provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

JID:APAL AID:2589 /ADD [m3L; v1.214; Prn:20/04/2017; 12:32] P.1 (1-4)

Annals of Pure and Applied Logic ••• (••••) •••-•••

Kőnig's lemma" [Ann. Pure Appl. Logic 163 (6) (2012) 623–655], Ann. Pure Appl. Logic (2017), http://dx.doi.org/10.1016/j.apal.2017.04.004

2 *V. Brattka et al. / Annals of Pure and Applied Logic ••• (••••) •••–•••*

ARTICLE IN PRESS

¹ of $A_-(X)$, i.e., *p* is a name of an open set *U* if and only if it is a $ψ_$ -name of the closed set $X \setminus U$. We call ¹ 2 2 an open ball *B*(*a, r*) *rational*, if *a* is a point of the dense subset of *X* (that is used to define the computable 3 metric space *X*) and $r \ge 0$ is a rational number.

4 4

Example 1. Let X be a computable metric space. Consider the multivalued function $F_X: \subseteq \mathcal{K}'_-(X) \Rightarrow \mathcal{O}(X)^{\mathbb{N}}$ \mathbb{R}^6 with $\text{dom}(F_X) = \{K \in \mathcal{K}'_-(X) : K \neq \emptyset\}$ and such that, for each $K \neq \emptyset$, we have $(U_n)_n \in F_X(K)$ if and *only if the following conditions hold for each* $n \in \mathbb{N}$:

8 8

 11 11

 13 13

⁹ (1) U_n is a union of finitely many rational open balls of radius $\leq 2^{-n}$, 10 (9) $K \subset H$ 10 (2) $K \subseteq U_n$.

 12 Then F_X is computable.

Proof. Let *X* be a computable metric space and let $K \subseteq X$ be a nonempty compact set. Let $\langle p_i \rangle_i$ be a $\frac{14}{15}$ 15 , 25 cm , 15 cm κ' -name of *K*. This means that $p := \lim_{i \to \infty} p_i$ is a κ -name for *K* and, in particular, for each $n \in \mathbb{N}$:

- ¹⁷ \bullet *p_i*(*n*) is a name for a finite set of rational open balls for each $i \in \mathbb{N}$,
- 18 18 • there exists $k \in \mathbb{N}$ such that the finite set of rational balls given by $p_k(n)$ covers K and $p_k(n) = p_i(n)$ 20 for all $i \geq k$.

 $\label{eq:2.1} \begin{array}{ll} \text{intitions hold for each $n\in\mathbb{N}$;} \end{array}$
 matricons hold for each $n\in\mathbb{N} \colon$
 exact the set of radius of radius $\leq 2^{-n}$,
 example the metric space and let $K\subseteq X$ be a nonempty conditions that
 $p:=\lim_{i\to\infty}p_i$ i 21 21 22 We also have that $\{p(n) : n \in \mathbb{N}\}$ is a set of names of all finite covers of *K* by rational open balls. We want to build a sequence of open sets $(U_n)_n$ such that (1) and (2) hold. We describe how to construct a name $_{23}$ of a generic open set U_n for $n \in \mathbb{N}$. We start at stage 0 with $U_n = \emptyset$. At each stage $s = \langle m, i \rangle$ that the computation reaches, we focus on the balls $B(a_0, r_0), \ldots, B(a_l, r_l)$ given by $p_i(m)$ and we check whether $\overline{a_0}$ $r_0, \ldots, r_l \leq 2^{-n}$. If this is not true, then we go to stage $s + 1$. Otherwise, if the condition is met, we add $\frac{25}{26}$ these balls to the name of U_n and we check whether $p_i(m) = p_{i+1}(m)$. If this is the case we add again 27 $B(a_0, r_0), \ldots, B(a_l, r_l)$ to the name of U_n . We repeat this operation as long as we find the same open balls ₂₈ given by $p_j(m)$ for $j > i$. If we find $p_i(m) \neq p_j(m)$ for some $j > i$, then the computation goes to stage $s+1$.

We claim that, for each n , there exists a stage in which the computation goes on indefinitely. Consider, $\frac{30}{20}$ in fact, $\{B(a_0, r_0), \ldots, B(a_l, r_l)\}\$, a finite rational cover of *K* with $r_0, \ldots, r_l \leq 2^{-n}$, which exists by a simple $\frac{1}{31}$ argument using the compactness of *K*. Since $\langle p_i \rangle_i$ is a κ' -name of *K*, there exists a minimum $\langle m, i \rangle$ such as 33 and 33 and 33 that:

 34

- $p_i(m)$ is a name for the cover $\{B(a_0, r_0), \ldots, B(a_l, r_l)\},\$
- $p_i(m) = p_j(m)$ for each $j > i$.

 37 38 If the algorithm reaches stage $s = \langle m, i \rangle$, then it is clear that the computation goes on indefinitely within ₃₈ 39 39 this stage. If the algorithm never reaches stage *s*, then necessarily it already stopped at a previous stage. 40 40 In both cases our claim is true.

Finally, since we built the name of U_n by adding only balls of radius $\leq 2^{-n}$ and since the computation $\frac{41}{2}$ 42 stabilizes at a finite stage, it is clear that conditions (1) and (2) are met. \Box

43 43

 We note that even though the open sets U_n constructed in the previous proof are finite unions of rational 44 45 open balls, the algorithm does not provide a corresponding rational cover in a finitary way. It rather provides 46 an infinite list of rational open balls that is guaranteed to contain only finitely many distinct rational balls. ⁴⁷ This is a weak form of effective total boundedness and the best one can hope for, given that the input is ⁴⁷ 48 represented by the jump of *κ*−.

Please cite this article in press as: V. Brattka et al., Addendum to: "The Bolzano–Weierstrass theorem is the jump of weak Kőnig's lemma" [Ann. Pure Appl. Logic 163 (6) (2012) 623–655], Ann. Pure Appl. Logic (2017), http://dx.doi.org/10.1016/j.apal.2017.04.004

V. Brattka et al. / Annals of Pure and Applied Logic ••• (••••) •••–•••

¹ The following lemma shows that sequences that we choose in range(F_X) in a particular way give rise to ¹ 2 2 totally bounded sets. 3 3

4 Lemma 2. Let X be a metric space and let $U_n \subseteq X$ be a finite union of balls of radius $\leq 2^{-n}$ for each $n \in \mathbb{N}$. ⁵ Let (x) be a sequence in X with $x \in \Omega^n$ II. Then $\overline{[x, n \in \mathbb{N}]}$ is totally bounded $\frac{5}{6}$ Let $(x_n)_n$ be a sequence in X with $x_n \in \bigcap_{i=0}^n U_i$. Then $\overline{\{x_n : n \in \mathbb{N}\}}$ is totally bounded.

7 7 **Proof.** We obtain $\{x_n : n \in \mathbb{N}\}\subseteq \bigcap_{i=0}^{\infty} \left(U_i \cup \bigcup_{n=0}^{i-1} B(x_n, 2^{-i})\right)$ and the set on the right-hand side is clearly $\frac{1}{8}$ totally bounded. Hence the set on the left-hand side is totally bounded and so is its closure. \Box

 10 11 We mention that it is well known that a subset of a metric space is totally bounded if and only if any 11 ₁₂ sequence in it has a Cauchy subsequence [2, Exercise 4.3.A (a)].

13 Now we use the previous two lemmas to complete the proof of $[1,$ Theorem 11.2]. Within the proof we use $_{13}$ 14 the canonical completion \hat{X} of a computable metric space. It is known that this completion is a computable 14 15 metric space again and that the canonical embedding $X \hookrightarrow \hat{X}$ is a computable isometry that preserves the 15 16 dense sequence [3, Lemma 8.1.6]. We will identify *X* with a subset of \hat{X} via this embedding.

 17 and 17

 19

18 **Theorem 3** ([1, Theorem 11.2]). BWT_X $\equiv_{\text{SW}} K'_{X}$ for all computable metric spaces X.

Proof. The reduction BWT_X $\leq_{\text{sW}} K'_{X}$ has been proved in [1], so we focus on the reduction $K'_{X} \leq_{\text{sW}} BWT_{X}$. 21 Let (X, d, α) be a computable metric space and let $K \subseteq X$ be a nonempty compact set given by a κ' -name 21 ²² $\langle p_i \rangle_i$. We want to compute a point of *K* using BWT_X. The idea is to define a sequence $(x_n)_n$ in *X*, working ²² ²³ within the completion \hat{X} of X and using the open sets built in Lemma 1, such that $\overline{\{x_n : n \in \mathbb{N}\}}$ is compact ²³ $24 \quad \text{in} \quad Y$ in *X*.

²⁵ It is clear that *K* is a compact set of \hat{X} and that $\langle p_i \rangle_i$ can be considered as a κ' -name for *K* in \hat{X} . We ²⁵ 26 equalization of 26 consider the map

27 27 28 and $\hat{Y}^{\mathbb{N}}$ and $\hat{Y}^{\mathbb{N}}$ and \hat{Y} 28

29 $L_{\hat{X}} : \hat{X}^{\mathbb{N}} \to \mathcal{A}'_{-}(\hat{X}), (x_n)_n \mapsto \{x \in \hat{X} : x \text{ is a cluster point of } (x_n)_n\}.$

 30 30 By [1, Corollary 9.5] L_X^{-1} is computable and hence $L_X^{-1}(K)$ yields a sequence $(z_m)_m$ in \hat{X} whose cluster $\frac{31}{31}$ $\frac{32}{32}$ points are exactly the elements of $\overline{11}$. $\frac{1}{\hat{X}}$ is computable and hence L^{−1} $\chi^{\text{-1}}(K)$ yields a sequence $(z_m)_m$ in \hat{X} whose cluster points are exactly the elements of *K*.

 $n \in \mathbb{N} \subseteq \bigcap_{k=0}^{\infty} \left(U_k \cup \bigcup_{n=0}^{i-1} B(x_n, 2^{-i}) \right)$ and the set on the set on the left-hand side is totally bounded and so is
is well known that a subset of a metric space is totally b
undely subsequence [2, Exerci 133 Let $F_{\hat{X}}$ be the multivalued function defined in Lemma 1. We can compute a sequence $(U_n)_n \in F_{\hat{X}}(K)$. Since $\overline{\{z_m : m \in \mathbb{N}\}}$ is not compact (and hence not in dom(BWT_X)) in general, we refine it recursively to a sequence $(y_n)_n$ using $(U_n)_n$ in the following way: for each $n \in \mathbb{N}$, $y_n := z_{m_n}$ for the first m_n that we find $\frac{1}{35}$ with $z_{m_n} \in U_0 \cap \cdots \cap U_n$ and such that $m_i < m_n$ for all $i < n$. Note that we can always find such a y_n , ₃₆ 37 since $U_0 \cap \cdots \cap U_n$ covers K which is the set of cluster points of $(z_m)_m$. Clearly every cluster point of $(y_n)_n$ 37 is also a cluster point of $(z_m)_m$, hence it belongs to *K*.

Recall now that $(y_n)_n$ is a sequence of points in \hat{X} and that we want a sequence $(x_n)_n$ in X in order ₃₉ to apply BWT_X. We compute $(x_n)_n$ as follows: for each $n \in \mathbb{N}$, x_n is the first element that we find in the dense subset range(α) such that $d(x_n, y_n) < 2^{-n}$ and $x_n \in U_0 \cap \cdots \cap U_n$, where *d* also denotes the extension α of the metric to \hat{X} . By density of X in \hat{X} such an x_n always exists and it is clear that the cluster points of $\overline{a_2}$ $(x_n)_n$ and those of $(y_n)_n$ are the same in \hat{X} .

Now $A := \overline{\{x_n : n \in \mathbb{N}\}}$ is totally bounded in *X* by Lemma 2 and hence every sequence in *A* has a 44 45 Cauchy subsequence, which has a limit in \hat{X} , since \hat{X} is complete. By construction of $(x_n)_n$ the limit of 45 46 46 such a subsequence is in *K* and hence in *X*. Thus every sequence in *A* has a subsequence that converges in 47 47 *X* and hence *A* is compact in *X*.

48 Finally, we can obtain an element of *K* by applying BWT_{*X*} to $(x_n)_n$. \Box

Please cite this article in press as: V. Brattka et al., Addendum to: "The Bolzano–Weierstrass theorem is the jump of weak Kőnig's lemma" [Ann. Pure Appl. Logic 163 (6) (2012) 623–655], Ann. Pure Appl. Logic (2017), http://dx.doi.org/10.1016/j.apal.2017.04.004

Kőnig's lemma" [Ann. Pure Appl. Logic 163 (6) (2012) 623–655], Ann. Pure Appl. Logic (2017), http://dx.doi.org/10.1016/j.apal.2017.04.004