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The purpose of this addendum is to close a gap in the proof of [1, Theorem 11.2],
which characterizes the computational content of the Bolzano–Weierstraß Theorem
for arbitrary computable metric spaces.

© 2017 Elsevier B.V. All rights reserved.

In [1, Theorem 11.2] it is stated that BWTX ≡sW K
′

X holds for all computable metric spaces X. Here

BWTX denotes the Bolzano–Weierstraß Theorem, K
′

X denotes the jump of compact choice and ≡sW stands

for strong Weihrauch equivalence. We refer the reader to [1] for the definition of all notions that are not

defined here.

While the reduction BWTX ≤sW K
′

X was proved correctly in [1], the proof provided for K
′

X ≤sW BWTX

contains a gap and is only correct for the special case of compact X as it stands. This fact was pointed out

by one of us (M. Schröder) and is due to the fact that in general the closure of L
−1
X (K) is not compact. We

close this gap in this addendum.

We start with a lemma that shows that compact sets given in K′

−
(X) are effectively totally bounded in a

particular sense. By O(X) we denote the set of open subsets of X, represented as complements of elements
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of A−(X), i.e., p is a name of an open set U if and only if it is a ψ−-name of the closed set X \ U . We call

an open ball B(a, r) rational, if a is a point of the dense subset of X (that is used to define the computable

metric space X) and r ≥ 0 is a rational number.

Lemma 1. Let X be a computable metric space. Consider the multivalued function FX :⊆ K′

−
(X) ⇒ O(X)N

with dom(FX) = {K ∈ K′

−
(X) : K 6= ∅} and such that, for each K 6= ∅, we have (Un)n ∈ FX(K) if and

only if the following conditions hold for each n ∈ N:

(1) Un is a union of finitely many rational open balls of radius ≤ 2−n,

(2) K ⊆ Un.

Then FX is computable.

Proof. Let X be a computable metric space and let K ⊆ X be a nonempty compact set. Let 〈pi〉i be a

κ′

−
-name of K. This means that p := limi→∞ pi is a κ−-name for K and, in particular, for each n ∈ N:

• pi(n) is a name for a finite set of rational open balls for each i ∈ N,

• there exists k ∈ N such that the finite set of rational balls given by pk(n) covers K and pk(n) = pi(n)

for all i ≥ k.

We also have that {p(n) : n ∈ N} is a set of names of all finite covers of K by rational open balls. We want

to build a sequence of open sets (Un)n such that (1) and (2) hold. We describe how to construct a name

of a generic open set Un for n ∈ N. We start at stage 0 with Un = ∅. At each stage s = 〈m, i〉 that the

computation reaches, we focus on the balls B(a0, r0), . . . , B(al, rl) given by pi(m) and we check whether

r0, . . . , rl ≤ 2−n. If this is not true, then we go to stage s + 1. Otherwise, if the condition is met, we add

these balls to the name of Un and we check whether pi(m) = pi+1(m). If this is the case we add again

B(a0, r0), . . . , B(al, rl) to the name of Un. We repeat this operation as long as we find the same open balls

given by pj(m) for j > i. If we find pi(m) 6= pj(m) for some j > i, then the computation goes to stage s+ 1.

We claim that, for each n, there exists a stage in which the computation goes on indefinitely. Consider,

in fact, {B(a0, r0), . . . , B(al, rl)}, a finite rational cover of K with r0, . . . , rl ≤ 2−n, which exists by a simple

argument using the compactness of K. Since 〈pi〉i is a κ′

−
-name of K, there exists a minimum 〈m, i〉 such

that:

• pi(m) is a name for the cover {B(a0, r0), . . . , B(al, rl)},

• pi(m) = pj(m) for each j > i.

If the algorithm reaches stage s = 〈m, i〉, then it is clear that the computation goes on indefinitely within

this stage. If the algorithm never reaches stage s, then necessarily it already stopped at a previous stage.

In both cases our claim is true.

Finally, since we built the name of Un by adding only balls of radius ≤ 2−n and since the computation

stabilizes at a finite stage, it is clear that conditions (1) and (2) are met. ✷

We note that even though the open sets Un constructed in the previous proof are finite unions of rational

open balls, the algorithm does not provide a corresponding rational cover in a finitary way. It rather provides

an infinite list of rational open balls that is guaranteed to contain only finitely many distinct rational balls.

This is a weak form of effective total boundedness and the best one can hope for, given that the input is

represented by the jump of κ−.



ARTICLE IN PRESS

U
N

C
O

R
R
E
C
T

E
D

P
R
O

O
F

Please cite this article in press as: V. Brattka et al., Addendum to: “The Bolzano–Weierstrass theorem is the jump of weak
Kőnig’s lemma” [Ann. Pure Appl. Logic 163 (6) (2012) 623–655], Ann. Pure Appl. Logic (2017),
http://dx.doi.org/10.1016/j.apal.2017.04.004

JID:APAL AID:2589 /ADD [m3L; v1.214; Prn:20/04/2017; 12:32] P.3 (1-4)

V. Brattka et al. / Annals of Pure and Applied Logic ••• (••••) •••–••• 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

The following lemma shows that sequences that we choose in range(FX) in a particular way give rise to

totally bounded sets.

Lemma 2. Let X be a metric space and let Un ⊆ X be a finite union of balls of radius ≤ 2−n for each n ∈ N.

Let (xn)n be a sequence in X with xn ∈
⋂n

i=0 Ui. Then {xn : n ∈ N} is totally bounded.

Proof. We obtain {xn : n ∈ N} ⊆
⋂

∞

i=0

(

Ui ∪
⋃i−1

n=0 B(xn, 2
−i)

)

and the set on the right-hand side is clearly

totally bounded. Hence the set on the left-hand side is totally bounded and so is its closure. ✷

We mention that it is well known that a subset of a metric space is totally bounded if and only if any

sequence in it has a Cauchy subsequence [2, Exercise 4.3.A (a)].

Now we use the previous two lemmas to complete the proof of [1, Theorem 11.2]. Within the proof we use

the canonical completion X̂ of a computable metric space. It is known that this completion is a computable

metric space again and that the canonical embedding X →֒ X̂ is a computable isometry that preserves the

dense sequence [3, Lemma 8.1.6]. We will identify X with a subset of X̂ via this embedding.

Theorem 3 ([1, Theorem 11.2]). BWTX ≡sW K
′

X for all computable metric spaces X.

Proof. The reduction BWTX ≤sW K
′

X has been proved in [1], so we focus on the reduction K
′

X ≤sW BWTX .

Let (X, d, α) be a computable metric space and let K ⊆ X be a nonempty compact set given by a κ′

−
-name

〈pi〉i. We want to compute a point of K using BWTX . The idea is to define a sequence (xn)n in X, working

within the completion X̂ of X and using the open sets built in Lemma 1, such that {xn : n ∈ N} is compact

in X.

It is clear that K is a compact set of X̂ and that 〈pi〉i can be considered as a κ′

−
-name for K in X̂. We

consider the map

L
X̂

: X̂N → A′

−
(X̂), (xn)n 7→ {x ∈ X̂ : x is a cluster point of (xn)n}.

By [1, Corollary 9.5] L
−1

X̂
is computable and hence L

−1

X̂
(K) yields a sequence (zm)m in X̂ whose cluster

points are exactly the elements of K.

Let F
X̂

be the multivalued function defined in Lemma 1. We can compute a sequence (Un)n ∈ F
X̂

(K).

Since {zm : m ∈ N} is not compact (and hence not in dom(BWTX)) in general, we refine it recursively to a

sequence (yn)n using (Un)n in the following way: for each n ∈ N, yn := zmn
for the first mn that we find

with zmn
∈ U0 ∩ · · · ∩ Un and such that mi < mn for all i < n. Note that we can always find such a yn,

since U0 ∩ · · · ∩Un covers K which is the set of cluster points of (zm)m. Clearly every cluster point of (yn)n

is also a cluster point of (zm)m, hence it belongs to K.

Recall now that (yn)n is a sequence of points in X̂ and that we want a sequence (xn)n in X in order

to apply BWTX . We compute (xn)n as follows: for each n ∈ N, xn is the first element that we find in the

dense subset range(α) such that d(xn, yn) < 2−n and xn ∈ U0 ∩ · · · ∩Un, where d also denotes the extension

of the metric to X̂. By density of X in X̂ such an xn always exists and it is clear that the cluster points of

(xn)n and those of (yn)n are the same in X̂.

Now A := {xn : n ∈ N} is totally bounded in X by Lemma 2 and hence every sequence in A has a

Cauchy subsequence, which has a limit in X̂, since X̂ is complete. By construction of (xn)n the limit of

such a subsequence is in K and hence in X. Thus every sequence in A has a subsequence that converges in

X and hence A is compact in X.

Finally, we can obtain an element of K by applying BWTX to (xn)n. ✷
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