and treated in vitro
with ABA, anthocyanin concentration in the skin increased to
2.28 pg g~ ! after 12 days of treatment; in untreated berries, an-
thocyanins were not detected. The transcript level of VvCCoAOMT
increased during the first part of the incubation period, peaked
after 8 days, and then decreased: in the absence of ABA the tran-
script quantity was stable (Fig. 2C).

As VwCCoAOMT was originally reported to be activated by biotic
stress elicitors in grape cell suspension cultures, we evaluated the
expression response of VwCCoAOMT to challenge by fungal patho-
gens: to this aim, transcript expression was assessed in Barbera
leaves and ripe berries inoculated with B. cinerea. A sharp increase
in accumulation of stilbene synthase transcript was observed after
inoculation in both organs during the experiment, in agreement
with a well-known reaction of grapevine tissues to this pathogen
(Bezier et al., 2002) (Fig. 3A, B). Transcript concentration of
VvCCoAOMT in inoculated grape leaves decreased, while in berries
it transiently increased, but non-inoculated controls followed a
similar pattern (Fig. 3A, B).

The transcript level of VwCCoAOMT was also assessed upon
application of an abiotic (drought) stress on whole plants. In fruit-
bearing, potted Grenache plants subjected to water stress (WS), leaf
water potential and stomatal conductance were lower than in
irrigated plants, starting respectively from the second or the fourth
day of the experiment. At the end of the experiment (eight days
after withholding irrigation) both parameters were typical of
drought-stressed grapevine leaves (Chitarra et al., 2014) (Fig. 4A, B).
The VwDHN1a gene encodes a grape dehydrin protein responsive to
drought stress in leaves (Perrone et al., 2012; Yang et al., 2012): as
expected, its transcript concentration increased in WS leaves,
confirming the physiological data, while it was not affected in
berries (Fig. 4C). Transcripts of VwCCoAOMT showed no concentra-
tion changes in leaves upon drought, whilst they increased in
berries of drought-stress plants: at the end of the experiment, the
transcript level of VwCCoAOMT was 3 times higher than control
(Fig. 4D).

3.3. Characterization of VwCCoAOMT activity in vitro

The VvCCoAOMT coding sequence was expressed as a GST re-
combinant fusion protein in E. coli. The recombinant protein was
purified (Fig. S3), and showed methylating activity on cyanidin 3-0-
glucoside chloride. In presence of 250 uM of cyanidin-3-0-gluco-
side chloride, the recombinant GST-VvCCoAOMT protein purified in
batch converted about 9% of the substrate into peonidin 3-O-
glucoside (Amax = 516 nm) (Fig. 5). The recombinant protein was
tested under the same conditions with caffeoyl-CoA. In presence of
recombinant GST-VWwCCoAOMT, about 20% of the substrate was
transformed into feruloyl-CoA (Amax = 346 nm). In HPLC analysis,
both caffeoyl-CoA and feruloyl-CoA displayed two peaks with the
same absorbance spectra, as previously reported by Rautengarten
et al. (2010).

In vitro assay conditions were optimized using the recombinant
GST-VwCCoAOMT protein. The optimal pH value for the methylation
of cyanidin 3-0-glucoside chloride was 8.5. Substituting metal ions
(Zn**, Ca®*, Mn**) for Mg?* decreased enzyme activity on cyanidin
3-0-glucoside chloride below the values measured with Mg?*
(Fig. S4).

Kinetic parameters were calculated both for the GST-
VvCCoAOMT protein, and for the thrombin-cleaved VwCCoAOMT

of the means (n = 3). L = leaf; P = petiole; WB = whole berry; BS = berry skin;
BP = berry pulp; S = seed.
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Fig. 3. Transcript accumulation profiles in Barbera leaves and berries upon biotic stress. Expression changes of VwSTS27 and VwvCCoAOMT in detached leaves (A) and ripe berries (B)
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collected at 0, 36 and 72 h, whereas berry samples were harvested at 0, 29, 53, 94 h after

inoculation. Ubiquitin (VvUBI) was used as the endogenous control gene for the nor-

malisation procedure. Time at 0 h was used as the reference sample for the calculation of expression ratios. Bars are standard errors of the means (n = 3).

protein (Table 1). The affinity to cyanidin 3-O-glucoside was slightly
higher in the cleaved protein; Km for caffeoyl-CoA was in the same
order of magnitude than for the anthocyanin substrate. When the
fusion protein was tested, Vmax was higher for caffeoyl-CoA, than
for cyanidin 3-0O-glucoside. The cleaved protein had a higher Vmax
and a lower Kcat than the recombinant protein. In the presence of
cyanidin 3-0-glucoside chloride (250 pM), the cleaved protein
transformed more than 50% of the substrate into peonidin 3-0O-
glucoside.

4. Discussion

4.1. WWCCoAOMT is a multifunctional enzyme active on
anthocyanins

Methylation of oxygen, nitrogen and carbon is a common re-
action in bacteria, fungi, plants and animals. In plants, the O-
methylation patterns of polyhydroxylated molecules are crucial to
determine their function (Ibrahim et al., 1998). Plant S-adenosyl-1-
methionine (SAM)-dependent O-methyltransferases (OMTs; EC
2.1.1) catalyse methylation of many substrates. Over the years OMT
genes have been characterized in several plant species, and
different classifications have been proposed for this enzyme family
(Joshi and Chiang, 1998; Lam et al., 2007). Based on their structure

and molecular weight, OMTs can be divided into two major classes
(Noel et al., 2003). Type 1 OMTs consist of homodimeric enzymes
with subunit sizes of 38—43 kDa, which do not require divalent
cations for their activity. Conversely, type 2 OMTs represent a group
of lower molecular mass (23—27 kDa), cation-dependent OMTs. The
first group includes caffeic acid, flavonoid, coumarin, and alkaloid
OMTs (Frick and Kutchan, 1999; NDong et al., 2003), whilst most
members of the second group are specific for CoA esters of phe-
nylpropanoids. Within the wide family of type 2 plant O-methyl-
transferases, CCOAOMTs catalyse the methylation of caffeoyl-CoA
and of other cinnamic thioesters, and play a role in the biosynthesis
of lignin monomers (Day et al., 2009). In plants, lignification re-
inforces the cell wall, and genes involved in lignin biosynthesis,
CCoAOMTs included, are activated upon challenge by wall-
degrading fungal pathogens (Bhuiyan et al, 2009). However,
multifunctional CCoOAOMTs have been described in several plants:
these proteins are active also on flavonoid substrates, catalysing the
3’ or 3’-5’ O-methylation of their B ring.

By analysing the published grapevine genome, we identified six
gene models that, based on the homology with orthologous pro-
teins of the same function, putatively form a family of grape
CCoAOMTs. The known genes include VvCCoAOMT, whose in vitro
activity on caffeoyl-CoA has already been demonstrated (Busam
et al., 1997) and WAOMT, a multifunctional CCoAOMT that
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Table 1
Kinetic parameters measured on the recombinant GST-VvCCoAOMT fusion protein, and on the thrombin-cleaved VvCCoAOMT.
Substrate Km (uM) Vmax (nM s~ 1) Kcat (s™1)
GST-VvCCoAOMT Cyanidin 3-0-glucoside chloride 1103 + 4.0 4.4 +0.05 0.0027 + 0.00003
Caffeoyl-CoA 96.0 + 2.2 135+ 04 0.0082 + 0.0003
VvCCoAOMT Cyanidin 3-O-glucoside chloride 82.7 £ 20.0 213 +22 0.0129 + 0.0014
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methylates anthocyanins and flavonols (Hugueney et al., 2009).
Phylogenetic analysis of grape CCoAOMTs together with other
heterologous proteins shows that VvAOMT and VvCCoAOMT are
part of two different clusters, both however including at least one
proven multifunctional CCOAOMT: rice ROMT-15 in the first case
(Lee et al., 2008), and Arabidopsis CCOAOMT in the second (Do et al.,
2007). Although a limited correlation between substrate specificity
and primary sequence has previously been observed for O-meth-
yltransferases (Ibrahim et al., 1998; Lam et al., 2007), these obser-
vations encouraged us to test whether VvCCoAOMT is a
multifunctional enzyme and has anthocyanin-methylating
properties.

When tested in vitro, recombinant GST-VvCCoAOMT showed
activity on a flavonoid substrate (cyanidin 3-O-glucoside chloride)
and transformed about 9% of the substrate into peonidin 3-O-
glucoside. Incubation with caffeoyl-CoA in the same conditions
transformed about 20% of the substrate into feruloyl-CoA,
demonstrating activity on this substrate and confirming a previ-
ous report (Busam et al., 1997). The kinetic parameters of the re-
combinant protein on the two substrates were in the same order of
magnitude, supporting the hypothesis that VwCCoAOMT is a
multifunctional enzyme.

The kinetic parameters of the thrombin-cleaved VvCCoAOMT
protein are in the same order of magnitude of those observed on
flavonoid substrates for other multifunctional CCoAOMTs. For
instance, four recombinant proteins from different plants
(M. crystallinum, Stellaria longipes, tobacco, and Arabidopsis),
showed methylating activity on the flavonol quercetin with Km in
the range 6.4—25 M, and Vmax in the range 45—560 pkat mg~"
(Ibdah et al., 2003); similar values were observed on the flavonol
myricetin for two rice CCOAOMTs (Lee et al.,, 2008). Grapevine
VWAOMT is active on cyanidin 3-O-glucoside, with lower Km
(43 pM) and higher Kcat (0.09 s—!) than VvCCoAOMT (82.7 uM and
0.0129 s~ respectively). These kinetic data suggest that
VvCCoAOMT may contribute to anthocyanin methylation in grape
berry skins, albeit with somewhat lower efficiency than VvAOMT.

4.2. Transcript of VwvCCoAOMT accumulates during ripening

In order to gain a clearer picture of VvCCoAOMT functional roles,
we analysed its transcript levels in different tissues, and upon
natural and artificially induced berry ripening.

In vegetative tissues, VvCCoAOMT is highly expressed in leaf
petioles, which are likely to contain fairly high levels of lignin,
probably comparable with fruit stalks [where lignin content ex-
ceeds 150 mg g~ ! dry weight (Prozil et al., 2014)]. This agrees with a
role of this protein in the methylation of caffeoyl-CoA, a reaction
involved in lignin biosynthesis. Coherently, transcripts are less
concentrated in leaves, where lignin is likely confined to veins.

Grape berry development follows a double-sigmoid model
resulting from two consecutive stages of growth separated by a
phase of slow or no growth (véraison). In particular, in the first
period berries are green, firm and acidic. During this phase, organic
acids, hydroxycinnamoyl esters and tannins accumulate. In Barbera
berries, VwCCoAOMT transcript was more abundant in the pre-
véraison stage (15 DAF) and it declined at véraison (45 DAF), sug-
gesting a role in the methylation of compounds accumulated at
early stages of fruit development. To our knowledge, no data are
available on the lignin content in immature grape berries, although
the skin-specific activation of cinnamoyl-CoA reductase and
cinnamoyl-alcohol dehydrogenase, two genes involved in lignin
biosynthesis, has been observed in ripe berries (Grimplet et al.,
2007). Other potentially methylated phenolic compounds, such as
flavonoids and hydroxycinnamoyl tartrates (HCTs), are accumu-
lated in berries before véraison. Flavonols are an important class of

grape flavonoids, mainly localized in the berry skins of both white
and red grapes. Flavonol biosynthesis starts at flowering and is
followed by a decline until véraison; thereafter an increase in the
expression of biosynthetic genes allows further accumulation
(Downey et al., 2003). Several grape enzymes acting on anthocya-
nins were shown to be active also on flavonols both in vitro and
in vivo (Ford et al., 1998; Hugueney et al., 2009), and, based on its
expression pattern, VwCCoAOMT could be a candidate for the
biosynthesis of methylated flavonols. The content of methylated
flavonols before véraison is not known, but is about 3% of total
flavonols in the skin of Barbera at harvest (Mattivi et al., 2006).
HCTs are the most abundant group of non-flavonoid phenols in
grapes. The predominant HCTs in grape berry pulp and skins are
caffeoyltartaric acid, p-coumaroyltartaric acid and feruloyltartaric
acid (Adams, 2006). As in the case of flavonols, these compounds
are accumulated both before and after véraison. The methylated
feruloyl-tartaric acid is present in ripe Barbera berry skins in a
range between 0.8 and 1.6% of total HCTs, which is a relatively high
percentage compared to most coloured-grape varieties as many of
them do not accumulate feruloyl-tartaric acid at all (Ferrandino
et al.,, 2012).

After véraison, we detected an increase in VwCCoAOMT tran-
script in the coloured genotype Barbera and not in the uncoloured
genotype Moscato. Since ABA is known to trigger the ripening and
anthocyanin accumulation in grape berries (Pirie and Mullins, 1976;
Jeong et al.,, 2004; Ferrandino and Lovisolo, 2014), we induced
ripening with ABA treatment in incubated Merlot berries, and also
in this case we observed an increase in VwCCoAOMT transcript
expression. In grape skins, a similar expression pattern is typical of
genes involved in anthocyanin decoration, such as the 3-0-gluco-
syltransferase UFGT (Boss et al., 1996) and the methyltransferase
VVAOMT (Hugueney et al., 2009), suggesting that VvCCoAOMT may
contribute to anthocyanin methylation in this tissue. Nevertheless,
the expression profile of VwCCoAOMT peaks earlier than what
observed for VWUFGT and VVAOMT, whose transcripts increase up to
the end of ripening. Also the expression profile after artificial in-
duction of ripening with ABA mirrors the same pattern. This sug-
gests that the action of VwCCoAOMT is concentrated in a shorter
time window than that of other anthocyanin decorating enzymes.

In the second period of growth, berries soften, lose chlorophyll,
and, in coloured varieties, accumulate anthocyanins in the skin. In
this ripening stage, a functional role for VwCCoAOMT in methylation
of flavonols and hydroxycinnamic acids seems less probable, due to
the observation of no expression activation in Moscato, which
contains both types of compounds at concentrations comparable
with Barbera: the content of methylated flavonols in the berry skin
has not been determined in this genotype yet, but it normally
ranges between 2 and 5% of total flavonols in the skin of uncoloured
grapes (Mattivi et al., 2006), while the concentration of feruloyl-
tartaric acid in Moscato reaches 1% of total HCTs (Ferrandino
et al., 2012).

4.3. VWCCoAOMT is activated upon drought stress

Busam et al. (1997) showed that a line of cultured V. vinifera cells
reacted to treatment with yeast extract with a surge of resveratrol
accumulation. Yeast extract, and low concentrations of known
elicitors of stress responses (salicylic acid and 2,6-
dichloroisonicotinic acid), raised the expression of VvCCoAOMT in
cultured cells; however, the response of this gene to stress in plant
tissues was not assessed. In our study, we exposed grape berries to
both biotic (inoculation with the fungal pathogen B. cinerea) and
abiotic (drought) stress to test the hypothesis that VvCCoAOMT may
be stress-inducible in the plant.

When B. cinerea was inoculated onto detached berries, stilbene
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synthase expression increased as expected (Bezier et al., 2002).
However we did not detect an increase in VvCCoAOMT transcript
abundance. This discrepancy with the published results may be due
to differences in the elicitation method applied (living fungus
instead of elicitors) or the nature of the cells used: pigmented berry
in the case of this study, unpigmented cell cultures, obtained from
hypocotyl tissues, in the study by Busam et al. (1997). However, we
did not detect expression activation also in the case of unpig-
mented, vegetative leaf tissues, where stilbene synthase was also
activated. It is possible that the activation of VvCCoAOMT in tissues
attacked by fungal pathogens may be limited to those actively
synthesizing lignin, while activation may not be necessary in berry
skins as methylated anthocyanins are not essential components of
cell reactions to biotic stress. Coherently, B. cinerea infection has not
been reported to induce accumulation of anthocyanins in grape
leaves or berries. The activation of the anthocyanin biosynthetic
pathway and the accumulation of anthocyanins are on the contrary
observed in grape leaves upon virus (Gutha et al., 2010), phyto-
plasma (Margaria et al., 2014), and Eutypa lata (Rotter et al., 2009)
infection. It will be interesting to test whether in these conditions
the methylation of anthocyanins and VvCCoAOMT expression are
also affected.

Accumulation of anthocyanins is induced in plants by abiotic
stresses such as high irradiation, drought, and cold (Chalker-Scott,
1999). In grape, parallel to an increase in berry skin anthocyanin
content, drought induces a profile shift towards the methylated
forms at the expense of the non-methylated ones (Castellarin et al.,
2007b). The enhanced methylation reported in the anthocyanin
profile upon abiotic stress may increase the vacuolar antioxidant
potential by favouring the biosynthesis of more stable molecules
(Sarni et al., 1995).

Our experiment shows that the transcript of VvCCoAOMT,
encoding a protein with anthocyanin methylating activity in vitro,
increases in berries of drought-stressed grape plants. Thus
VvCCoAOMT could significantly contribute to the increase of
anthocyanin methylation activity observed upon drought. Tran-
script accumulation from VwCCoAOMT4 is also activated upon
drought stress (S.D. Castellarin, pers. comm.). Stress inducibility on
the contrary does not seem to be a feature of VWAOMT, whose
transcript level only slightly increases after a long-term drought
treatment (Castellarin et al., 2007a). Thus activation of anthocyanin
methylation upon abiotic stress could depend on a subgroup of
drought-responsive CCoOAOMTs.

Stress inducibility implies that VvCCoAOMT expression is acti-
vated by a drought-stress related signal. ABA is the most plausible
candidate for this role, as it has been reported to increase upon
drought stress in berry skins, at least partly as a consequence of
increased expression of biosynthetic genes (Deluc et al., 2009). ABA
activates anthocyanin biosynthesis upon osmotic stress (Loreti
et al., 2008) and ABA accumulation is induced by abiotic stress in
parallel to anthocyanin accumulation (Yamaguchi-Shinozaki and
Shinozaki, 2006). VWAOMT activation is controlled by VwMybA1l,
the main transcription factor regulating anthocyanin biosynthetic
genes in berry skins (Ageorges et al., 2006). Thus it can be hy-
pothesized that transcription of VwCCoAOMT is under the control of
other, probably ABA-dependent, stress-activated transcription
factors.
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