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of A_(X), i.e., p is a name of an open set U if and only if it is a ¢ _-name of the closed set X \ U. We call
an open ball B(a, ) rational, if a is a point of the dense subset of X (that is used to define the computable
metric space X) and r > 0 is a rational number.

Lemma 1. Let X be a computable metric space. Consider the multivalued function Fx :C K’ (X) = O(X)N
with dom(Fx) = {K € K"_(X) : K # 0} and such that, for each K # 0, we have (Uy,),, € Fx(K) if and
only if the following conditions hold for each n € N:

(1) U, is a union of finitely many rational open balls of radius < 277,
(2) K CU,.

Then Fx is computable.

Proof. Let X be a computable metric space and let K C X be a nonempty compact set. Let (p;); be a
k' -name of K. This means that p := lim;_,, p; is a k_-name for K and, in particular, for each n € N:

e pi(n) is a name for a finite set of rational open balls for each i € N,
o there exists k € N such that the finite set of rational balls given by pi(n) covers K and px(n) = p;(n)
for all 7 > k.

We also have that {p(n) : n € N} is a set of names of all finite covers of K by rational open balls. We want
to build a sequence of open sets (U,),, such that (1) and (2) hold. We describe how to construct a name
of a generic open set U, for n € N. We start at stage 0 with U, = 0. At each stage s = (m,4) that the
computation reaches, we focus on the balls B(ag,0),...,B(a;, ) given by p;(m) and we check whether
ro,. .., < 27 If this is not true, then we go to stage s + 1. Otherwise, if the condition is met, we add
these balls to the name of U,, and we check whether p;(m) = p;11(m). If this is the case we add again
B(ag,19),...,B(a;, ) to the name of U,,. We repeat this operation as long as we find the same open balls
given by p;(m) for j > i. If we find p;(m) # p,(m) for some j > 4, then the computation goes to stage s+ 1.

We claim that, for each n, there exists a stage in which the computation goes on indefinitely. Consider,
in fact, {B(ao,70),- - ., B(a;, )}, a finite rational cover of K with rq,...,r; < 27" which exists by a simple
argument using the compactness of K. Since (p;); is a «’_-name of K, there exists a minimum (m, i) such
that:

e p;(m) is a name for the cover {B(ao,70),...,B(a;, )},
e pi(m) = p;(m) for each j > 1.

If the algorithm reaches stage s = (m, ), then it is clear that the computation goes on indefinitely within
this stage. If the algorithm never reaches stage s, then necessarily it already stopped at a previous stage.
In both cases our claim is true.

Finally, since we built the name of U,, by adding only balls of radius < 27" and since the computation
stabilizes at a finite stage, it is clear that conditions (1) and (2) are met. O

We note that even though the open sets U,, constructed in the previous proof are finite unions of rational
open balls, the algorithm does not provide a corresponding rational cover in a finitary way. It rather provides
an infinite list of rational open balls that is guaranteed to contain only finitely many distinct rational balls.
This is a weak form of effective total boundedness and the best one can hope for, given that the input is
represented by the jump of x_.
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The following lemma shows that sequences that we choose in range(Fx) in a particular way give rise to
totally bounded sets.

Lemma 2. Let X be a metric space and let U, C X be a finite union of balls of radius < 27" for each n € N.
Let (zy,)n be a sequence in X with x, € (V;—oU;. Then {x, : n € N} is totally bounded.

Proof. We obtain {z,, : n € N} C (N2, (Ui uU'_, Bz, 2’i)) and the set on the right-hand side is clearly
totally bounded. Hence the set on the left-hand side is totally bounded and so is its closure. 0O

We mention that it is well known that a subset of a metric space is totally bounded if and only if any
sequence in it has a Cauchy subsequence [2, Exercise 4.3.A (a)].

Now we use the previous two lemmas to complete the proof of [1, Theorem 11.2]. Within the proof we use
the canonical completion X ofa computable metric space. It is known that this completion is a computable
metric space again and that the canonical embedding X — X is a computable isometry that preserves the
dense sequence [3, Lemma 8.1.6]. We will identify X with a subset of X via this embedding.

Theorem 3 ([1, Theorem 11.2]). BWT x =gw K'x for all computable metric spaces X .

Proof. The reduction BWT x <qw K’ has been proved in [1], so we focus on the reduction K’y <qw BWT x.
Let (X, d, ) be a computable metric space and let K C X be a nonempty compact set given by a x’ -name
(pi);- We want to compute a point of K using BWT x. The idea is to define a sequence (x,,), in X, working
within the completion X of X and using the open sets built in Lemma 1, such that {z,, : n € N} is compact
in X.

It is clear that K is a compact set of X and that (pi)i can be considered as a k’_-name for K in X. We
consider the map

Lg: XN 5 A (X), (zp)n = {x € X : zis a cluster point of (2,,),}.

By [1, Corollary 9.5] L)T(l is computable and hence L;(K ) yields a sequence (zp,)m in X whose cluster
points are exactly the elements of K.

Let F¢ be the multivalued function defined in Lemma 1. We can compute a sequence (U,), € Fy(K).
Since {2z, : m € N} is not compact (and hence not in dom(BWT x)) in general, we refine it recursively to a
sequence (Yn)n using (U,), in the following way: for each n € N, y,, := z,,, for the first m,, that we find
with 2z, € UpN---NU, and such that m; < m,, for all ¢« < n. Note that we can always find such a y,,
since Ug N ---NU, covers K which is the set of cluster points of (2, )m. Clearly every cluster point of (yy,)n
is also a cluster point of (z,,)m, hence it belongs to K.

Recall now that (y,), is a sequence of points in X and that we want a sequence (z,), in X in order
to apply BWT x. We compute (z,,), as follows: for each n € N, x,, is the first element that we find in the
dense subset range(a) such that d(x,,y,) < 27" and z,, € UyN---NU,, where d also denotes the extension
of the metric to X. By density of X in X such an x,, always exists and it is clear that the cluster points of
(2n)n and those of (y,), are the same in X.

Now A := {z,:n € N} is totally bounded in X by Lemma 2 and hence every sequence in A has a
Cauchy subsequence, which has a limit in X, since X is complete. By construction of (), the limit of
such a subsequence is in K and hence in X. Thus every sequence in A has a subsequence that converges in
X and hence A is compact in X.

Finally, we can obtain an element of K by applying BWTx to (z,,),. O
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