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a b s t r a c t

In this paper the axial vibrational behavior of nanorods with an attached point-mass is
studied, using the modified strain energy theory. The natural frequencies of the nanorod
with the concentrated mass are obtained for different boundary conditions. The effects
of the concentrated mass intensity, mass location, as well as the value of scale parameters
have been analysed. For the case of small intensity of the concentrated mass, the natural
frequencies of the nanorod can be estimated using a first order perturbative solution.
These approximate results are compared with those corresponding to the exact solution.
For this case, from the properties of the eigenvalue perturbative theory, the identification
of single point mass in uniform nanorods (mass intensity and position) is addressed. The
results obtained encourage the use of axial vibrations of nanorods as a very precise sensing
technique.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, the scientific community interest is attracted by the use of nanostructures (carbon nanotubes, CNTs, graphene
sheets, GSs, and nanowires) as nano-sensors. The reason is connected with the promising features regarding a wide range of
applications such as gas detection, early disease detection, gene mutation detection, DNA sequencing. In this respect, several
reviews have been recently published showing the different capabilities of the nanostructures [1–3]. According to Khanna
[4], nano-sensors can be classified into six groups: mechanical, electrical, optical, magnetic, chemical, and thermal.

In this research we are interested in mechanical nanoresonator sensors and, in particular, in vibration based-methods as
identification techniques. The sensing principle for this class of nanoresonators is based on the measurement of the varia-
tions of the resonant frequencies caused by (unknown) additional masses located on the initial system. The conventional
detection principle assumes that the mass perturbation, caused by attachments of foreign atoms or molecules,
chemical/molecular adsorption, the presence of virus particles or protein-protein and protein-DNA interactions, can be
described as Dirac-delta point masses, having unknown intensities and locations, superimposed to the given mass density
of the nanoresonator. We refer to [1,5] for more sophisticated mechanical models in which a simultaneous perturbation
of the stiffness properties coupled with the mass increase is also considered in the analysis. Our main goals in the present
research are: (i) to derive a continuummechanical model able to describe the axial vibration of a nanoresonator with a single
additional point mass, and (ii) to develop a method for the identification of the point mass from minimal eigenfrequency
data. In particular, we shall consider the inverse problem in which the added mass is small with respect to the total mass
of the nanosensor.
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It is well known that the size effects are significant regarding the mechanical behavior of the nanostructures which com-
poses the nanoresonators. The large computational effort required for the Molecular Dynamics techniques (MD), see, among
others [6–9], encourages the exploration of other possibilities, such as generalized continuum mechanics approaches given
that classical continuum mechanics cannot predict the size effect, due to its scale-free character.

Among the generalized continuum theories, we cite here three main groups: Cosserat micropolar elasticity [10], the strain
gradient elasticity of Mindlin [11,12], and the nonlocal continuum mechanics initiated by Eringen and coworkers [13,14],
and formulated originally in integral form.

From the early integral nonlocal theory, Eringen [15] introduced a differential constitutive theory showing that, for a
specific class of kernel functions, the non-local integral constitutive equation can be transformed into a differential form,
much easier to manage than the integral model. From the pioneer work of Peddieson et al. [16], this differential version
of the Eringen nonlocal model has been widely used to address the mechanical behavior (static and dynamic) of nano-
structures. The list of papers related with these applications is extremely long to be reported here. The interested reader
can see the very recent review by Rafii-Tabar et al. [17].

Several authors used the Eringen elasticity theory to asses the vibrational behavior of beams and rods with attached
masses. Thus, Elthaer et al. [18], Murmu et al. [19], and Li et al. [20] applied this theory to obtain the shift of the natural
frequency of bending vibrations of nanobeams carrying attached mass. Moreover, Murmu et al. [19] and Li et al. [20] pro-
vided identification formulas from the approximated expressions of the frequency shift. However, the cases studied in the
above papers are rather specific and correspond to a nano-cantilever with a mass attached at the tip or a distributed mass
through a certain length from the tip [19], while three configurations, corresponding to a cantilever beam with a mass
attached at the tip, simply supported, and bi-clamped beams with the mass attached at the mid-section, are analysed in [20].

Regarding the use of the Eringen elasticity theory applied to CNTs with a single attached mass vibrating in axial direction,
it is worth to note the work by Aydogdu and Filiz [21] who analyzed the frequencies of axially vibrating CNTs (clamped-
clamped and clamped-free) with a single attached mass located at different positions.

Li et al. [22] studied the natural frequencies of an axially vibrating nanorod with an elastically restrained end by a nano-
spring (depending of the stiffness of the nanospring this end could be considered clamped or free), and with an attached
mass at the other end considered free. In this analysis, the Love hypotheses are considered (i.e. the inertial effects of radial
motion have been taken into account).

Nevertheless, several authors have pointed out some inconsistencies arising from the Eringen differential model when it
is applied to the static behavior of bars in tension [23], static bending behavior of a Euler-Bernoulli beams [16,24–27] or flex-
ural vibrations of a cantilever beam [28].

Recently, Fernández-Sáez et al. [29] and Romano et al. [30] give some new insights on the origin of these inconsistencies.
Therefore, a more suitable approach to describe the mechanical behavior of the nanostructures is needed.

The modified strain gradient elasticity theory was proposed by Lam et al. [31] based on previous developments by Mind-
lin [12] and Fleck and Hutchinson [32]. This approach needs new additional equilibrium equations to govern the behavior of
higher-order stresses, and contain only three non-classical constants for isotropic linear elastic materials. Some papers can
be cited to illustrate (the list is not exhaustive) the use of this theory to model the mechanical behavior of 1D simple nanos-
tructures (beams and rods). Thus, using this approach the static and dynamic bending behavior of Euler-Bernoulli beams [33]
and Timoshenko beams has been studied [34]. Akgoz and Civalek [35,36] obtained analytical solutions for the buckling prob-
lem of axially loaded nano-sized beams. The free torsional vibrations of microbars have been analyzed in [37,38]. Akgoz and
Civalek also studied the longitudinal vibrations of homogeneous [39] and nonhomogeneous (functionally graded material)
[40] microbars using the simple rod theory, while Guven [41] analyzed the propagation of longitudinal stress waves based on
Love-Bishop hypothesis, i.e. considering the lateral deformation and the shear strain effects.

To our knowledge, there is no theoretical investigation on the axial vibrations of nanorods with attached concentrated
mass when the modified strain gradient elasticity theory of Lam et al. [31] is used as constitutive model. This analysis is rel-
evant regarding the nanosensor applications of this kind of structures.

Regarding the experimental determination of frequencies in axially vibrating nanorods, some papers can be found in the
literature (see for instance [42–44]). However, to the authors knowledge, no experimental works dealing with axially vibrat-
ing nanorods with attached masses have been published.

In this paper we analyze the axial vibrational behavior of a nanorod carrying a concentrated mass through its span and
subjected to different boundary conditions. The mechanical behavior of the nanorod is modeled using the modified strain
gradient theory proposed by Lam et al. [31]. The effects of the mass intensity, location as well as the value of scale parameter
have been analyzed. For the case of small intensity of the concentrated mass, a first order perturbative technique is used to
estimate the natural frequencies of the nanorod. The approximate results are compared with those corresponding to the
exact solution. Basing on the explicit expression of the first-order eigenfrequency change induced by the point mass, we
are able to formulate and solve the inverse problem consisting in the identification of the location and intensity of the point
mass in a uniform nanorod from minimal eigenfrequency data. In particular, for nanorods under a specified set of end con-
ditions, the method gives closed-form expressions of both the location and the intensity of the point mass in terms of a suit-
able pair of eigenfrequencies of the nanorod.

The paper is organized as follows. The mechanical model of the nanorod under longitudinal free vibration with and with-
out point mass is briefly recalled in Section 2. Section 3 is devoted to the illustration of the perturbation effects of the small
added mass on the eigenvalues of the nanorod. The inverse problem of identifying the position and the intensity of the small
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point mass from eigenfrequency shifts is addressed in Section 4. Applications and results of numerical simulations, both of
the direct and the inverse eigenvalue problem, are reported and commented in Section 5.

2. The mechanical model

2.1. Brief resume of the modified strain gradient theory

The modified strain gradient theory was presented by Lam et al. [31], who considered the following expression for the
strain energy W corresponding to a linear elastic isotropic material occupying a volume V
W ¼
Z
V

rijeij þ pici þ sð1Þijk g
ð1Þ
ijk þms

ijv
s
ij

� �
dv ; ð1Þ
where the notational convention that repeated indices are implicitly summed from 1 to 3 has been adopted hereinafter. Clas-

sical and higher order stress measures rij; pi, s
ð1Þ
ijk ;m

s
ij are defined as [31]
rij ¼ K � 2G
3

� �
dijemm þ 2Geij; ð2Þ

pi ¼ 2Gl20ci; ð3Þ
sð1Þijk ¼ 2Gl21g

ð1Þ
ijk ; ð4Þ

ms
ij ¼ 2Gl22v

s
ij; ð5Þ
where the strain tensor eij, the dilatational gradient vector ci, the deviatoric stretch gradient tensor gð1Þ
ijk and the symmetric

rotation gradient tensor vs
ij are given by
eik ¼ 1
2

ui;j þ uj;i
� �

; ð6Þ

ci ¼ emm;i; ð7Þ

gð1Þ
ijk ¼ 1

3
ejk;i þ eki;j þ eij;k
� �� 1

15
dij emm;k þ 2emk;m
� �þ djk emm;i þ 2emi;m

� �þ dki emm;j þ 2emj;m
� �� 	

; ð8Þ

vs
ij ¼

1
2

hi;j þ hj;i
� �

: ð9Þ
Here, ui is the ith cartesian component of the displacement vector, i ¼ 1;2;3, and hi is the rotation vector expressed as
hi ¼ 1
2
eijkuk;j: ð10Þ
dij is the Kronecker delta, and eijk is the permutation symbol.
Bulk modulus K ¼ E=ð3ð1� 2mÞÞ;K > 0, and shear modulus G ¼ E=ð2ð1þ mÞÞ;G > 0, are defined in the classical way in

terms of the Young’s modulus E; E > 0, and Poisson ratio m; m > 0. To complete the model, three additional materials con-
stants, l0 > 0; l1 > 0; l2 > 0, which account for scale effects, are needed.

2.2. Modified strain gradient model for the axial vibrations of a uniform nanorod

Let us specialize the general modified strain gradient theory to the free longitudinal undamped vibrations of a slender
straight uniform nanorod of length L, vibrating along its longitudinal axis x. Assuming the hypothesis of the simple theory
of thin bars (i.e., rigid translation of the cross section along the x direction), the equation governing the axial displacement
Uðx; tÞ of the nanorod reads as, see [39] for details,
aU00ðx; tÞ � bUIV ðx; tÞ ¼ q€Uðx; tÞ; ð11Þ

where U0ðx; tÞ and _Uðx; tÞ indicate the first partial derivative of the function U with respect to x and t, respectively, x 2 ð0; LÞ
and t > 0.

According to [39], the coefficient a; a > 0, plays the role of the axial stiffness of the nanorod, and it can be conventionally
expressed as a = EA. Here, A is a geometrical parameter, which, in analogy with classical large-scale rods, can be made coin-
cident with the cross-sectional area of the nanorod. The coefficient q > 0 is the constant mass per unit length. The coefficient
b takes the expression
b ¼ GA 2l20 þ
4
5
l21

� �
: ð12Þ
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Using the classical separation of variables method, the axial displacement Uðx; tÞ can be expressed as
Uðx; tÞ ¼ uðxÞeixt ; ð13Þ

where u ¼ uðxÞ is the amplitude of the normal mode (eigenfunction) associated to the natural (radian) frequency x. Substi-
tuting Eq. (13) into Eq. (11), the following ordinary differential equation is obtained
buIV � au00 ¼ kqu; x 2 ð0; LÞ; ð14Þ

k ¼ x2 being the eigenvalue. We shall be concerned with the following sets of classical (left) and non-classical (right) bound-
ary conditions.

Clamped-Clamped (C-C)
uð0Þ ¼ 0; u00ð0Þ ¼ 0; ð15Þ
uðLÞ ¼ 0; u00ðLÞ ¼ 0; ð16Þ
Clamped-Free (C-F)
uð0Þ ¼ 0; u00ð0Þ ¼ 0; ð17Þ
u0ðLÞ ¼ 0; u000ðLÞ ¼ 0; ð18Þ
Free-Free (F-F)
u0ð0Þ ¼ 0; u000ð0Þ ¼ 0; ð19Þ
u0ðLÞ ¼ 0; u000ðLÞ ¼ 0: ð20Þ
The non-classical end conditions selected above are only one of the possible sets of non-classical boundary conditions
that may be assigned at the ends of a nanorod. Our choice is motivated by the fact that these boundary operators ensure
the self-adjointness of the eigenvalue problem and, then, the reality of the eigenvalues. To show this, let

D ¼ b d4

dx4
� a d2

dx2

� �
be the nanorod operator in (14) and let us denote by B a boundary operator either of the type

ðC � CÞ; ðC � FÞ or ðF � FÞ, e.g., in case ðC � CÞ; Bu ¼ 0 means uð0Þ ¼ u00ð0Þ ¼ 0 ¼ uðLÞ ¼ u00ðLÞ. A direct calculation shows thatR L
0 ðDuÞv ¼ R L

0 uðDvÞ for every u;v 2 C4ð0; LÞ for which Bu ¼ Bv ¼ 0, that is the pair fD;Bg is self-adjoint.
The following properties of the eigenvalue problem (14), coupled with one of the boundary conditions (15) and (16), (17)

and (18), (19) and (20) can be deduced from the general theory:

(i) there exists an infinite sequence of real non-negative eigenvalues fkng1n¼1, with limn!1kn ¼ 1, all of which are simple.
(ii) The family of the eigenfunctions funðxÞg1n¼1 is an orthogonal basis of the space of the admissible deformations of the

nanorod.
(iii) The nth eigenvalue of the nanorod differential Eq. (14), coupled with one set of boundary conditions of the type

ðC � CÞ; ðC � FÞ or ðF � FÞ, is greater than the nth eigenvalue of the corresponding classical rod. The inequality is always
strict, with the exception of the first (vanishing) eigenvalue of the case ðF � FÞ. This property was already noticed in
the literature (see, for example, Figs. 5 and 6 in [39]), and it is a consequence of the extremum properties of the eigen-
values [45]. The property follows by noticing that an admissible deformation of the nanorod is also an admissible
deformation of the classical rod, and that the strain energy density of the nanorod is bigger than the strain energy den-
sity of the classical rod, see the variational characterization of the eigenvalues given in (35)–(37) below.

Moreover, a direct inspection of the eigenvalue problem shows that if v is an eigenfunction of the classical rod (satisfying
the differential Eq. (14) with b ¼ 0 and one set of classical boundary conditions of the type ðC � CÞ; ðC � FÞ or ðF � FÞ), then v
is also an eigenfunction of the nanorod under the same set of (classical and non-classical) end conditions; and vice versa.

The above general properties can be easily confirmed by the direct determination of the following closed form expres-
sions of the eigenpairs of (14) coupled with one of the three boundary conditions ðC � CÞ; ðC � FÞ; ðF � FÞ.

Clamped-Clamped (C-C)
uC�C
n ðxÞ ¼

ffiffiffiffiffiffi
2
qL

s
sin

npx
L

� �
; ð21Þ

kC�C
n ¼ np

L

� �2 1
q

aþ b
np
L

� �2� �� �
; n P 1; ð22Þ
Clamped-Free (C-F)
uC�F
n ðxÞ ¼

ffiffiffiffiffiffi
2
qL

s
sin

2n� 1ð Þpx
2L

� �
; ð23Þ

kC�F
n ¼ 2n� 1ð Þp

2L

� �2 1
q

aþ b
2n� 1ð Þp

2L

� �2
 !" #

; n P 1; ð24Þ
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Free-Free (F-F)
uF�F
n ðxÞ ¼

ffiffiffiffiffiffi
2
qL

s
cos

npx
L

� �
; ð25Þ

kF�F
n ¼ np

L

� �2 1
q

aþ b
np
L

� �2� �� �
; n P 0: ð26Þ
According to Eqs. (11) and (12), l2 does not play any role in the equation governing the axial displacement. Thus, the only
material constants accounting for length scale effects are l0 and l1, which are grouped in the parameter b. From the Eqs. (22),
(24) and (26) it can be easily shown that increasing values of l0 or l1 leads to higher values of the natural frequencies.

2.3. Free axial vibrations of a uniform nanorod carrying a point mass

Basing on the conventional detection principle (see the Introduction), we assume that a point mass M is added at the
cross-section of the nanorod of abscissa s; s 2 ð0; LÞ, see Fig. 1. The differential operator governing the eigenvalue problem
for the nanorod with a point mass is
beuIV � aeu 00 ¼ ekqeu; x 2 ð0; sÞ [ ðs; LÞ; ð27Þ

where in addition to one of the end conditions (15) and (16), (17) and (18), (19) and (20), we have also to consider the jump
conditions at x ¼ s
euðsÞ½ �½ � ¼ 0; ð28Þeu0ðsÞ½ �½ � ¼ 0; ð29Þeu00ðsÞ½ �½ � ¼ 0; ð30Þ

aeu0 � beu000ð ÞðsÞ½ �½ � ¼ �ekMeuðsÞ; ð31Þ

where uðsÞ½ �½ � ¼ uðsþÞ �uðs�Þð Þ denotes the jump of the functionu at x ¼ s. The unperturbed nanorod clearly corresponds to
M ! 0þ.

To solve the eigenvalue problem for the nanorod with a point mass we need to find a nontrivialeu 2 C4 0; sð Þ [ s; Lð Þð Þ \ C1ðð0; LÞÞ and ek 2 Rþ such that (27)–(31) are satisfied, under a given set of end conditions.
In the sequel, we shall need the weak formulation of the eigenvalue problem. Let Hmða; bÞ, with �1 < a < b < þ1, be the

real-valued Hilbert space of the Lebesgue measurable functions f : a; bð Þ ! R such that
R b
a f 2 þPm

i¼1
dif
dxi

� �2� �
< þ1, where dif

dxi

is the ith weak derivative of f. For the sake of simplicity, we shall consider the specific case of boundary conditions ðC � CÞ.
The other cases ðC � FÞ and ðF � FÞ can be managed similarly.

Let us multiply (27) byu 2 H2 0; sð Þ [ s; Lð Þð Þ satisfying uðsÞ½ �½ � ¼ u0ðsÞ½ �½ � ¼ 0 and end conditionsuð0Þ ¼ 0 ¼ uð1Þ. Integrat-
ing by parts twice, we have
beu000ujs�0 þ beu 000ujLsþ � beu 00u0js�0 � beu 00u0jLsþ � aeu 0ujs�0 � aeu 0ujLsþ þ
Z L

0
beu 00u00 þ aeu 0u0ð Þ ¼ ek Z L

0
qeuu ð32Þ
Fig. 1. Nanorod with a point mass M located at abscissa s under different boundary conditions. (a) Clamped-clamped; (b) clamped-free.
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Using the jump and end conditions on eu at x ¼ s and x ¼ 0; L, respectively, and by the definition of u, we get the weak

formulation of (27)–(31) under ðC � CÞ boundary conditions: to find eu 2 H n 0ð Þ and ek 2 R such that
Z L

0
beu00u00 þ aeu 0u0ð Þ ¼ ek MeuðsÞuðsÞ þ

Z L

0
qeuu� �

; for every u 2 H; ð33Þ
where
H ¼ f : 0; Lð Þ ! R f 2 H2 0; sð Þ [ s; Lð Þð Þ; f 0ð Þ ¼ 0 ¼ f Lð Þ; f ðsÞ½ �½ � ¼ f 0ðsÞ� 	� 	 ¼ 0
n o

: ð34Þ
The Rayleigh’s quotient R �½ � associated to the weak formulation (33) and (34) is
R : H n f0g ! Rþ; R u½ � ¼
R L
0 b u00ð Þ2 þ a u0ð Þ2
Mu2ðsÞ þ R L

0 qu2
ð35Þ
and the nth eigenpair ðekn; eunðxÞÞ is such that
ekn ¼ min
u2Vnn 0f g

R u½ � ¼ R eun½ �; n P 1; ð36Þ
where
Vn ¼ f 2 H Mf ðsÞeuiðsÞ þ
Z L

0
qf euidx ¼ 0; i ¼ 1; . . . ;n� 1

� �
: ð37Þ
It can be shown that properties (i) and (ii) mentioned above for the unperturbed nanorod apply also to the eigenvalue
problem for the nanorod carrying a point mass. However, closed-form solutions for the eigenpairs are generally not available,
even for the constant coefficient case.

3. Eigenvalue shifts induced by a small point mass: a perturbative approach

In this section we shall assume that the point mass M is small with respect to the total mass of the nanorod, i.e.,
M � qL: ð38Þ

Under this assumption, we shall investigate on the effects of the added mass on the eigenvalues of the nanorod. Again, to

simplify the presentation, attention is focused on ðC � CÞ end conditions. From the variational theory of eigenvalues recalled
in (35)–(37), it easily follows that no natural frequency can be increased due to the addition of the point mass M, i.e.,
ekn 6 kn; for every n P 1: ð39Þ
However, in order to study the inverse problem of identifying the point mass by natural frequency data, we need quan-
titative information on the effects of the added mass. A first result is contained in the next statement.

Proposition 3.1. Let ðek; euÞ be an eigenpair of (33) and (34). Then, for a given position s 2 ð0; LÞ of the point mass, ek ¼ ekðMÞ is a
C1-function in ð0;1Þ and we have
@ek
@M

¼ �ek eu2ðsÞ
Meu2ðsÞ þ R L

0 qeu2
ð40Þ
Proof. We apply to the weak formulation (33) the forward-difference operator
dhf ðx;MÞ ¼ f ðx;M þ hÞ � f ðx;MÞ
h

; h > 0; M 2 ð0;1Þ: ð41Þ
We have
Z L

0
bðdheu 00Þu00 þ a dheu 0ð Þu0ð Þ ¼ dhek MeuðsÞuðsÞ þ

Z L

0
qeuu� �

þ ek euðsÞuðsÞ þM dheuðsÞð ÞuðsÞ þ
Z L

0
q dheuð Þu

� �
; ð42Þ
for every C2-piecewise function u in ½0; L�, with uð0Þ ¼ 0 ¼ uðLÞ.
Let us take u ¼ eu and let us note that dheu is a suitable test function for the weak formulation of the problem. Then
Z L

0
b dheu 00ð Þeu00 þ a dheu0ð Þeu 0ð Þ ¼ dhek Meu2ðsÞ þ

Z L

0
qeu2

� �
þ ekeu2ðsÞ þ ek M dheuðsÞð ÞeuðsÞ þ Z L

0
q dheuð Þeu� �

ð43Þ
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The left hand side of (43) simplifies with the last square bracket on the right end side. Then, taking the limit as h ! 0þ, we
obtain
@ek
@M

ðMþÞ ¼ �ek eu2ðsÞ
Meu2ðsÞ þ R L

0 qeu2
: ð44Þ
By repeating the above analysis with the backward-difference operator d�hð�Þ, the left derivative of the eigenvalue ek ¼ ekðMÞ
turns out to be equal to the right derivative. Then, the function ek ¼ ekðMÞ is continuously differentiable and (40) is proved.

By adapting the arguments in [46], we can prove the following useful result.

Theorem 3.2. There exists bM; bM > 0, such that the eigenvalues ekn ¼ eknðMÞ of (33) and (34) are holomorphic functions of M, for

0 < M < bM.

By Proposition 3.1 and Theorem 3.2, and assuming the mass-normalization condition
R L
0 qu

2
n ¼ 1, the Taylor series expan-

sion truncated to the first order term in the smallness parameter M for the nth eigenvalue is given by
eknðMÞ ¼ kn � knu2
nðsÞM: ð45Þ
Relation (45) shows that the change in an eigenvalue can be written as the product of the eigenvalue itself, the square of
the corresponding (mass-normalized) eigenfunction of the unperturbed nanorod evaluated at the mass position, and the
mass variation. Eq. (45) plays an important role in our inverse problem, since it shows that the ratios of the relative changes
in two different eigenvalues depend only on the location of the point mass, not on its magnitude, namely (if dkk < 0)
dkn
kn
dkk
kk

¼ u2
nðsÞ

u2
kðsÞ

� f ðsÞ; ð46Þ
where dkn � ekn � kn and s 2 ð0; LÞ. Note that if dkk ¼ 0, then the possible point mass location coincides with one of the node
points of the kth vibrating mode uk of the unperturbed nanorod. Therefore, the problem of localizing the point mass is
reduced to the determination of the solutions of (46) for fixed/measured value of the ratio dkn

kn
= dkk

kk
. Let us observe that, once

the unperturbed configuration is known, the function f ¼ f ðsÞ can be determined numerically or analytically. This idea was
first explored in [47] for the identification of a point mass in a full-scale longitudinally vibrating rod under free-free end con-
ditions, see also [48]. It should be noticed that the analysis developed in [47,48] deals with the identification of a point mass,
described as a Dirac’s delta, in a classical second-order Sturm-Liouville operator, whereas, as it was shown in Section 2, the
longitudinal vibration of a nanorod involves a fourth-order differential operator.

In the next section we shall show that there are certain situations in which a suitable choice of the frequency input data
allows obtaining closed form solutions of the linearized inverse problem.

4. Identification of a small point mass in uniform nanorods

We first consider the identification of the small point mass M in a nanorod under clamped-clamped end conditions
ðC � CÞ. Recalling the expressions of the eigenpairs (25) and (26), by (45) we have
CC�C
n ¼ M sin2 nps

L

� �
; ð47Þ
where
CC�C
n ¼ �

ekC�C
n � kC�C

n

� �
kC�C
n

qL
2

; n P 1: ð48Þ
A direct calculation shows that
M 4CC�C
n � CC�C

2n

� �
¼ 4 CC�C

n

� �2
; n P 1: ð49Þ
In order to identify the point mass, let us distinguish two cases.
First case. Let us assume CC�C

n > 0 (note that CC�C
1 is always strictly positive). By Eq. (49) we have
M ¼ CC�C
n

1� CC�C
2n

4CC�C
n

; ð50Þ
which gives a closed-form expression for the mass intensityM in terms of the (nth, 2nth) eigenfrequency changes. It is worth
noticing that, by (49), M in (50) takes positive values. The position of the point mass can be determined by inserting the
expression (50) into (47), namely



λ
/λ

∼
λ

/λ
∼

Fig. 2.
length

652 A. Morassi et al. /Mechanical Systems and Signal Processing 93 (2017) 645–660
S ¼ cos
2nps
L

� �
¼ CC�C

2n

2CC�C
n

� 1; ð51Þ
where S 2 ½�1;1�. By taking n ¼ 1 in (51), the ratio of the first frequency changes is sufficient for the localization of the point
mass, up to a symmetrical position with respect to the mid-point of the nanorod.

Second case. If CC�C
n ¼ 0 for certain n P 2, then from (47) we have S ¼ 1, that is the point mass is located in one of the

points of zero-sensitivity of the nth vibration mode.
The above analysis shows that the pair of natural frequencies nth and 2nth plays a special role in the linearized inverse

problem. In fact, if the nth frequency is sensitive to the point mass, that is CC�C
n > 0 or equivalently u2

nðsÞ > 0, then the pair

CC�C
n ;CC�C

2n

n o
determines uniquely the mass intensity M. It is worth noticing that the expression for M is the same for all the

pairs of values CC�C
n ;CC�C

2n

n o
. Concerning the possible point mass locations, Eq. (51) shows that their number generally

increases as the order n of the frequencies involved increases, which accounts for the recourse to ‘‘low” frequencies for solv-
ing the localization problem.

Summing up, we have shown that the measurement of the first two natural frequencies in a clamped-clamped nanorod
allows for the unique identification of the point mass (except for symmetrical positions). This conclusion must be modified
for nanorods under different boundary conditions. As an example, let us consider the identification of the point mass in a
clamped free nanorod from the first and second eigenfrequency changes. By inserting the expressions (23) and (24) into
(45) we have
CC�F
1 ¼ M sin2 ps

2L

� �
; CC�F

2 ¼ M sin2 3ps
2L

� �
: ð52Þ
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Clamped-clamped nanorod. Normalized first eigenvalue versus dimensionless point-mass, for different mass positions and different values of the
scale parameter.
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Let z ¼ cos ps
L

� �
, with z 2 ð�1;1Þ. Then, recalling the identity cosð3aÞ ¼ ð4 cos3 a� 3 cosaÞ, we obtain the following non-

linear system in terms of the two unknowns z and M:
λ
/λ

∼
λ

/λ
∼

Fig. 3.
length
CC�F
1 ¼ M

2
ð1� zÞ; ð53Þ

CC�F
2 ¼ M

2
ð1� 4z3 þ 3zÞ: ð54Þ
A direct calculation shows that
ð9CC�F
1 � CC�F

2 Þ ¼ 2Mðz� 1Þ2ðzþ 2Þ > 0 ð55Þ
and the damage localization problem (46) for n ¼ 2 and k ¼ 1 is reduced to solving the polynomial equation
ð1þ 2zÞ2 ¼ v; z 2 ð�1;1Þ; ð56Þ

where, by (55),
v ¼ CC�F
2

CC�F
1

2 ½0;9Þ: ð57Þ
The existence and the number of solutions of (56) depend on the values of the parameter v. If v 2 ½1;9Þ, then there exists a
unique solution z1 2 ð0;1Þ, which corresponds to s1 2 0; L2

� �
. If v 2 ð0;1Þ, then there are two distinct solutions of (56), say

z1 2 �1;� 1
2

� �
and z2 2 � 1

2 ;0
� �

, which correspond to s1 2 2L
3 ; L
� �

and s2 2 L
2 ;

2L
3

� �
, respectively. Finally, for v ¼ 0 Eq. (56) has

a double zero at z ¼ � 1
2, corresponding to s ¼ 2L

3 . In conclusion, should the point mass be located within the left half of
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Clamped-clamped nanorod. Normalized second eigenvalue versus dimensionless point-mass, for different mass positions and different values of the
scale parameter.
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the rod adjacent to the clamped end, the measurement of the first and second natural frequencies determines uniquely the
location of the point mass. Conversely, should the mass be located in the right half of the rod, there are two different loca-
tions corresponding to the same value v, apart when v ¼ 0, which corresponds to the mass position at s ¼ 2

3 L.
We conclude this section with the analysis of natural frequency data coming from two sets of different end conditions. It

turns out that the measurement of the nth resonant frequency under boundary conditions ðC � CÞ and the nth natural fre-
quency under boundary conditions ðF � FÞ;n P 1, determines uniquely the point mass and the location variable
S ¼ cos 2mps

L

� �
. In particular, by adopting the above procedure, we have
λ
/λ

∼
λ

/λ
∼

Fig. 4.
length
M ¼ CF�F
n þ CC�C

n ð58Þ
and
if CF�F
n > 0; then S ¼ �1þ 2

1þ CC�C
n

CF�F
n

; ð59Þ
if CF�F
n ¼ 0; then S ¼ �1: ð60Þ
Here, CF�F
n ¼ � ekF�F

n �kF�F
n

� �
kF�F
n

2
qL

; n P 1. It follows that the point mass is uniquely determined (except for symmetrical positions)

by CC�C
1 ;CF�F

1

n o
.
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Clamped-clamped nanorod. Normalized third eigenvalue versus dimensionless point-mass, for different mass positions and different values of the
scale parameter.
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5. Applications

5.1. Exact versus perturbative solution

This section is devoted to the evaluation of the accuracy of the perturbation approach outlined in Section 3 in estimating
the eigenvalues of the problem (27)–(31) with boundary conditions given either by (15) and (16) ðC � CÞ or by (17) and (18)
ðC � FÞ. From the practical point of view, the free-free case ðF � FÞ does not seem to be very suitable for nanosensors appli-
cations, and will not be considered in the sequel.

Following [39], we considered a nanorod with circular cross-section with diameter D and length L ¼ 20D. Moreover, the
two scale parameters l0 and l1 have been assumed to be equal, e.g., l0 ¼ l1 ¼ l, and the selected Poisson’s ratio was m ¼ 0:38.

The variation of the first three eigenvalues, ek1; ek2; ek3 (normalized to the corresponding eigenvalues k0n of the ‘‘classical” local
rod, that is the rod with b ¼ 0, without any attached mass) with respect to the intensity M of the point mass (normalized to
the total mass of the nanorod qL) has been calculated for various positions s and for D=l ¼ f2:0;1:0;0:5; 0:4g.

Eigenfrequency changes have been obtained using both exact and perturbative solutions. The exact solution is calculated

from the corresponding frequency equation in terms of nondimensional eigenvalue K ¼ qL2

EA
ek, and nondimensional attached

mass M ¼ M
qL.

For the case of a clamped-clamped nanorod the frequency equations reads as
λ
/λ

∼
λ

/λ
∼

Fig. 5.
scale pa
f C�CðKÞ ¼ �b sinhðbÞ ah2 a2 þ b2� �
sinðaÞ �KM sinðasÞ sinðað1� sÞÞ

� �
� aKM sinðaÞ sinhðsbÞ sinhðbð1� sÞÞ ¼ 0; ð61Þ
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Clamped-free nanorod. Normalized first eigenvalue versus dimensionless point-mass, for different mass positions and different values of the length
rameter.
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where the parameters a and b are given by
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∼

λ
/λ

∼

Fig. 6.
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4h2Kþ 1

p
� 1

2h2
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b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h2Kþ 1
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2h2

s
; ð63Þ
and h is the dimensionless parameter related to the length scale l by the following expression:
h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7
5 1þ mð Þ

s
l

20D
: ð64Þ
The frequency equation for the clamped-free nanorod is
f C�F Kð Þ ¼ b coshðbÞ ah2 a2 þ b2� �
cosðaÞ �KM sinðasÞ cosða 1� sð Þ

� �
þ aKM cosðaÞ sinhðsbÞ cosh b 1� sbð Þð Þ ¼ 0:

ð65Þ

The first order change in eigenvalues is determined from (45), where un and kn are given by (21)–(24) for ðC � CÞ and

ðC � FÞ end conditions, respectively.
Figs. 2–4 show, for the ðC � CÞ boundary conditions, the variation of the first three eigenvalues with the attached mass

located at different positions and for the selected values of D=l. For moderate values of the attached mass, i.e.
M=qL 2 ½0;0:2�, there is a good agreement between exact and first-order solution. For the fundamental mode, for example,
the accuracy generally decreases as the mass location moves toward the mid-point of the nanorod. In fact, the maximum
difference is encountered at s ¼ L

2, and it oscillates between 15 and 22 percent. As it was observed above, in absence of
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Clamped-free nanorod. Normalized second eigenvalue versus dimensionless point-mass, for different mass positions and different values of the
scale parameter.
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the attached mass, eigenfrequency values of the strain gradient nanorod are higher than those of the classical rod model, and
they increase when the scale parameter l increases (D=l decreases), meaning that the generalized constitutive model used
leads to a stiffening of the structure.

The results corresponding to clamped-free boundary conditions are shown in Figs. 5–7, and considerations analogous to
the clamped-clamped case can be made. In the case of the fundamental mode, the maximum difference between exact and
perturbative results occurs for mass location s ¼ 0:9, and its value is about 16 percent.

5.2. Solution of the inverse problem

In this section some results on the capability of the method proposed in Section 4 to identify the value of the attached
mass and its position are presented. For the clamped-clamped nanorod, among several simulations, the cases with mass
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Fig. 7. Clamped-free nanorod. Normalized third eigenvalue versus dimensionless point-mass, for different mass positions and different values of the length
scale parameter.

Table 1
Identification of the mass intensity M and position s in a clamped-clamped nanorod ðC � CÞ from the first and second natural frequencies. D=l ¼ 0:4. Percentage
errors: es ¼ 100� ðsest � sÞ=s; eM ¼ 100� ðMest �MÞ=M.

M
qL s ¼ 0:10L s ¼ 0:25L s ¼ 0:40L s ¼ 0:50L

es eM es eM es eM es eM

0.010 0.18 �0.24 1.34 �2.54 0.09 �1.62 0 �1.83
0.025 0.61 �0.91 3.26 �6.04 0.22 �3.97 0 �4.46
0.050 1.72 �2.76 6.21 �11.16 0.42 �7.68 0 �8.56
0.100 5.37 �8.70 11.29 �19.37 0.77 �14.39 0 �15.85
0.200 17.06 �24.74 18.95 �30.85 1.34 �25.49 0 �27.54
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intensity M=ðqLÞ 2 f0:001;0:025; 0:050;0:100;0:200g and position s=L 2 f0:1;0:25;0:40;0:50g shall be considered in detail.
It should be noticed that positions s=L > 1=2 are not considered given the symmetry of the problem. The attached mass is
identified using Eqs. (48) and (50), while the position is obtained from Eq. (51). Table 1 collects the results when the first
two natural frequencies are used in the identification process, i.e., for n ¼ 1. It can be seen that, for small masses, the error
in the identification of position and mass intensity remains at relatively small values. The case s=L ¼ 0:50 deserves special
attention, since the position is exactly identified. Larger errors are observed when the mass intensity increases.
Table 2
Identification of the mass intensityM and position s in a clamped-clamped nanorod ðC � CÞ from the second and fourth natural frequencies. D=l ¼ 0:4. Existence
of two solutions for the mass position (es1 and es2). Percentage errors: es ¼ 100� ðsest � sÞ=s; eM ¼ 100� ðMest �MÞ=M. �: no results.

M
qL s ¼ 0:10L s ¼ 0:25L s ¼ 0:40L s ¼ 0:50L

es1 es2 eM es1 es2 eM es1 es2 eM es1; es2 eM

0.010 2.65 297.35 �4.34 0 0 �2.59 �74.38 �0.62 �6.28 ⁄ ⁄
0.025 6.65 293.35 �10.31 0 0 �6.29 �73.53 �1.47 �14.23 ⁄ ⁄
0.050 13.19 286.81 �18.78 0 0 �12.00 �72.31 �72.31 �24.62 ⁄ ⁄
0.100 25.02 274.98 �31.01 0 0 �21.88 �70.43 �70.43 �38.84 ⁄ ⁄
0.200 42.72 257.28 �44.49 0 0 �36.80 �68.0 �68.01 �54.90 ⁄ ⁄

Table 3
Identification of the mass intensity M and position s in a clamped-free nanorod ðC � FÞ from the first and second natural frequencies. D=l ¼ 0:4. s 2 0; L2

� �
:

existence of unique solution. Percentage errors: es ¼ 100� ðsest � sÞ=s; eM ¼ 100� ðMest �MÞ=M.

M
qL

s ¼ 0:10L s ¼ 0:35L

es eM es eM

0.010 �0.68 1.42 0.94 �2.00
0.025 �1.88 3.94 2.29 �4.79
0.050 �3.59 7.72 4.40 �8.97
0.100 �6.18 13.87 8.12 �15.91
0.200 �7.83 18.34 14.05 �26.05

Table 4
Identification of the mass intensity M and position s in a clamped-free nanorod ðC � FÞ from the first and second natural frequencies. D=l ¼ 0:4. s 2 L

2 ; L
� 	

:
existence of two solutions (Sln:1 and Sln:2). Percentage errors: es ¼ 100� ðsest � sÞ=s; eM ¼ 100� ðMest �MÞ=M.

M
qL s ¼ 0:50L s ¼ 0:65L s ¼ 0:90L

Sln:1 Sln:2 Sln:1 Sln:2 Sln:1 Sln:2

es eM es eM es eM es eM es eM es eM

0.010 96.19 �50.39 0.11 �1.04 5.22 �7.26 �0.01 �1.38 �0.38 �1.58 �42.59 82.16
0.025 94.00 �50.96 0.28 �2.57 5.23 �9.16 �0.02 �3.37 �0.91 �3.87 �42.42 76.67
0.050 91.59 �51.89 0.55 �5.03 5.24 �12.16 �0.03 �6.53 �1.66 �7.49 �42.16 68.21
0.100 88.32 �53.67 1.07 �9.64 5.27 �17.63 �0.06 �12.28 �2.84 �14.08 �41.73 53.47
0.200 84.11 �56.92 1.97 �17.72 5.33 �26.79 �0.11 �21.94 �4.42 �25.02 �41.09 30.48

Table 5
Mean error and standard deviation of the identified parameters (mass intensity and position) from first and second natural frequencies, as a function of the
frequency measurement error. Clamped-clamped nanorod ðC � CÞ with M=qL ¼ 0:025 and s ¼ 0:4L.

Measurement Mass Mass Position Position
Error, P (%) Mean error %ð Þ Standard dev. Mean error %ð Þ Standard dev.

5 �3.970 1:05 � 10�4 0.217 2:71 � 10�4

10 �3.962 2:09 � 10�4 0.217 5:39 � 10�4

15 �3.957 3:11 � 10�4 0.217 8:10 � 10�4

20 �3.983 4:20 � 10�4 0.211 10:84 � 10�4
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Similar information is given in Table 2, in which the second and fourth frequencies are used (i.e., n ¼ 2). Besides the fact
that two possible solutions for the mass position can exist, the comparison of the values with those given in Table 1 shows
that the precision in the identification of position and mass decreases, even for the identified location closest to the right one
(except when s ¼ 0:25, for which the method gives the exact solution). Specifically, for s ¼ 0:5 the identification method
leads to imaginary values since this position coincides with a node of both the second and fourth shape modes, thus both
the second and the fourth frequencies are insensitive to the presence of the point mass.

In the case of the clamped-free rod, as explained in the second part of Section 4, a different scenario is found. The method
was tested for the same point mass intensities considered in the previous case, and the positions investigated covered the
whole span of the rod, namely s ¼ f0:10;0:35;0:50;0:65;0:90g, since the symmetry conditions do not hold for the clamped-
free case. The mass location has been determined by solving (56). In agreement with the theory (e.g., case in which s 2 0; L2

� �
),

for s ¼ 0:10 and s ¼ 0:35 only one solution is encountered in the identification process (see Table 3). The errors are moderate
and increase with the attached mass intensity. For the other positions considered in simulations, two possible solutions are
obtained, Sln:1 and Sln:2 (see Table 4), which correspond to s1 2 2L

3 ; L
� �

, and s2 2 L
2 ;

2L
3

� �
, respectively. In every case, as

expected from the theory developed in the second part of Section 4, one of these two solutions is close to the true solution,
the other is spurious and follows from the non-uniqueness of the mathematical inverse problem. In all the cases, the mass
intensityMwas estimated by solving (55). It should be noticed that, for the sake of brevity, all the results quoted correspond
to D=l ¼ 0:4, the higher value of the scale parameter l considered in this study.

In order to evaluate the effect of errors on the data measurements, the 1st and 2nd eigenfrequencies were perturbed for a
clamped-clamped nanorod ðC � CÞ with point mass intensity M=qL ¼ 0:025 at s ¼ 0:4L, according to the expressions
ffiffiffiffiffiffiffiffiffiekpert

1

q
¼

ffiffiffiffiffiek1

q
1þ s1ð Þ;

ffiffiffiffiffiffiffiffiffiekpert
2

q
¼

ffiffiffiffiffiek2

q
1þ s2ð Þ; ð66Þ
where s1 and s2 are real random Gaussian variables with zero mean and standard deviations r1 and r2, respectively. The
maximum measurement error has been taken to be approximately equal to a given percentage P;P ¼ 5;10;15;20% of
the frequency shift dkn, for n ¼ 1;2. Then, the standard deviations are defined as 3rn ¼ dknP, for n ¼ 1;2. A MonteCarlo sim-
ulation on a population of 10000 samples was performed, leading to the results presented in Table 5, where the mean error
and standard deviation corresponding to mass intensity and position, identified from first and second frequencies, are shown
for different values of the measurement error P. As it can be seen, the mean errors keep (approximately) constant with P,
and equal to the corresponding identification errors shown in Table 1. Regarding the standard deviation, it increases with the
measurement error, but keeps at a rather low value up toP ¼ 0:20. All this confirms the robustness of the proposed method.

6. Concluding remarks

In this paper we obtained the natural frequencies of the axial vibrations of a nanorod carrying a concentrated mass
through its span for clamped-clamped and clamped-free end conditions. The modified strain gradient theory proposed in
[31] has been used to take into account the size effects present in this kind of structures. The influence of the mass intensity,
mass location, as well as the value of scale parameter have been analysed. For the case of small intensity of the concentrated
mass, a first order perturbative technique is used to compute the natural frequencies of the nanorod. To our knowledge, this
problem, which is relevant regarding application of nanostructures as sensors, is addressed for the first time. In fact, from the
properties of the eigenvalue perturbative theory, the identification of a single point mass in a uniform nanorod (mass inten-
sity and position) by minimal frequency data has been considered. We have shown that the point mass can be uniquely iden-
tified (up to a symmetrical position) by the knowledge of the first two natural frequencies of the nanorod under clamped-
clamped end conditions. Moreover, the effect of the frequency measurement errors on the estimated variables (mass inten-
sity and location) has been illustrated with a statistical analysis, showing the robustness of the identification method. The
results obtained herein encourage the use of axial vibrations of nanorods as a very precise sensing technique.

As a final remark, we point out that a problem worth of investigation that emerges from the present analysis stands on
the possibility of identifying a point mass of finite - not necessarily small - magnitude. It is likely that the results and meth-
ods presented in [49,50] may be useful for this purpose.
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