brought to you by

JID:APAL AID:2589 / ADD

Annals of Pure and Applied Logic $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

	Contents lists available at ScienceDirect
	Annals of Pure and Applied Logic
ELSEVIER	www.elsevier.com/locate/apal
Addendum	
Addendum	to: "The Bolzano–Weierstrass theorem is the jump
of weak Kőr	nig's lemma" [Ann. Pure Appl. Logic 163 (6) (2012)
623–655]	
Vasco Brattka ⁽	^{a,b} Andrea Cettolo ^c Guido Gherardi ^d Alberto Marcone ^c
Matthias Schrö	jder ^e
^a Department of M	athematics & Applied Mathematics, University of Cape Town, South Africa
^b Faculty of Comp ^c Dipartimento di 1	uter Science, Universität der Bundeswehr München, Germany Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Italy
^d Dipartimento di . ^e Fachbereich Math	Filosofia e Comunicazione, Università di Bologna, Italy nematik, Universität Darmstadt, Germany
ARTICLE	INFO ABSTRACT
Article history: Received 27 Februa: Accepted 7 April 20 Available online xxx	The purpose of this addendum is to close a gap in the proof of [1, Theorem 11 which characterizes the computational content of the Bolzano–Weierstraß Theorem for arbitrary computable metric spaces. © 2017 Elsevier B.V. All rights reserved
Article history: Received 27 Februa Accepted 7 April 20 Available online xxx MSC: ???	The purpose of this addendum is to close a gap in the proof of [1, Theorem 11] which characterizes the computational content of the Bolzano–Weierstraß Theo for arbitrary computable metric spaces. © 2017 Elsevier B.V. All rights reserv
Article history: Received 27 Februa Accepted 7 April 20 Available online xxx MSC: ???	The purpose of this addendum is to close a gap in the proof of [1, Theorem 1: which characterizes the computational content of the Bolzano–Weierstraß Theo for arbitrary computable metric spaces. © 2017 Elsevier B.V. All rights reserv
Article history: Received 27 Februa: Accepted 7 April 20 Available online xxx MSC: ???	The purpose of this addendum is to close a gap in the proof of [1, Theorem 1: which characterizes the computational content of the Bolzano–Weierstraß Theo for arbitrary computable metric spaces. © 2017 Elsevier B.V. All rights reserv
Article history: Received 27 Februa: Accepted 7 April 20 Available online xxx MSC: ???	The purpose of this addendum is to close a gap in the proof of [1, Theorem 1: which characterizes the computational content of the Bolzano–Weierstraß Theo for arbitrary computable metric spaces. © 2017 Elsevier B.V. All rights reserved.
Article history: Received 27 Februa: Accepted 7 April 20 Available online xxx <i>MSC:</i> ??? In [1, Theore BWT _X denotes the for strong Weihndefined here.	The purpose of this addendum is to close a gap in the proof of [1, Theorem 1: which characterizes the computational content of the Bolzano–Weierstraß Theo for arbitrary computable metric spaces. @ 2017 Elsevier B.V. All rights reserved $m 11.2$] it is stated that $BWT_X \equiv_{\mathrm{sW}} K'_X$ holds for all computable metric spaces X. He the Bolzano–Weierstraß Theorem, K'_X denotes the jump of compact choice and \equiv_{sW} stat rauch equivalence. We refer the reader to [1] for the definition of all notions that are re-
Article history: Received 27 Februa: Accepted 7 April 20 Available online xxx MSC: ??? In [1, Theore BWT_X denotes 1 for strong Weihn defined here. While the rec contains a gap a by one of us (M	The purpose of this addendum is to close a gap in the proof of [1, Theorem 1: which characterizes the computational content of the Bolzano-Weierstraß Theo for arbitrary computable metric spaces. $@ 2017 Elsevier B.V. All rights reserved 11.2] it is stated that BWT_X \equiv_{sW} K'_X holds for all computable metric spaces X. Hethe Bolzano-Weierstraß Theorem, K'_X denotes the jump of compact choice and \equiv_{sW} staterauch equivalence. We refer the reader to [1] for the definition of all notions that are aluction BWT_X \leq_{sW} K'_X was proved correctly in [1], the proof provided for K'_X \leq_{sW} BW'and is only correct for the special case of compact X as it stands. This fact was pointed ofSchröder) and is due to the fact that in general the closure of I = \frac{1}{2} K' is not compact.$
Article history: Received 27 Februa: Accepted 7 April 20 Available online xxx $\overline{MSC:}$??? In [1, Theore BWT_X denotes 1 for strong Weihn defined here. While the rec contains a gap a by one of us (M. close this gap in	The purpose of this addendum is to close a gap in the proof of [1, Theorem 1: which characterizes the computational content of the Bolzano-Weierstraß Theo for arbitrary computable metric spaces. (© 2017 Elsevier B.V. All rights reserved) (Weierstraß Theorem, K'_X holds for all computable metric spaces X. He the Bolzano-Weierstraß Theorem, K'_X denotes the jump of compact choice and \equiv_{sW} star rauch equivalence. We refer the reader to [1] for the definition of all notions that are the luction BWT _X \leq_{sW} K'_X was proved correctly in [1], the proof provided for $K'_X \leq_{sW}$ BW and is only correct for the special case of compact X as it stands. This fact was pointed Schröder) and is due to the fact that in general the closure of $L_X^{-1}(K)$ is not compact. This addendum.
Article history: Received 27 Februa: Accepted 7 April 20 Available online xxx MSC: ??? In [1, Theore BWT_X denotes the for strong Weihndefined here. While the red contains a gap a by one of us (M. close this gap in We start with particular sense.	The purpose of this addendum is to close a gap in the proof of [1, Theorem 1: which characterizes the computational content of the Bolzano–Weierstraß Theo for arbitrary computable metric spaces. $@ 2017 Elsevier B.V. All rights reser$ $@ 2017 Elsevier B.V. All rights reser$ $@ 11.2] it is stated that BWT_X \equiv_{sW} K'_X holds for all computable metric spaces X. Hethe Bolzano–Weierstraß Theorem, K'_X denotes the jump of compact choice and \equiv_{sW} statrauch equivalence. We refer the reader to [1] for the definition of all notions that are ishuction BWT_X \leq_{sW} K'_X was proved correctly in [1], the proof provided for K'_X \leq_{sW} BWand is only correct for the special case of compact X as it stands. This fact was pointed ofSchröder) and is due to the fact that in general the closure of L_X^{-1}(K) is not compact.this addendum.a a lemma that shows that compact sets given in \mathcal{K}'(X) are effectively totally bounded inBy \mathcal{O}(X) we denote the set of open subsets of X, represented as complements of eleme$
Article history: Received 27 Februa: Accepted 7 April 20 Available online xxx \overline{MSC} : ??? In [1, Theore BWT_X denotes to for strong Weihn defined here. While the rec contains a gap a by one of us (M. close this gap in We start with particular sense.	The purpose of this addendum is to close a gap in the proof of [1, Theorem 1: which characterizes the computational content of the Bolzano-Weierstraß Theorem 1: which characterizes the computational content of the Bolzano-Weierstraß Theorem 1: which characterizes the computational content of the Bolzano-Weierstraß Theorem 1: which characterizes the computational content of the Bolzano-Weierstraß Theorem 1: m 11.2] it is stated that $BWT_X \equiv_{sW} K'_X$ holds for all computable metric spaces X. H the Bolzano-Weierstraß Theorem, K'_X denotes the jump of compact choice and \equiv_{sW} star rauch equivalence. We refer the reader to [1] for the definition of all notions that are is fluction $BWT_X \leq_{sW} K'_X$ was proved correctly in [1], the proof provided for $K'_X \leq_{sW} BW'$ and is only correct for the special case of compact X as it stands. This fact was pointed of Schröder) and is due to the fact that in general the closure of $L_X^{-1}(K)$ is not compact. this addendum. a lemma that shows that compact sets given in $\mathcal{K}'(X)$ are effectively totally bounded i By $\mathcal{O}(X)$ we denote the set of open subsets of X, represented as complements of eleme
Article history: Received 27 Februa: Accepted 7 April 20 Available online xxx MSC : ??? In [1, Theore BWT _X denotes to for strong Weihn defined here. While the record contains a gap a by one of us (M. close this gap in We start with particular sense. DOI of original a E-mail addresse Guido.Gherardi@un	The purpose of this addendum is to close a gap in the proof of [1, Theorem 1: which characterizes the computational content of the Bolzano–Weierstraß Theorem 1: which characterizes the computational content of the Bolzano–Weierstraß Theorem 1: which characterizes the computational content of the Bolzano–Weierstraß Theorem 1: which characterizes the computational content of the Bolzano–Weierstraß Theorem 1: which characterizes the computational content of the Bolzano–Weierstraß Theorem, K'_X holds for all computable metric spaces X. He the Bolzano–Weierstraß Theorem, K'_X denotes the jump of compact choice and \equiv_{sW} star rauch equivalence. We refer the reader to [1] for the definition of all notions that are is fluction $BWT_X \leq_{sW} K'_X$ was proved correctly in [1], the proof provided for $K'_X \leq_{sW} BW'$ and is only correct for the special case of compact X as it stands. This fact was pointed of Schröder) and is due to the fact that in general the closure of $L_X^{-1}(K)$ is not compact. this addendum. a lemma that shows that compact sets given in $\mathcal{K}'(X)$ are effectively totally bounded i By $\mathcal{O}(X)$ we denote the set of open subsets of X, represented as complements of eleme article: http://dx.doi.org/10.1016/j.apal.2011.10.006. s: Vasco.Brattka@cca-net.de (V. Brattka), Andrea.Cettolo@spes.uniud.it (A. Cettolo), ibo.it (G. Gherardi), Alberto.Marcone@uniud.it (A. Marcone), Matthias.Schroeder@cca-net.de (M. Schröd

Please cite this article in press as: V. Brattka et al., Addendum to: "The Bolzano-Weierstrass theorem is the jump of Kőnig's lemma" [Ann. Pure Appl. Logic 163 (6) (2012) 623–655], Ann. Pure Appl. Logic (2017), http://dx.doi.org/10.1016/j.apal.2017.04.004

V. Brattka et al. / Annals of Pure and Applied Logic $\bullet \bullet \bullet (\bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

of $\mathcal{A}_{-}(X)$, i.e., p is a name of an open set U if and only if it is a ψ_{-} -name of the closed set $X \setminus U$. We call an open ball B(a, r) rational, if a is a point of the dense subset of X (that is used to define the computable metric space X) and $r \ge 0$ is a rational number.

Lemma 1. Let X be a computable metric space. Consider the multivalued function $F_X :\subseteq \mathcal{K}'_-(X) \rightrightarrows \mathcal{O}(X)^{\mathbb{N}}$ with dom $(F_X) = \{K \in \mathcal{K}'_-(X) : K \neq \emptyset\}$ and such that, for each $K \neq \emptyset$, we have $(U_n)_n \in F_X(K)$ if and only if the following conditions hold for each $n \in \mathbb{N}$:

(1) U_n is a union of finitely many rational open balls of radius $\leq 2^{-n}$, (2) $K \subseteq U_n$.

Then F_X is computable.

Proof. Let X be a computable metric space and let $K \subseteq X$ be a nonempty compact set. Let $\langle p_i \rangle_i$ be a κ'_{-} -name of K. This means that $p := \lim_{i \to \infty} p_i$ is a κ_{-} -name for K and, in particular, for each $n \in \mathbb{N}$:

- $p_i(n)$ is a name for a finite set of rational open balls for each $i \in \mathbb{N}$,
- there exists $k \in \mathbb{N}$ such that the finite set of rational balls given by $p_k(n)$ covers K and $p_k(n) = p_i(n)$ for all $i \ge k$.

We also have that $\{p(n): n \in \mathbb{N}\}$ is a set of names of all finite covers of K by rational open balls. We want to build a sequence of open sets $(U_n)_n$ such that (1) and (2) hold. We describe how to construct a name of a generic open set U_n for $n \in \mathbb{N}$. We start at stage 0 with $U_n = \emptyset$. At each stage $s = \langle m, i \rangle$ that the computation reaches, we focus on the balls $B(a_0, r_0), \ldots, B(a_l, r_l)$ given by $p_i(m)$ and we check whether $r_0,\ldots,r_l \leq 2^{-n}$. If this is not true, then we go to stage s+1. Otherwise, if the condition is met, we add these balls to the name of U_n and we check whether $p_i(m) = p_{i+1}(m)$. If this is the case we add again $B(a_0, r_0), \ldots, B(a_l, r_l)$ to the name of U_n . We repeat this operation as long as we find the same open balls given by $p_i(m)$ for j > i. If we find $p_i(m) \neq p_j(m)$ for some j > i, then the computation goes to stage s + 1.

We claim that, for each n, there exists a stage in which the computation goes on indefinitely. Consider, in fact, $\{B(a_0, r_0), \ldots, B(a_l, r_l)\}$, a finite rational cover of K with $r_0, \ldots, r_l \leq 2^{-n}$, which exists by a simple argument using the compactness of K. Since $\langle p_i \rangle_i$ is a κ'_- -name of K, there exists a minimum $\langle m, i \rangle$ such that:

- $p_i(m)$ is a name for the cover $\{B(a_0, r_0), \dots, B(a_l, r_l)\},\$
- $p_i(m) = p_j(m)$ for each j > i.

If the algorithm reaches stage $s = \langle m, i \rangle$, then it is clear that the computation goes on indefinitely within this stage. If the algorithm never reaches stage s, then necessarily it already stopped at a previous stage. In both cases our claim is true.

Finally, since we built the name of U_n by adding only balls of radius $\leq 2^{-n}$ and since the computation stabilizes at a finite stage, it is clear that conditions (1) and (2) are met. \Box

We note that even though the open sets U_n constructed in the previous proof are finite unions of rational 44 open balls, the algorithm does not provide a corresponding rational cover in a finitary way. It rather provides 45 an infinite list of rational open balls that is guaranteed to contain only finitely many distinct rational balls. 46 This is a weak form of effective total boundedness and the best one can hope for, given that the input is 47 represented by the jump of κ_{-} . a

DD [m3L; v1.214; Prn:20/04/2017; 12:32] P.3 (1-4) V. Brattka et al. / Annals of Pure and Applied Logic ••• (••••) •••-•• 3

The following lemma shows that sequences that we choose in $range(F_X)$ in a particular way give rise to totally bounded sets.

Lemma 2. Let X be a metric space and let $U_n \subseteq X$ be a finite union of balls of radius $\leq 2^{-n}$ for each $n \in \mathbb{N}$. Let $(x_n)_n$ be a sequence in X with $x_n \in \bigcap_{i=0}^n U_i$. Then $\overline{\{x_n : n \in \mathbb{N}\}}$ is totally bounded.

Proof. We obtain $\{x_n : n \in \mathbb{N}\} \subseteq \bigcap_{i=0}^{\infty} \left(U_i \cup \bigcup_{n=0}^{i-1} B(x_n, 2^{-i}) \right)$ and the set on the right-hand side is clearly totally bounded. Hence the set on the left-hand side is totally bounded and so is its closure. \Box

We mention that it is well known that a subset of a metric space is totally bounded if and only if any sequence in it has a Cauchy subsequence [2, Exercise 4.3.A (a)].

Now we use the previous two lemmas to complete the proof of [1, Theorem 11.2]. Within the proof we use the canonical completion \hat{X} of a computable metric space. It is known that this completion is a computable metric space again and that the canonical embedding $X \hookrightarrow \hat{X}$ is a computable isometry that preserves the dense sequence [3, Lemma 8.1.6]. We will identify X with a subset of \hat{X} via this embedding.

Theorem 3 ([1, Theorem 11.2]). $\mathsf{BWT}_X \equiv_{sW} \mathsf{K}'_X$ for all computable metric spaces X.

Proof. The reduction $\mathsf{BWT}_X \leq_{sW} \mathsf{K}'_X$ has been proved in [1], so we focus on the reduction $\mathsf{K}'_X \leq_{sW} \mathsf{BWT}_X$. Let (X, d, α) be a computable metric space and let $K \subseteq X$ be a nonempty compact set given by a κ'_- -name $\langle p_i \rangle_i$. We want to compute a point of K using BWT_X . The idea is to define a sequence $(x_n)_n$ in X, working within the completion \hat{X} of X and using the open sets built in Lemma 1, such that $\{x_n : n \in \mathbb{N}\}$ is compact in X.

It is clear that K is a compact set of \hat{X} and that $\langle p_i \rangle_i$ can be considered as a κ'_- -name for K in \hat{X} . We consider the map

 $\mathsf{L}_{\hat{X}}: \hat{X}^{\mathbb{N}} \to \mathcal{A}'_{-}(\hat{X}), (x_n)_n \mapsto \{x \in \hat{X}: x \text{ is a cluster point of } (x_n)_n\}.$

³⁰ By [1, Corollary 9.5] $L_{\hat{X}}^{-1}$ is computable and hence $L_{\hat{X}}^{-1}(K)$ yields a sequence $(z_m)_m$ in \hat{X} whose cluster points are exactly the elements of K.

Let $F_{\hat{X}}$ be the multivalued function defined in Lemma 1. We can compute a sequence $(U_n)_n \in F_{\hat{X}}(K)$. Since $\{z_m : m \in \mathbb{N}\}$ is not compact (and hence not in dom(BWT_X)) in general, we refine it recursively to a sequence $(y_n)_n$ using $(U_n)_n$ in the following way: for each $n \in \mathbb{N}$, $y_n := z_{m_n}$ for the first m_n that we find with $z_{m_n} \in U_0 \cap \cdots \cap U_n$ and such that $m_i < m_n$ for all i < n. Note that we can always find such a y_n , since $U_0 \cap \cdots \cap U_n$ covers K which is the set of cluster points of $(z_m)_m$. Clearly every cluster point of $(y_n)_n$ is also a cluster point of $(z_m)_m$, hence it belongs to K.

Recall now that $(y_n)_n$ is a sequence of points in \hat{X} and that we want a sequence $(x_n)_n$ in X in order to apply BWT_X . We compute $(x_n)_n$ as follows: for each $n \in \mathbb{N}$, x_n is the first element that we find in the dense subset range (α) such that $d(x_n, y_n) < 2^{-n}$ and $x_n \in U_0 \cap \cdots \cap U_n$, where d also denotes the extension of the metric to \hat{X} . By density of X in \hat{X} such an x_n always exists and it is clear that the cluster points of $(x_n)_n$ and those of $(y_n)_n$ are the same in \hat{X} .

Now $A := \overline{\{x_n : n \in \mathbb{N}\}}$ is totally bounded in X by Lemma 2 and hence every sequence in A has a 44 Cauchy subsequence, which has a limit in \hat{X} , since \hat{X} is complete. By construction of $(x_n)_n$ the limit of 45 such a subsequence is in K and hence in X. Thus every sequence in A has a subsequence that converges in 46 X and hence A is compact in X.

Finally, we can obtain an element of K by applying BWT_X to $(x_n)_n$. \Box

Please cite this article in press as: V. Brattka et al., Addendum to: "The Bolzano-Weierstrass theorem is the jump of weak König's lemma" [Ann. Pure Appl. Logic 163 (6) (2012) 623-655], Ann. Pure Appl. Logic (2017), http://dx.doi.org/10.1016/j.apal.2017.04.004

V. Brattka et al. / Annals of Pure and Applied Logic ••• (••••) •••-•••
attka, Guido Gherardi, Alberto Marcone, The Bolzano–Weierstrass theorem is the jump of weak Kőnig's lemma e Appl. Logic 163 (2012) 623–655. Engelking, General Topology, Sigma Ser. Pure Math., vol. 6, Heldermann, Berlin, 1989. Sihrauch, Computable Analysis, Springer, Berlin, 2000.
, attka, Guido Gherardi, Alberto Marcone, The Bolzano–Weierstrass theorem is the jump of weak Kőnig's lemma e Appl. Logic 163 (2012) 623–655. Engelking, General Topology, Sigma Ser. Pure Math., vol. 6, Heldermann, Berlin, 1989. sihrauch, Computable Analysis, Springer, Berlin, 2000.
attka, Guido Gherardi, Alberto Marcone, The Bolzano–Weierstrass theorem is the jump of weak Kőnig's lemma e Appl. Logic 163 (2012) 623–655. Engelking, General Topology, Sigma Ser. Pure Math., vol. 6, Heldermann, Berlin, 1989. Sihrauch, Computable Analysis, Springer, Berlin, 2000.
e Appl. Logic 163 (2012) 623–655. Engelking, General Topology, Sigma Ser. Pure Math., vol. 6, Heldermann, Berlin, 1989. sihrauch, Computable Analysis, Springer, Berlin, 2000.
eihrauch, Computable Analysis, Springer, Berlin, 2000.
A A A A A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A A A A A A
417

Please cite this article in press as: V. Brattka et al., Addendum to: "The Bolzano–Weierstrass theorem is the jum Kőnig's lemma" [Ann. Pure Appl. Logic 163 (6) (2012) 623–655], Ann. Pure Appl. Logic (2017), http://dx.doi.org/10.1016/j.apal.2017.04.004