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Abstract. The bigraph embedding problem is crucial for many results
and tools about bigraphs and bigraphical reactive systems (BRS). There
are algorithms for computing bigraphical embedding but these are de-
signed to be run locally and assume a complete view of the guest and
host bigraphs, putting large bigraphs and BRS out of their reach. To
overcome these limitations we present a decentralized algorithm for com-
puting bigraph embeddings that allows us to distribute both state and
computation over several concurrent processes. Among various applica-
tions, this algorithm o↵ers the basis for distributed BRS simulations
where non-interfering reactions are carried out concurrently.

1 Introduction

Bigraphical Reactive Systems (BRSs) [10,15] are a flexible and expressive meta-
model for ubiquitous computation. In the last decade, BRSs have been success-
fully applied to the formalization of a wide range of domain-specific calculi and
models, from traditional programming languages to process calculi for concur-
rency and mobility, from business processes to systems biology; a non exhaus-
tive list is [1, 3, 4, 6, 12, 13]. Recently, BRSs have found a promising applications
in structure-aware agent-based computing: the knowledge about the (physical)
world where the agents operate (e.g., drones, robots, etc.) can be conveniently
represented by means of BRSs [16, 20]. BRSs are appealing also because they
provide a range of general results and tools, which can be readily instantiated
with the specific model under scrutiny: simulation tools, systematic construction
of compositional bisimulations [10], graphical editors [7], general model check-
ers [18], modular composition [17], stochastic extensions [11], etc.

This expressive power stems from the rich structure of bigraphs, which form
the states of a bigraphic reactive system. A bigraph is a compositional data
structure describing at once both the locations and the logical connections of
(possibly nested) components of a system. To this end, bigraphs combine two
independent graphical structures over the same set of nodes: a hierarchy of places,
and a hypergraph of links. Intuitively, places can be used for representing physical
positions of agents, while links represent logical connections between agents. A
simple example is shown in Figure 1.
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Fig. 1. Forming a bigraph from a place graph and a link graph.

Bigraph

Embedding engineReaction engine
execution policies

available embbedings

observemodify

Fig. 2. An abstract bigraphical machine.

Like graph rewriting [19], the behaviour of a BRS is defined by a set of
(parametric) reaction rules, which can modify a bigraph by replacing a redex
with a reactum, possibly changing agents’ positions and connections.

Bigraphical reactive systems can be run (or simulated) by the abstract ma-
chine depicted in Figure 2 (or variants of it). This machine is composed by two
main modules: the embedding engine and the reaction engine. The former is re-
sponsible of keeping track of every occurrence of the redexes into the machine
state. The latter is responsible of carrying out the reactions, in two steps: (a)
choosing an occurrence of a redex among those provided by the embedding engine
and (b) updating the machine state by performing the chosen rewrite operation.
The selection of the reaction is driven by user-provided execution policies.

Therefore, computing bigraph embeddings is a central issue in any implemen-
tation of a BRS abstract machine. The problem is known to be NP-complete [2],
and some algorithms (or reductions) can be found in the literature [8, 14, 21].
However, existing algorithms assume a complete view of both the guest and the
host bigraphs. This hinders the scalability of BRS execution tools, especially on
devices with low resources (like embedded ones). Moreover, in a truly distributed
setting (like in multi-agent systems [12]) the bigraph is scattered among many
machines; gathering it to a single “knowledge manager” in order to calculate
embeddings and apply the rewriting rules, would be impractical.

In this paper, we aim to overcome these problems, by introducing an al-
gorithm for computing bigraphical embeddings in distributed settings where
bigraphs are spread across several cooperating processes. This decentralized al-
gorithm does not impose a complete view of the host bigraph, but retains the
fundamental property of (eventually) computing every possible embedding for
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Fig. 3. Distributed bigraphical machine.

the given host. Thanks to the decentralized nature of the algorithm, this solution
can scale to bigraphs that cannot fit into the memory of a single process, hence
too large to be handled by existing implementations. Moreover, the algorithm
is parallelized: several (non-interfering) reductions can be identified and applied
at once. In this paper we consider distributed hosts only since guests are usually
redexes of parametric reaction rules and hence small enough to be handled even
in presence of scarce computational resources.

Thanks to this result we are able to define a decentralized variation of the
abstract bigraphical machine illustrated above. The architecture of this new
distributed bigraphical machine is sketched in Figure 3. Both computation and
states are distributed over a family of processes. Each process has only a partial
view of the global state and negotiates updates to its piece of the global bigraph
with its “neighbouring processes”. In order to simplify the exposition we assume
reliable asynchronous point-to-point communication between reliable processes.
These are mild assumptions for a distributed system and can be easily achieved
e.g. over unreliable channels.

Synopsis In Section 2 we briefly recall the notion of bigraphs and bigraphical
reactive systems. In Section 3 we recall the notion of bigraph embedding, intro-
duce the notion of partial embedding and study their ordering (which are at the
base of our algorithm). In Section 4 and Section 5 we describe the distributed
bigrapical machine and its components; especially the distributed algorithm for
solving the embedding problem at the core of this paper. Conclusions and final
remarks are discussed in Section 6.

2 Bigraphical reactive systems

In this section we briefly recall the notion of Bigraphical Reactive Systems (BRS)
referring the interested reader to [15]. The key point of BRSs is that “the model
should consist in some sort of reconfigurable space”. Agents may interact in
this space, even if they are spatially separated. This means that two agents
may be adjacent in two ways: they may be at the same place, or they may be
connected by a link. This leads to the definition of bigraphs as a data structure
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Fig. 4. Open reaction rule of the Ambient Calculus.

for representing the state of the system. A bigraph can be seen as an enriched
hyper-graph combining two independent graphical structures over the same set
of nodes: a hierarchy of places, and a hyper-graph of links.

Definition 1 (Bigraph [15, Def. 2.3]). Let ⌃ be a bigraphical signature (i.e. a
set of types, called controls, denoting a finite arity). A bigraph G over ⌃ is an
object (VG, EG, ctrlG, prntG, linkG) : hmG, XGi ! hnG, YGi composed of two sub-
structures (cf. Figure 1): a place graph GP = (VG, ctrlG, prntG) : mG ! nG and
a link graph GL = (VG, EG, ctrlG, linkG) : XG ! YG. The set VG is a finite set
of nodes and to each of them is assigned a control in ⌃ by the control map
ctrlG : VG ! ⌃. The set EG is a finite set of names called edges.

These structures present an inner interface (composed by mG and XG) and
an outer one (nG, YG) along which can be composed with other of their kind as
long as they do not share any node or edge. In particular, XG and YG are finite
sets of names and mG and nG are finite ordinals.

On the side of GP , nodes, sites and roots are organized in a forest described by
the parent map prntG : VG]mG ! VG]nG s.t. sites are leaves and roots are nG.

On the side of GL, nodes, edges and names of the inner and outer interface
forms a hyper-graph described by the link map linkG : PG ] XG ! EG ] YG

which is a function from XG and ports PG (i.e. elements of the finite ordinal
associated to each node by its control) to edges EG and names in YG.

The dynamic behaviour of a system is described in terms of reactions of
the form a _ a0 where a, a0 are agents, i.e. bigraphs with inner interface h0, ;i.
Reactions are defined by means of graph rewrite rules, which are pairs of bi-
graphs (RL, RR) equipped with a function ⌘ from the sites of RR to those of
RL called instantiation rule. A bigraphical encoding for the open reaction rule
of the Ambient Calculus is shown in Figure 4 where redex and reactum are the
bigraph on the left and the one on the right respectively and the instantiation
rule is drawn in red. A rule fires when its redex can be embedded into the agent;
then, the matched part is replaced by the reactum and the parameters (i.e. the
substructures determined by the redex sites) are instantiated accordingly with ⌘.

3 Partial bigraph embeddings

The following definitions are mainly taken from [9], with minor modification to
simplify the presentation of the distributed embedding algorithm (cf. Section 5).
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As usual, we will exploit the orthogonality of the link and place graphs, by
defining link and place graph embeddings separately and then combine them to
extend the notion to bigraphs. We then introduce partial bigraph embeddings,
define an ordering on them and study the atomic CPO? structure presented by
the set of partial embeddings for any given pair of guest and host bigraphs. This
structure is fundamental for the algorithm we present in Section 5.

Link graph Intuitively an embedding of link graphs is a structure preserving map
from one link graph (the guest) to another (the host). As one would expect from
a graph embedding, this map contains a pair of injections: one for the nodes and
one for the edges (i.e., a support translation). The remaining of the embedding
map specifies how names of the inner and outer interfaces should be mapped into
the host link graph. Outer names can be mapped to any link; here injectivity
is not required since a context can alias outer names. Dually, inner names can
mapped to hyper-edges linking sets of points in the host link graph and such
that every point is contained in at most one of these sets.

Definition 2 (Link graph embedding [9, Def 7.5.1]). Let G : XG ! YG

and H : XH ! YH be two concrete link graphs. A link graph embedding � :
G H is a map � , �v ] �e ] �i ] �o (assigning nodes, edges, inner and outer
names respectively) subject to the following conditions:

(LGE-1) �v : VG ⇢ VH and �e : EG ⇢ EH are injective;
(LGE-2) �i : XG ⇢ }(XH ]PH) is fully injective: 8x 6= x0 : �i(x)\�i(x0) = ;;
(LGE-3) �o : YG ! EH ] YH in an arbitrary partial map;
(LGE-4) img(�e) \ img(�o) = ; and img(�i) \ img(�port) = ;;
(LGE-5) �p � link�1

G

��
EG

= link�1

H � �e;
(LGE-6) ctrlG = ctrlH � �v;
(LGE-7) 8p 2 XG ] PG : 8p0 2 (�p)(p) : (�h � linkG)(p) = linkh(p0)

where �p , �i]�port, �h , �e]�o and �port : PG ⇢ PH is �port(v, i) , (�v(v), i)).

The first three conditions are on the single sub-maps of the embedding. Con-
dition (LGE-4) ensures that no components (except for outer names) are identi-
fied; condition (LGE-5) imposes that points connected by the image of an edge
are all covered. Finally, conditions (LGE-6) and (LGE-7) ensure that the guest
structure is preserved i.e. node controls and point linkings are preserved.

Place graph Like link graph embeddings, place graph embeddings are just a
structure preserving injective map from nodes along with suitable maps for the
inner and outer interfaces. In particular, a site is mapped to the set of sites and
nodes that are “put under it” and a root is mapped to the host root or node that
is “put over it” splitting the host place graphs in three parts: the guest image,
the context and the parameter (which are above and below the guest image).

Definition 3 (Place graph embedding [9, Def 7.5.4]). Let G : nG ! mG

and H : nH ! mH be two concrete place graphs. A place graph embedding
� : G H is a map � , �v]�s]�r (assigning nodes, sites and regions respectively)
subject to the following conditions:
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(PGE-1) �v : VG ⇢ VH is injective;
(PGE-2) �s : nG ⇢ }(nH ] VH) is fully injective;
(PGE-3) �r : mG ! VH ]mH in an arbitrary map;
(PGE-4) img(�v) \ img(�r) = ; and img(�s) \ img(�v) = ;;
(PGE-5) 8r 2 mG : 8s 2 nG : prnt⇤H�

r(r) \ �s(s) = ;;
(PGE-6) �c � prnt�1

G

��
VG

= prnt�1

H � �v;
(PGE-7) ctrlG = ctrlH � �v;
(PGE-8) 8c 2 nG ] VG : 8c0 2 �c(c) : (�f � prntG)(c) = prntH(c0);

where �f , �v ] �r and �c , �v ] �s.

Conditions in the above definition follows the structure of Definition 2, the
main notable di↵erence is (PGE-5) which states that the image of a root can not
be the descendant of the image of another. Conditions (PGE-1), (PGE-2) and
(PGE-3) are on the three sub-maps composing the embedding; conditions (PGE-
4) and (PGE-5) ensure that no components are identified; (PGE-6) imposes
surjectivity on children and the last two conditions require the guest structure
to be preserved by the embedding map.

Bigraph Finally, bigraph embeddings can now be defined as maps being com-
posed by an embedding for the link graph with one for the place graph consis-
tently with the interplay of these two substructures. In particular, the interplay
is captured by a single additional condition ensuring that points in the image of
an inner names reside in the parameter defined by the place graph embedding
(i.e. are inner names or ports of some node under a site image).

Definition 4 (Bigraph embedding [9, Def 7.5.14]). Let G : hnG, XGi !
hmG, YGi and H : hnH , XHi ! hmH , YHi be two concrete bigraphs. A bigraph
embedding � : G H is a map given by a place graph embedding �P : GP HP

and a link graph embedding �L : GL HL subject to the consistency condition:

(BGE-1) img(�i) ✓ XH ] {(v, i) 2 PH | 9s 2 nG : k 2 N : prntkH(v) 2 �s(s)}.

Partial bigraph embeddings In the following we relax the above definition to
allow partiality and formally represent intermediate steps of the algorithm we
present in Section 5. Basically, a partial bigraph embedding is a partial map
subject to the same conditions of a total embedding up-to partiality.

Definition 5 (Partial bigraph embedding). Let G : hnG, XGi ! hmG, YGi
and H : hnH , XHi ! hmH , YHi be two concrete bigraphs. A partial bigraph
embedding � : G H is a partial map subject, where defined, to the same
conditions of Definition 4.

Partial embeddings represent partial or intermediate steps towards a total
embedding. This is reflected by the obvious ordering given by the point-wise
lifting of the anti-chain order to partial maps. In particular, given two partial
embeddings �, : G H we say that:

� v  
4() 8x 2 dom(�)�(x) 6= ? =)  (x) = �(x). (1)
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This definition extends, for any given pair of concrete bigraphs G and H, to a
partial order over the set of partial bigraph embeddings of G into H. It is easy
to check that the entirely undefined embedding ? is the bottom of this structure
and that meets are always defined:

� u  , �x.

(
�(x) if �(x) =  (x)

? otherwise

Likewise, joins, where they exist, are defined as follows:

� t  , �x.

8
><

>:

�(x) if �(x) 6= ?
 (x) if  (x) 6= ?
? otherwise

Clearly � and  have to coincide where are both defined and their join � t  is
defined i↵ it meets every condition in Definition 5.

4 State, overlay and reactions

This section illustrates how a bigraph is distributed between a processes family
and how it is maintained and updated. Firstly, we formalize the idea of a “bigraph
being distributed” and show how a partition of the system global state defines
a semantic overlay network. The rôle of this network is crucial for the embed-
ding algorithm since communication will follow this semantic driven structure.
Finally, we describe how reactions are carried out concurrently and consistently.

In the following, let Proc denote the family of processes forming the dis-
tributed machine under definition and let G be a generic concrete bigraph
(VG, EG, ctrlG, prntG, linkG) : hmG, XGi ! hnG, YGi over a given signature ⌃.

State partition Intuitively, a partition of the shared state G is a map assigning
each component of the bigraph G to the process in charge of maintaining it.

Definition 6 (State partition). A partition of (the shared state) G over Proc
is a map P : G ! Proc assigning each component of G to some process. In
particular, P is given by the (sub)maps Pv, P e, P s, P r, P i, and Po on vertices,
edges, sites, roots, inner names, and outer names respectively. Every component
of G in the pre-image of a process is said to be held by that process. Ports are
mapped into the process holding their node i.e. P((v, i)) , P(v).

Then, the notion of adjacency for bigraph components can be lifted to the
family of processes along the given partition map. Here hyper-edges of the link
graph are considered as trees where the root and leaves are the hyper-edge handle
(i.e. edge or outer name) and all the points (i.e. ports or inner names) it connects.

Definition 7 (Adjacent processes). Let R,S 2 Proc. The process R is said
to be adjacent (w.r.t. the partition P) to S whenever one of the following holds:
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(ADJ-P) there exists a node or site c s.t. P(c) = R and P(prntG(c)) = S;
(ADJ-L) there exists a point p s.t. P(p) = R and P(linkG(p)) = S;
(ADJ-R) there exist two roots r, r0 s.t. P(r) = R and P(r0) = S;
(ADJ-H) there exist two handles h, h0 s.t. P(h) = R and P(h0) = S.

In virtue of the adjacency being a symmetric relation, we will denote pairs of
adjacent processes by R

P◆ S and drop the partition when confusion seems un-
likely. Two (partial) embeddings or a process and a (partial) embedding are said
to be adjacent whenever their images are. The notation is extended accordingly.

The adjacency relation defines an undirected graph with vertices in Proc and
hence an overlay network NP. The overlay network bares a specific semantic
meaning since it reflects the adjacency of the bigraphical elements held by the
processes forming the network: two processes are adjacent if, and only if, they
hold components of the shared bigraphs G that are adjacent in G. Moreover, for
any two components of G, say c

1

and c
2

, the shortest path in the overlay NP
between the processes P(c

1

) and P(c
2

) will never be greater than the shortest
path between c

1

and c
2

in G. The last observation is crucial to our purposes
since relates routing through the overlay NP with walks and visits of G used
e.g. to compute embeddings into G in non-distributed settings. Notice that the
restriction of NP to img(P) will always be connected.

Distributed reactions Let � be an embedding of G into the bigraph shared by the
process in the system and let r : G _ G0 be a parametric rewriting rule for the
given BRS. Processes holding elements of G image through � or in its parameters
have to negotiate the firing of r and coordinate the update of their state. The
negotiation phase is related to the specific execution policy and hence is left
out from the present work. The update phase involves a distributed transaction
and can be easily handled by established algorithms like two-phase-commit [5].
The embedding � is selected among those published by the embedding engine
however, the distributed transaction is still necessary since this collection of
embeddings may be out of sync because of communication delays (cf. Section 5).

5 Distributed embedding

In this Section we present the main result of the paper: a decentralized algorithm
for computing bigraphical embeddings in the distributed settings outlined in
Section 4. Intuitively, each process running this algorithm maintains a collection
of partial embeddings for the guests it has to look for and cooperates with
its neighbouring processes (adjacency is lifted from bigraphs to processes) to
complete of refute them. For the sake of simplicity we assume that all processes
are given the same set of guests (e.g. the redexes of the rules of the underlying
BRS) and that this set is fixed over the time; however, the algorithm can be
readily adapted to work without these assumptions.
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Process structure Each process maintain, for each guest G, a suitable structure
�G where it stores the all partial embeddings of G involving its partial view of
the shared bigraph. Among these, there are all the total embeddings the process
believes available at a current time and which are exposed to the outside system
(e.g. the rewriting engine of the distributed bigraphical machine). Partial embed-
dings are decorated with some extra information to handle the non-monotonic
changes of this structure over the life of the process.

Definition 8 (�G). A model � for the guest G is a set of triple (�, B, ts) where:

– � is a partial embedding from G to the shared bigraph H;
– ts is a logical timestamp composed by the values of the logical clocks of the

processes involved in the making of � i.e. those in img(P � �);
– B: is a boolean value that states if � holds. This is used to implement, together

with ts, non-monotonic reasoning (with retracted embeddings).

Each model �G maintains only the last (according to the function ts) iteration
of every partial embedding �. For this reason, we will also sometimes use �G as
a partial function from partial embedding to pair (Bool,Proc ! N), s.t.:

�G(�) = (B, ts)
4() (�, B, ts) 2 �G.

Finally, we will say that: �G |= �
4() 9ts.(�, true, ts) 2 �G(�).

The procedure onBigraphViewChanged of a process P is called whenever
the portion of the global bigraph held by P is modified. Updates define ticks in
the logical clock P.time held by each process. Moreover, updates may invalidate
some of the (partial) embeddings computed so far by the process and render
new embeddings available. The first have to be retracted and the seconds have
to be suggested to the nearby processes. Clearly, processes can see directly only
the side e↵ects of updates on embeddings that are ”local” to them.

Definition 9 (Local embedding). Let � : G H be a partial embedding and
let P : H ! Proc be a partition. The owners of � are the processes in img(P��). If
� has exactly one owner then it is said to be local to it. We denote the restriction

of � to the portion of bigraph held by a set of processes S by �
��P
S
.

Local embeddings can be easily computed by the algorithm proposed in [14]
with minor modifications to relax the constraints ensuring totality.

Given a process Q, every partial embedding  v �
��P
{Q} is local to Q except for

the undefined embedding – since img(P�?) will always be empty. Therefore, the
restriction of � toQ can be read as the largest embedding local toQ that supports
� and every change in the state held by Q that invalidates this local embedding
invalidates also � and hence have to be notified to every process owning �.

It should be noted that, before sending a local embedding (suggest), the
process will check for local embeddings that were found in a previous iteration of
onBigraphViewChanged and do not appear in the current one: these embeddings
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Procedure onBigraphViewChanged()

time time+ 1
for G 2 Guests do

localEmbeddingsOfG getLocalEmbeddings(G)

foreach (�, true, ts) 2 �
G

s.t. |dom(ts)| = 1 and
� 62 localEmbeddingsOfG do

send h�, false, self 7! timei to self // self retraction
end

foreach � 2 localEmbeddingsOfG s.t. �
G

6|= � do

send h�, true, self 7! timei to self // self suggestion
end

end

are now erroneous and hence retracted by the process. Notice that the process
will never send the empty embedding.

In both cases, the message sent is an entry of a model � for a guest G, where
the timestamp is the partial function defined only on the process holding the
partial embedding (hence a pair P 7! time) and the boolean value included in the
message is used to tell retract and suggest messages apart. These informations
o↵er us a causal ordering between suggestions and retractions and hence the
ability to handle non-monotonic reasoning in a system where messages can be
received out of order. In our system, a process can compute an embedding �
that cannot be used in a reaction, for example if a retracting message about an
embedding  v � has not been received yet. However, system consistency will
be preserved because rewritings are performed inside distributed transitions and
hence at least one of the processes that retracted � will abort the transaction.

Retracts onBigraphViewChanged is the only procedure that generate retracted
embeddings. Here we will explain why we only need to retract local embeddings.
After a reaction, each process involved can decide that some embeddings no
longer apply. Each process has only a limited knowledge about the system’s
bigraph, given by the portion assigned to it: for this reason, a process can only
see the untruth of an embedding if it maps elements of the guest to elements
assigned to that process. More formally, the set of embeddings that the process
P can see as false can be written as RP ✓ {� | P 2 img(P � �)}.

For each embedding �, if a process P is involved in its formation, then there
exists at least one local embedding  computed by P such that  v �. Given its
local knowledge about the global bigraph, we can conclude that if � 2 RP , then
there exists  v � local to P and such that  2 RP . Therefore, if a process P
wants to retract each embedding in RP , it only needs to retract the subset of
its local embeddings {� | � 2 RP ^ {P} = img(P � �)}.

� -updates When a process P receives a retraction message h�, false, tsi1 such
that � occurs in � but the occurrence was generated earlier than ts it invali-

1 Notice that the partial embedding being retracted is local.
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Procedure retract(G,�,ts)
// ts involves exactly one process
{P} dom(ts)
t0  0
if �

G

(�) 6= ? then // new embedding
(B0, ts0) �

G

(�)
t0  ts0(P )

end

if ts(P ) > t0 then
D  ;
foreach ( , B00, ts00) 2 �

G

do

if � v  ^ t > ts00(P ) then // a relation
ts00(P ) t
�
G

( ) (false, ts00)
D  D [ {P | self◆ P ^ P 2 img(P �  )}

end

end

send h�, false, tsi to D
end

dates every  in � made from � and more recent than ts and then forwards
the retraction message to every neighbour process involved by the retraction
i.e. appearing in a partial embedding being removed from � . Formally, we define
a retract relation a between local and partial embedding:

(�, P 7! t) a ( , ts)
4() � v  ^ t > ts(P )

With this relation, we can define the first updating rule for �G as follows:

( , B, ts) 2 �G (�, P 7! t) a ( , ts) ( , false, ts0) 2 � 0
G

�G
h�,false,P 7!ti���������! � 0

R

(� -UP1)

where

ts0(x) ,
(
t, if x = P .

ts, otherwise.

and � 0
G it’s equal to �G for each ( , B, ts) 2 �G s.t. (�, P 7! time) 6a ( , ts).

The procedure retract implements what we have seen so far in this section, and
it models rather closely the updating rule (� -UP1).

If, instead, P receives a suggestion message h�, true, tsi, it needs to update
a subset of its embeddings and derive new embeddings. These two actions are
implemented respectively by the procedures suggest and combine. Embeddings
that need to be updated are all  in �G, �G( ) = (B0, ts0), such that (�, ts) `
( , B0, ts0), where the update relation ` is defined as follows:

(�, ts) ` ( , B0, ts0)
4()  v � ^ 8P.ts0(P )  ts(P )^

(B0 =) 9Q.ts0(Q) < ts(Q))

55



Procedure suggest(G,�,ts)
if �

G

(�) = ? then // new embedding
�
G

(�) (true, ts)
send h�, true, tsi to {P | �◆ P}
combine(G,�,ts)

end

foreach ( , B0, ts0) 2 �
G

do

// ` relation
if  v �^8(P, t) 2 ts0 t  ts(P ) ^ (B0 ! 9(P, t) 2 ts0 t < ts(P )) then

ts0  {(P, t)|(P, t) 2 ts ^ 9t0(P, t0) 2 ts0}
�
G

( ) (true, ts0)
send h , true, ts0i to {P |  ◆ P}
combine(G, ,ts0)

end

end

An embedding  v � in �G needs to be updated if the time associated to each
process via the logical timestamp stored in �G( ) is lower or equal than its
counterpart in the message’s timestamp ts. Also, if �G |=  ,  will only be
updated if exists a process P such that ts(P ) is strictly greater than the time of
P associated with  in �G. This last constraint ensures that if a process receives
multiple instances of the same suggesting message, it will not update �G and
send that message to its neighbourhood more than once. We can now defines
the �G-update rule for suggesting messages:

( , B0, ts0) 2 �G (�, ts) ` ( , B0, ts0) ( , true, ts00) 2 � 0
R

�G
(G,�,true,ts)��������! � 0

R

(� -UP2)

where ts00 = ts
��
dom(ts0)

.

After this update step, each updated embedding will be used to derive new
embeddings. Given an updated embedding � from the previous step, processes
will search for all  such that � t#  , where the relation t#, between partial
embeddings, is defined as follows:

� t#  
4()  6v � ^ � 6v  ^ � t  is a partial embedding

We can now define the third updating rule for �G, which describes how embed-
dings are derived:

(�, true, ts) 2 �G ( , true, ts0) 2 �G � t#  

(� t  , true, ts00) 2 �G
(� -UP3)

where

P 00(x) =

(
max(P (x), P 0(x)), if �R 6|= � t  ;
max(P (x), P 0(x),⇡

2

(�R(� t  ))(x)), otherwise.
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Procedure combine(G,�,ts)
foreach ( , B0, ts0) 2 �

G

do

⇢ � t  
if B0 ^  6v � ^ � 6v  ^ isConsistent(⇢) then // t# relation

ts00  {(P, t) | (ts(P ) 6= ? _ ts0(P ) 6= ?) ^ t = max(ts(P ), ts0(P ))}
if �

G

(⇢) = ? then

�
G

(⇢) (true, ts00)
send h⇢, true, ts00i to {P | ⇢◆ P}

else

(oldB,oldts)  �
G

(⇢)
if oldB then

ts00  {(P,max(t1, t2)) | (P, t1) 2 ts00 ^ (P, t2) 2 oldts}
end

if 8(P, t) 2 oldts t  ts00(P ) then
�
G

(⇢) (true, ts00)
send h⇢, true, ts00i to {P | ⇢◆ P}

end

end

end

end

and �R is �G before the new derivation of � t  (with the previous timestamp
for �t ). This updating rule, if abstracted from the timestamps ts and ts0, can
be expressed the following cleaner form:

�G |= � �G |=  � t#  

�G |=  t �

Each embedding updated or derived from a suggestion message will update �
and will be sent to the process neighbourhood restricted to those processes that
are considered adjacent to the embedding i.e. those holding some component of
the shared bigraph that is adjacent (in the sense of Definition 7) to the image of
the partial embedding. Embeddings that are completed are exposed to the outer
system contextually to the update of � .

To make our set of updating rules complete, we need two additional rules
to manage incoming messages carrying embeddings that were never seen be-
fore (i.e. �G(�) = ?). This two rules are implemented by retract and suggest
procedures with minor changes w.r.t. the case of (� -UP1) and (� -UP2).

6 Conclusions and future work

In this paper we have presented an algorithm for computing bigraph embeddings
in a distributed environment where the host bigraph is spread across several co-
operating processes. Di↵erently from existing algorithms [8,14,21], this algorithm
is completely decentralized and does not require any process in the system to
have a complete view of the global state, hence it can scale to handle bigraphs too
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large to reside in the memory of a single process/machine. Moreover, embeddings
that are not a↵ected by a reaction are not recomputed and in general the compu-
tation of an embedding requires a number of messages that is linearly bounded
by the size of the embedded bigraph. However, the overall network impact is not
negligible and, in the worst case, can be outperformed by the “semi-distributed”
algorithm proposed in [12] where processes visit the shared bigraph (the visit is
guaranteed to be minimal by the use of IPOs) and compute embeddings locally
using the information gathered. Fortunately there is room for improvement for
the algorithm proposed: suggestion and retraction messages can be grouped and
compressed by suitable representations since the combinatoric explosion is due
to symmetries and isomorphisms between local partial embeddings. Moreover,
symbolic representations can be put in place to further reduce the communi-
cation footprint of the algorithm. We leave this developments for the extended
version of the paper and future works.

The distributed embedding algorithm is the basic block of the distributed
bigraphical machine, a distributed instance of the abstract bigraph machine. This
machine inherits the benefits of the decentralized algorithm, e.g. its scalability.

A direct application of the distributed embedding algorithm is to simulate,
or execute, multi-agent systems. In [12] the authors devise a methodology for
design and prototype multi-agent systems with BRS. Intuitively, the application
domain is modelled by a BRS and entities in its states are divided as “subjects”
and “objects” depending on their ability to actively perform actions. Subjects
are precisely the agents of the system and reactions are reconfigurations. This
observation yields a coherent way to partition and distribute a bigraph among the
agents, which can be assimilated to the processes of the distributed bigraphical
machine (execution policies are defined by agents desires and goals). Therefore,
these agents can find and perform bigraph rewritings in a truly concurrent,
distributed fashion, by using the distributed embedding algorithm.

How the bigraph is partitioned and distributed can a↵ect the performance of
the system. For instance, it is easy to devise a situation in which even relatively
small guests require the cooperation of several processes, say nearly one for each
component of the guest. An interesting line of research would be to study the
relation between guests, partitions, and performance in order to develop e�cient
distribution strategies. Moreover, structured partitions lend themselves to ad-hoc
heuristics and optimizations. As an example, the way bigraphs are distributed
among agents in [12] takes into account how they interact and reconfigure.

We considered adjacency as an undirected graph but some information is lost
in this simplification. In fact, place and link graphs can be seen as forests sug-
gesting the use of directed graphs. We intend to use this additional information
to improve the routing through the induced semantic (directed) network.
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