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Polynomial Chaos Expansions for the Stability Analysis of Uncertain Delay
Differential Equations∗

Rossana Vermiglio†

Abstract. In the last few years the polynomial chaos theory of Wiener has been successfully applied to quantify
uncertainty in many applications, since it may be a cheap alternative to Monte Carlo simulations.
In this paper we introduce linear delay differential equations with uncertain parameters, and we
face both the well-posedness of the initial value problem and the stability by means of a suitable
abstract reformulation. To quantify the effect of uncertainty on system stability, which is a crucial
question in applications, we apply the polynomial chaos expansion to the stability indicator. The
proposed numerical method combines the spectral discretization of the infinitesimal generator and
the stochastic collocation. Numerical results complete the paper.
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1. Introduction. Differential equations involving delay terms play a significant role in
modeling real-life phenomena in biology, physics, engineering, medicine, and other sciences.
The presence of delay in the models permits a better reproduction of the real dynamics and, as
a consequence, a deeper understanding of the phenomena behavior. However, the introduction
of past-dependence in the evolution law increases the complexity since, in contrast to ordinary
differential equations, delay differential equations are infinite-dimensional dynamical systems.
Most authors consider the Banach space C of continuous functions defined on the delay interval
equipped with the maximum norm as state space [30, 37, 38, 48, 49]. In fact, as a result of
the smoothing effect, the solutions of delay differential equations become continuous, even
if other state spaces are used. However, in applications, working in Lp spaces (especially
p = 2) has some advantages, and there is also a well-developed theory within this framework
[9, 6, 27, 62]. Nowadays, due to the vast literature on both theoretical and numerical aspects
and on applications, it is hard to complete an exhaustive list. The reader interested in a
deeper analysis of all the issues can refer to the books [1, 8, 19, 25, 34, 45, 48, 49, 50, 53, 61]
and to the numerous references therein.

In dynamical systems theory, a first key question is the local stability of equilibria, which,
according to the principle of linearized stability, can be inferred from the zero-solution stability
of the linearized system. In this context, the understanding of the linear case is crucial,
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and the infinitesimal generator of the solution semigroup plays an essential role. In fact
the stability is inferred from the position of the rightmost eigenvalues of the infinitesimal
generator w.r.t. the imaginary axis. In general, analytical results cannot be achieved, and
efficient numerical methods are needed. Recently a pseudospectral differencing method has
been proposed within the Banach space C framework [13, 15, 19]. The basis of the approach
consists of discretizing the infinitesimal generator to turn the original eigenvalue problem into
a matrix eigenvalue problem. The pseudospectral technique guarantees spectral accuracy in
the approximation of the eigenvalues. This important feature makes also efficient bifurcation
analysis and construction of the stability charts [14]. This so-called IG approach has been
extended to other classes of linear differential equations [16, 17] and, more recently, to the
nonlinear case too [20]. The idea to discretize the infinitesimal generator, but especially to
approximate the solutions of delay differential equations, goes back to the works [4, 5, 7, 9,
43, 44, 51, 47, 54, 56]. Numerical techniques based upon spline functions within a Hilbert
space framework have been proposed, mainly motivated by the interest in control problems. In
these cases, the resulting order of approximation for eigenvalues of the infinitesimal generator is
fixed [41]. In [42, 46] the Legendre-tau approximations were considered and the corresponding
approximated characteristic equation was derived, without providing the convergence proof
for the eigenvalues. The stability of linear delay systems can be faced by other methodologies,
which share the fundamental idea of discretizing the solution operators [11, 18, 19, 32, 39]
mainly to investigate the stability of periodic solutions. Finally we recall that the advantage
of working with the Hilbert space L2 as state space is evident in the computation of Lyapunov
exponents [12].

Another important aspect to take into account in practical applications is the specification
of initial conditions, model constants, and parameters. In many situations, due to limitations
in available experimental data, in measurement or identification of model constants, the input
data cannot be exactly specified and are often modeled as random quantities in a suitable
probabilistic framework.

In the last few years it has been demonstrated that the polynomial chaos (PC) theory is an
important tool to represent random variables and to quantify uncertainty. The PC expansions
are based on the original Wiener’s theory of homogeneous chaos [63] and on the Cameron–
Martin theorem [22], which states that a random variable with finite second-order moment
can be expressed as a convergent series of polynomials in a sequence of random variables. The
construction involves an infinite collection of random variables, but, in practice, one reduces
the representation to a finite number. The Hermite polynomials, which are the optimum
for Gaussian distributions, were the first considered. Other important distributions with the
specific family of orthogonal polynomials are introduced in [57], whereas the convergence
results are given in [35].

The theory of Fourier series can be applied within this context. Provided that the co-
efficients of PC representations are known, the statistical moments of all orders and the
probability distributions can be obtained at low computational cost. The goal of the uncer-
tainty quantification is to determine the statistical moments of the model solution, subject to
parametric uncertainties. In this context, the PC expansions, coupled with efficient numerical
methods, provide a convenient framework for the forward propagation of the uncertainties.
Whenever the number of uncertain parameters is small and there is a smooth dependency on
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them, these techniques exhibit fast and ideally exponential convergence rate, offering efficient
computational strategies. Within this context they are a cheap alternative to Monte Carlo
simulations. For a detailed introduction to PC expansions, an overview of the latest methods
and various applications, the reader is referred to the books [52, 59].

The aim of this paper is to analyze the robustness of linear delay equations, quantifying
the effect of data uncertainty on the stability indicator, i.e., the rightmost eigenvalues of
the infinitesimal generator. The PC theory provides the basis for the novel definition of
delay differential equations with uncertain parameters, here called uncertain delay differential
equations. First, after reformulating such equations as abstract delay differential equations
on a suitable Hilbert space, we will investigate the well-posedness of the associated initial
value problem. Moreover, we will show that the norm-stability of the zero solution can be
analyzed through the spectrum of the infinitesimal generator, since this is not the general
situation for abstract delay differential equations. Then we will apply the IG approach, and
we will solve the resulting random eigenvalue problem by means of the stochastic collocation
(SC) method, i.e., the PC expansion coupled with the collocation on a selected set of nodes.
The SC method requires only deterministic solvers, and it permits us to obtain a selection
of statistical indicators. The stochastic Galerkin (SG) method, i.e., the PC representation
coupled with the Galerkin projection, was considered to solve symmetric random eigenvalue
problems in [36]. We remark that both approaches were used successfully for time-integration
of different classes of differential equations [3, 52, 57, 58, 59].

The paper is organized to be self-contained. In section 2, bearing in mind a Hilbert
space setting for uncertain delay differential equations and Fubini’s theorem, we will briefly
introduce the basic notation, the fundamental results, and the discretization approach of
the infinitesimal generator for deterministic linear delay differential equations in L2 spaces.
Although part of the material is related to known results, it still needs to be presented to
introduce the fundamental ideas clearly. Section 2 ends with the IG approach in L2 spaces
and the convergence proof for the eigenvalues. After a brief introduction to PC expansions
in section 3, we will define uncertain delay differential equations in section 4, which is the
main part of this article. By means of a suitable abstract reformulation, we will study the
well-posedness of the initial value problem and the mean-square stability of the zero solution
through the semigroup theory. In section 4.3 we will derive a random eigenvalue problem and
solve it by combining the IG approach and the SC method. In section 5 we will give some
numerical results and applications before drawing conclusions in section 6.

2. Linear delay differential equations. In this section we first introduce the notation and
summarize some basic theoretical results, for which the reader is referred to [6, 9, 27, 62].

Throughout the whole paper we denote the independent variable time by t ∈ R+ and the
dimension of the system by d ≥ 1. The space Rd is equipped with the euclidean norm |x|2,
x = (x1, . . . , xd)

T ∈ Rd. ‖ · ‖ indicates the operator norm.
Let τ > 0 be the maximum delay. We consider a linear autonomous delay differential

equation (DDE) of the form

(1)
d

dt
y(t) = By(t) + Lyt, t ≥ 0,
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where B ∈ Rd×d, the function

(2) yt(θ) := y(t+ θ), θ ∈ [−τ, 0],

represents the history segment for any t ≥ 0 lying on the history space H := L2(−τ, 0;Rd),
and L : W 1,2(−τ, 0;Rd) → Rd is a linear and bounded operator, called the delay operator.
The space H is a Hilbert space, equipped with the inner product

〈ϕ,ψ〉H =

∫ 0

−τ
ϕ(θ)Tψ(θ)dθ, ϕ, ψ ∈ H,

and the induced norm ‖ϕ‖H =
√
〈ϕ,ϕ〉H . The choice of considering delay operators defined

on W := W 1,2(−τ, 0;Rd), which was proposed by several authors, e.g., [6, 56], allows us to
represent both discrete and distributed delays, i.e., linear operators L of the form

(3) Lϕ =
r∑

k=1

Bkϕ(−τk) +

∫ 0

−τ
C(θ)ϕ(θ)dθ, t ≥ 0, ϕ ∈W,

where 0 < τ1 < · · · < τr := τ are r distinct delays, Bk ∈ Rd×d for k = 1, . . . , r, and C(·) ∈
L2(−τ, 0;Rd×d). In fact W is continuously embedded in the space of continuous functions
C := C([−τ, 0],Rd), and the bounded linear operator on C given by the Riemann–Stieltjes
integral

(4) Lϕ =

∫ 0

−τ
dη(θ)ϕ(θ),

where η : [−τ, 0] → Rd×d is a bounded variation matrix, defines a bounded linear operator
also on W . We remark that the “distributed delay” contribution in (3) defines a linear and
bounded operator on H [6, Example 3.27]. Hereafter we consider DDE (1) with delay operator
L represented by (4).

For any x ∈ Rd and ϕ ∈ H, the initial value problem (IVP) for (1) reads as

(5)


d
dty(t) = By(t) + Lyt, t ≥ 0,
y(0) = x,
y0 = ϕ.

In the literature a distinction is often made between classical and mild solutions, depending
on whether one refers to (1) or to an integral reformulation.

Definition 2.1. We say that y(·) = y(·;x, ϕ) is a classical solution of (5) on [−τ,+∞) if
y ∈ C([−τ,+∞),Rd) ∩ C1([0,+∞),Rd), yt ∈W, for all t ≥ 0, and y satisfies (5).

Definition 2.2. We say that y(·) = y(·;x, ϕ) is a mild solution of (5) on [−τ,+∞) if∫ t
0 ys ds ∈W, t ≥ 0, and y satisfies the integral equation

y(t) =

{
x+ B

∫ t
0 y(s) ds+ L

∫ t
0 ys ds, t ≥ 0,

ϕ, a.e. − τ ≤ t < 0.
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For any x ∈ Rd and ϕ ∈ H, the IVP (5) has a unique (classical or mild) solution. It is
worthwhile stressing that in case of a classical solution we should assume that the initial data
ϕ ∈W and ϕ(0) = x.

As commonly used in case of DDEs on Lp-spaces, the product space E := Rd ×H is the
state space, which is a separable Hilbert space equipped with the inner product defined as

〈(x, ϕ), (z, ψ)〉E = xT z + 〈ϕ,ψ〉H , (x, ϕ), (z, ψ) ∈ E,

and the induced norm

‖(x, ϕ)‖E =
√
|x|22 + ‖ϕ‖2H , (x, ϕ) ∈ E.

For a given solution y of (5), the state at time t ≥ 0 is defined as

(6) u(t) := (y(t), yt).

This setting is sometimes referred as extended state space and extended state to distinguish
them, respectively, from the standard state space C and the standard state yt ∈ C.

The solution operator T (t) : E → E is the linear and bounded operator, which associates
the state (y(t), yt) ∈ E at time t with the initial state (x, ϕ) ∈ E, i.e.,

(7) T (t)(x, ϕ) = (y(t), yt), t ≥ 0.

The family {T (t)}t≥0, called SO-semigroup, forms a C0-semigroup, which is eventually com-
pact [9]. The associated infinitesimal generator A : D(A) ⊆ E → E is the linear unbounded
operator given by

(8)

{
A(x, ϕ) = (Bx+ Lϕ, ddθϕ),
D(A) = {(x, ϕ) ∈ Rd ×W : ϕ(0) = x},

where d
dθ is the weak-derivative.

The abstract Cauchy problem (ACP) associated with A reads as

(9)

{
u′(t) = Au(t), t ≥ 0,
u(0) = (x, ϕ).

The notions of classical and mild solutions can also be introduced for (9). It can be
proved that the IVP (5) and the ACP (9) are equivalent in the sense that any classical
solution t 7→ y(t) of (5) defines a classical solution t 7→ u(t) = (y(t), yt) of (9) and vice
versa. This result also holds for mild solutions of (9), which are continuous functions such
that

∫ t
0 u(s) ds ∈ D(A) and u(t) = (x, ϕ) +A

∫ t
0 u(s) ds, t ≥ 0.

Once the well-posedness of the IVP (5) has been established, we can focus our attention
on the stability of the zero solution of (1), which is a special but significant problem. In fact,
according to the principle of linearized stability, the stability properties of the steady state
solution ȳ(t) := ȳ of the nonlinear autonomous DDE

(10)
d

dt
y(t) = F (y(t), yt), t ≥ 0,
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where F : E → Rd is a continuous differentiable map, can be linked to the stability of the zero
solution of the linearized system at ȳ, i.e.,

(11)
d

dt
y(t) = DF1(ȳ, ȳ)y(t) +DF2(ȳ, ȳ)yt, t ≥ 0,

where DF1(x, ϕ), DF2(x, ϕ) are the derivatives of F at (x, ϕ) w.r.t. x and ϕ, respectively.
The spectral theory provides a powerful tool to study the long-time behavior of semi-

groups [24, 31]. To this aim we assume that all the spaces and operators involved have been
complexified [30]. The eventually compactness of the SO-semigroup allows us to prove that
its growth bound, i.e.,

(12) ω0(T ) := inf{ω ∈ R : ∃M > 0 such that ‖T (t)‖ ≤Meωt, t ≥ 0},

coincides with the spectral abscissa, i.e.,

s(A) := sup{Re(λ) : λ ∈ σ(A)}.

This result is fundamental, since it states that the “best possible” exponential growth of
classical and mild solutions can be determined without constructing the SO-semigroup. The
spectrum σ(A) of the infinitesimal generator A only contains eigenvalues. Hence, the zero
solution of (1) is asymptotically stable if and only if all the (infinitely many) eigenvalues λ of
A lie in the left-half complex plane. By observing that for the eigenvector (x, ψ) associated
to the eigenvalue λ it results in ψ(·;x, λ) = xeλ·, it is possible to derive the characteristic
equation

(13) det(λId − B− Leλ·) = 0,

whose solutions, called the characteristic roots, coincide with the eigenvalues of A. Finally
we recall that any right-half plane contains only finitely many characteristic roots. By look-
ing at (13) we realize that it does not really matter which state space is chosen, since the
characteristic equation remains unchanged.

The stability analysis requires suitable numerical methods. Even if the characteristic
roots can be computed by solving (13), it is well known that this approach may lead to ill-
conditioning. In [13, 19] the infinite-dimensional eigenvalue problem for A on the state space
C is turned into a matrix eigenvalue problem by means of the pseudospectral discretization.
Below we will briefly present the setting of the so-called IG approach for the state space E,
and we will give the proof of convergence of the eigenvalues. Having to work on the domain
D(A), we restrict ourselves to ϕ ∈W.

For a given integer N , the IG approach consists of substituting the exact function ϕ ∈W
(infinite dimension) with its interpolating polynomial ϕN ∈ WN (finite dimension) at the
N + 1 distinct nodes in [−τ, 0],

(14) ΘN := {−τ ≤ θN < · · · < θ1 < θ0 = 0},

and by applying the infinitesimal generator A to (ϕN (0), ϕN ) ∈ Rd ×WN , i.e.,

(15) AN (ϕN (0), ϕN ) =

(
BϕN (0) + LϕN ,

d

dθ
ϕN

)
.
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We remark that the choice θ0 = 0 is motivated by the domain condition. The convergence
of the eigenvalues is achieved through the same strategy in [13, 19], which compares the
characteristic equation (13) to the discrete one by means of Rouché’s theorem. The latter is
given by

det(λId − B− L(ψN (·;λ, x))) = 0,

where ψN (·;λ, x) is the N -degree Cd-valued collocation polynomial relevant to the nodes
θi, i = 1, . . . , N , for the problem

(16)

{
ψ′ (θ) = λψ (θ) , θ ∈ [−τ, 0] ,
ψ (0) = x,

whose solution is ψ (θ;λ, x) = eλθx, θ ∈ [−τ, 0] . In this context the existence and uniqueness
of the polynomial ψN and an estimate of the error eN = ψN − ψ are key questions.

Lemma 2.3. Assume that θi, i = 1, . . . , N, are the zeros of the N -degree Legendre polyno-
mial in [−τ, 0]. Let λ∗ ∈ C and ρ > 0. Then there exists N0 := N0(ρ) such that, for N ≥ N0,
and λ s.t. |λ − λ∗| ≤ ρ, and x ∈ Cd, the collocation polynomial ψN for (16) relevant to
θi, i, . . . , N, exists and it is unique. Moreover, we obtain the bound

||ψN (·;λ, x)− ψ (·;λ, x) ||H ≤
C1√
N

(
C2

N

)N
|x|2,

where C1 := C1(λ∗, ρ), C2 := C2(λ∗, ρ) are constants independent of N.

Proof. By introducing the linear and bounded Volterra operator K : H → H

(Kϕ) (θ) =

∫ θ

0
ϕ(θ)dθ, ϕ ∈ H, θ ∈ [−τ, 0].

We can express ψ,ψN as follows:

ψ = x+ λKψ,
ψN = x+ λKLN−1ψN ,

where LN−1 is the interpolation operator relevant to the nodes θi, i = 1, . . . , N. As in [19,
Proposition 5.1], we easily obtain that the error eN = ψ − ψN can be written as eN = λKêN ,
where êN is the solution of

(17) (IH − λLN−1)KêN = rN ,

and rN := LN−1ψ − ψ is the consistency error. Moreover (IH − λLN−1K) = (IH − λK) +
λ(IH −LN−1)K. The operator IH − λK is invertible with bounded inverse, whereas the norm
of operator (IH − λLN−1)K goes to zero as N goes to infinity according to the Erdős–Turán
theorem [33]. Therefore there exists N0 := N0(ρ) such that, for N ≥ N0 and |λ − λ∗| ≤ ρ,
||(IH − λLN−1)K||H ≤ 1

2 . By means of the Banach perturbation lemma, we can conclude
that (IH − LN−1)K is invertible and its inverse is uniformly bounded. Therefore, we can
find a constant C0 := C0(λ∗, ρ) such that ||λK((IH − LN )K)−1||H ≤ C0 for N ≥ N0 and
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|λ− λ∗| ≤ ρ. Equation (17) has a unique solution êN , and as a consequence, eN and ψN also
are unique for N ≥ N0 and |λ − λ∗| ≤ ρ. According to well-known results of interpolation
theory and the Stirling formula, it follows that ||rN ||H goes to zero with spectral accuracy, i.e.,
||rN ||H ≤ C3√

N
(C2
N ! )

N |x|2, with C3 := C3(λ∗, ρ), C2 := C2(λ∗, ρ). Now, from ||eN ||H ≤ C0||rN ||H
we easily get the bound, where C1 := C0C3.

By carrying out the same program as in [19], we obtain the following theorem.

Theorem 2.4. Let λ∗ be an eigenvalue of A with multiplicity m. Then, for sufficiently large
N, AN has exactly m eigenvalues λN,i, i = 1, . . . ,m, such that

max
i=1,...,m

|λ∗ − λN,i| ≤

(
Ĉ1√
N

)1/m(
Ĉ2

N

)N/m
,

where Ĉ1, Ĉ2 are constants independent of N and proportional to |λ∗|.
The convergence of the approximated eigenvalues to the exact ones is faster than O(N−k)

for any k > 0. This property, also known as spectral accuracy, is the outstanding feature of the
pseudospectral approach w.r.t. other techniques that give a fixed order of convergence. For
instance, in [41] the convergence rate of the eigenvalues depends on the order of the splines
used to discretize A on E.

Note that the above results also hold when choosing (14) as the Lobatto points [60].
It is important to underline that there are no “ghost eigenvalues”; i.e., if there is a sequence

of approximated eigenvalues that converges, then it converges to an exact eigenvalue of A, and
the numerical computations confirm that no spurious eigenvalues exist [13, Proposition 3.7].
Finally, we remark that, due to the spectral convergence of the IG approach, the eigenvalues
in a ball of radius ρ around the origin can be accurately approximated for sufficiently large
N [13, Theorem 5.2]. A procedure for the automatic selection of N is described in [64].

In the pseudospectral approach, it is appropriate to express the polynomial ϕN in Lagrange
form, i.e., ϕN (θ) =

∑N
j=0 `j(θ)ϕN (θj), θ ∈ [−τ, 0], where `j are the Lagrange polynomials

relevant to the points (14). Therefore, AN is represented by the matrix AN ∈ Rd(N+1)×d(N+1)

with block-entries

(18)


(AN )00 = B + L`0,
(AN )0j = L`j , i = 0, j = 0, 1, . . . , N,
(AN )ij = `′j(θi)Id, i = 1, . . . , N, j = 0, 1, . . . , N,

where `j are the Lagrange polynomials, L`j : x ∈ Rd 7→ L(`j(·)x) ∈ Rd, and `j(·)x is the
function (`j(·)x)(θ) = `j(θ)x, θ ∈ [−τ, 0], x ∈ Rd.

It is worthwhile to remark that it is possible to apply the pseudospectral method by using
the Legendre polynomials as a polynomial basis. In this case, ϕN is described by its N + 1
spectral coefficients, and by applying A to ϕN and imposing the domain condition, we obtain
the alternative representation of AN given in [42]. In the paper, the authors propose Legendre-
tau approximations for the solutions of linear (1) and prove the convergence of the method
as N goes to infinity. They also derive the discrete characteristic equation without providing
proof of eigenvalue convergence. As a result Theorem 2.4 fills the gap.
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3. Polynomial chaos expansions. In this section we set the probabilistic framework and
briefly summarize the basic notation of the polynomial chaos (PC) theory. The reader is
referred to [52, 59] for relevant results and applications.

Let (Ω,Σ,P) be a complete probability space, where Ω is the event space, Σ is the σ-
algebra, and P is the probability measure. Let L2(Ω,Σ,P) be the Hilbert space of second-
order real-valued random variables defined on the probability space (Ω,Σ,P), equipped with
the inner product

〈Y,Z〉Ω =

∫
Ω
Y (ω)Z(ω)dP(ω)

and the induced norm ‖Y ‖Ω =
√
〈Y, Y 〉Ω.

Wiener’s theory states that a random process with finite second-order moment can be
expressed into a convergent series of polynomials in a sequence of Gaussian random variables
{ξi}∞i=1 of the form

(19) Y (ω) = y0H0 +
∞∑

α1=1

yα1H1(ξα1(ω)) +
∞∑

α1=1

α2∑
α2=1

yα1,α1H2(ξα1(ω), ξα2(ω)) + · · · ,

where Hi denotes the set of polynomials of degree i which are mutually orthogonal with regards
to the Gaussian measure associated to {ξi}∞i=1 [22, 63]. The series is called the PC expansion
of Y , and its deterministic coefficients, known as chaos coefficients, capture the probabilistic
description of the random quantity. In practice, one reduces the representation to a finite
number M of random variables, which is governed by the uncertain data, and truncates the
PC expansion to order P . Specifically all the infinite sums in (19) are replaced by sums over
M dimensions with polynomials of degree less than or equal to p.

Denote ξ = (ξ1, . . . , ξM ) the vector of M independent standard random variables defined
on (Ω,Σ,P) with values in the locally compact set Ξ ⊂ RM and with joint probabilistic density
function pξ, i.e.,

(20) pξ(ξ) =

M∏
i=1

pi(ξi),

where pi(ξi) is the probability density function of ξi. The number M is known as the stochas-
tic dimension. Similarly denote L2(Ξ,BΞ, pξ) the Hilbert space of second-order real-valued
random variables defined on the image probability space (Ξ,BΞ, pξ), where BΞ is the Borel set
of Ξ. The inner product is given by

〈Y,Z〉Ξ :=

∫
Ξ
Y (ξ)Z(ξ)pξ(ξ)dξ,

and ‖Y ‖Ξ =
√
〈Y, Y 〉Ξ is the induced norm. Now consider the PC basis for L2(Ξ,BΞ, pξ) given

by the set of M -dimensional real orthogonal polynomials {Ψα}, where α = (α1, . . . , αM ) ∈
NM0 denotes an M -dimensional multi-index, Ψα has total order |α| =

∑M
i=1 αi, and Ψ0 =

1, 〈Ψα,Ψβ〉Ξ = δαβ‖Ψα‖2Ξ.
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TheM -dimensional polynomials Ψα are constructed via a tensor product of one-dimensional
polynomials, i.e.,

(21) Ψα(ξ) = Ψα1(ξ1) · · ·ΨαM (ξM ), α ∈ NM0 .

The original PC expansions consider Hermite polynomials, but the approach has been gen-
eralized to other families of orthogonal polynomials, induced by the density function pξ of
the random vector ξ [57]. For example, Legendre polynomials are considered for uniformly
distributed random variables, while Laguerre polynomials are used for gamma distribution.
Note that the tensored construction of the PC basis (21) allows us to consider also random
variables associated with different probability laws.

The random variable Y ∈ L2(Ω,Σ,P) can be approximated by means of the truncated
expansion YP ∈ L2(Ξ,BΞ, pξ),

(22) Y ≈ YP =
∑

α∈NM0 ,|α|≤P

yαΨα(ξ),

while with regard to the expectation and variance of Y we obtain, respectively,

(23)

E[Y ] =
∫

Ω Y (ω)dP(ω) ≈ E[YP ] =
∫

Ω YP (ξ(ω))dP(ω) =
∫

Ξ YP (ξ)pξ(ξ)dξ

=
∑

α∈NM0 ,|α|≤P
yα
∫

Ξ Ψα(ξ)pξ(ξ)dξ = y0

and

(24)

V ar[Y ] = E[(Y − E[Y ])2] ≈ V ar[YP ] =
∫

Ω(YP (ξ(ω))− E[YP ])2dP(ω)
=
∫

Ξ(YP (ξ)− E[YP ])2dpξ(ξ)dξ
=

∑
α∈NM0 ,|α|≤P

|yα|2‖Ψα‖2Ξ.

In other words we operate in the image probability space L2(Ξ,BΞ, pξ) instead of the
original probability space L2(Ω,Σ,P). We should emphasize that P is the maximal total

degree of the polynomial basis, and that the number of terms in (22) is (M+P )!
M !P ! , which increases

w.r.t. both stochastic dimension M and the expansion degree P . The truncated error Y −YP
depends on both M and P, and it converges in the mean square sense as M and P go to
infinity [22, 52]. As already pointed out, M is fixed by the parametrization of the model to be
studied, while the number P needed to achieve a given error depends on the random variable
to represent. The PC representation is computationally efficient when the truncated error
rapidly goes to zero as P goes to infinity.

The PC expansion can be used to represent the solution of a mathematical model with
uncertain data, that are assumed to be already parametrized by the random vector ξ. The
probability law of the output solution to be determined is not known a priori, and it is not
possible to construct a priori the optimal orthogonal basis. Since the probability law of the
data uncertainties to propagate is known, the PC basis is chosen so as to be optimal w.r.t.
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them. Coupled with suitable numerical methods, the PC expansion of the model solution can
be determined and the uncertainty propagation can be quantified.

Finally, we observe that the same representations and approximations can also be extended
to complex-valued random variables, random vectors, and processes.

4. Linear uncertain delay differential equations. In this section we define uncertain delay
differential equations, and after a suitable abstract reformulation, we study the well-posedness
of the associated initial value problem and the mean-square stability of the zero solution. To
analyze and quantify the effect induced by the uncertain parameters we propose a numerical
technique based on the pseudospectral approach described in section 2 and the SC method.

Let Y be the Hilbert space of the Rd-valued functions on Ξ with all components in
L2(Ξ,BΞ, pξ) equipped with the inner product

〈Y,Z〉Y :=

∫
Ξ
Y (ξ)TZ(ξ)pξ(ξ)dξ

and the induced norm ‖Y ‖Y =
√
〈Y, Y 〉Y . Bearing in mind the probabilistic setting in sec-

tion 3, we introduce the following definition.

Definition 4.1. A linear uncertain DDE (UDDE) of stochastic dimension M is the param-
eter dependent DDE

(25)
d

dt
y(t, ξ) = B(ξ)y(t, ξ) + L(ξ)yt(·, ξ), t ≥ 0, a.e. ξ ∈ Ξ,

where
1. ξ = (ξ1, . . . , ξM ) is a random vector of M independent standard random variables

defined on (Ω,Σ,P) with values in the locally compact set Ξ ⊂ RM , and joint probabilistic
density function pξ,

2. B(ξ) ∈ Rd×d for all realizations ξ ∈ Ξ,
3. ξ ∈ Ξ→ B(ξ)x ∈ Y for all x ∈ Rd,
4. τ > 0 is the maximum delay,
5. for any t ≥ 0 the history segment yt(·, ξ) belongs to H for all realizations ξ ∈ Ξ, and

yt(θ, ·) belongs to Y for every θ ∈ [−τ, 0],
6. for all realizations ξ ∈ Ξ L(ξ) : W → Rd is a linear and bounded delay operator

given by

(26) L(ξ)ϕ =

∫ 0

−τ
dηθ(θ, ξ)ϕ(θ),

where η(·, ξ) : [−τ, 0]→ Rd×d is a bounded variation matrix,
7. ξ ∈ Ξ→ L(ξ)ϕ ∈ Y for every ϕ ∈W.

Here, Y is the stochastic space, and the M -dimensional random vector ξ describes the un-
certainty in the parameters of the delay differential equations. In order to treat DDEs with
stochastic processes as parameters a preprocessing step, for example, by means of a (trun-
cated) Karhunen–Loève expansion, has to be performed to approximate the stochastic process
by a finite set of random variables [52].
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Given X ∈ Y and Φ such that Φ(·, ξ) ∈ H for all realizations ξ ∈ Ξ, and Φ(θ, ·) ∈ Y for
all θ ∈ [−τ, 0], the IVP for (25) reads as

(27)


d
dty(t, ξ) = B(ξ)y(t, ξ) + L(ξ)yt(·, ξ), t ≥ 0, a.e. ξ ∈ Ξ,
y(0, ξ) = X(ξ),
y0 = Φ.

For all realizations ξ ∈ Ξ, (27) can be viewed as an IVP for a deterministic DDE on
the finite-dimensional space Rd. Therefore, for a.e. ξ ∈ Ξ and initial state (x := X(ξ), ϕ :=
Φ(·, ξ)) ∈ E we can define the (classical or mild) solution y(·, ξ;x, ϕ) on [τ,+∞). As a function
of t for a given ξ the y(·, ξ) is called a sample path or a trajectory of y. Moreover we can
introduce either the linear and bounded solution operator T (t, ξ) : E → E, which maps the
initial state (x := X(ξ), ϕ := Φ(·, ξ)) ∈ E into the state at time t ≥ 0, i.e.,

(28) T (t, ξ)(x, ϕ) = (y(t, ξ), yt(·, ξ)), t ≥ 0,

or the associated infinitesimal generator A(ξ) : D (A(ξ)) ⊆ E → E,

(29)

{
A(ξ)(x, ϕ) = (B(ξ)x+ L(ξ)ϕ, ddθϕ),
D(A(ξ)) = {(x, ϕ) ∈ Rd ×W : ϕ(0) = x},

which is closed, densely defined, and unbounded. It is important to observe that the domain
of A(ξ) doesn’t depend on ξ.

To define the solutions and investigate the well-posedness of the IVP (27), first we in-
troduce further assumptions on the families of matrices B(ξ) and operators L(ξ). Then we
reformulate the linear UDDE (25) as a linear abstract DDE (ADDE) on Y. In fact, similar to
the finite-dimensional case, the basic definitions and results on the solvability of the Cauchy
problem recalled in section 2 also apply to infinite dimensions [6]. Moreover the norm-stability
of the zero solution of the linear UDDE (25), also called mean-square stability [48], can be
investigated by the spectral theory of semigroup (see section 4.2). Finally we remark that the
principle of linearized stability can be also applied [6]. General ADDEs on C([−τ, 0],Y) are
addressed in [2, 30].

4.1. Reformulation as abstract delay differential equation. Let H := L2(−τ, 0;Y) be
the history space for the UDDE (25) equipped with the inner product

〈Φ,Ψ〉H =

∫ 0

−τ
〈Φ(θ, ·),Ψ(θ, ·)〉Y dθ, Φ,Ψ ∈ H,

and the induced norm

‖Φ‖H =

√(∫ 0

−τ
‖Φ(θ, ·)‖2Y dθ

)
=

√(∫ 0

−τ

∫
Ξ
|Φ(θ, ξ)|22 pξ(ξ)dξ dθ

)
.

Here we adopt the notation Φ(θ, ξ) for all the functions Φ ∈ H. According to Fubini’s theorem

‖Φ‖H =

(∫
Ξ

∫ 0

−τ
|Φ(θ, ξ)|22 dθ pξ(ξ)dξ

) 1
2

=

(∫
Ξ
‖Φ(·, ξ)‖2H pξ(ξ)dξ

) 1
2

,
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and H ∼ L2(Ξ, H) [6]. Moreover, we define the space W := W 1,2(−τ, 0;Y). Hereafter we also
assume that

(30) ‖B(ξ)‖ ≤ β, a.e. ξ ∈ Ξ,

(31) ‖L(ξ)‖ ≤ `, a.e. ξ ∈ Ξ.

Proposition 4.2. Assume that the family of matrices {B(ξ)}ξ∈Ξ satisfies (30). Then the
linear operator B : D(B) ⊆ Y → Y induced on Y by the family {B(ξ)}ξ∈Ξ given by

(32)

{
(BY )(ξ) := B(ξ)Y (ξ), a.e. ξ ∈ Ξ,
D(B) = {Y ∈ Y : ξ ∈ Ξ→ B(ξ)Y (ξ) ∈ Y}

is bounded. Moreover, D(B) = Y.

Proof. For all functions Y ∈ D(B) we can see that

‖BY ‖2Y =
∫

Ξ |B(ξ)Y (ξ)|22 pξ(ξ)dξ

≤
∫

Ξ ‖B(ξ)‖2|Y (ξ)|22 pξ(ξ)dξ

≤ β2‖Y ‖2Y ,

and the thesis follows.

Proposition 4.3. If the linear operator B : Y → Y induced on Y by the family of matrices
{B(ξ)}ξ∈Ξ given in (32) is bounded, then (30) holds.

Proof. Since B is bounded, there is a constant C ≥ 0 such that ‖BY ‖2Y ≤ C‖Y ‖2Y for all
Y ∈ Y. Consider the set Ξ(β) = {ξ ∈ Ξ | ‖B(ξ)‖ > β} for some β > 0. For any ξ ∈ Ξ(β) we
find v(ξ) ∈ Rd, |v(ξ)|2 = 1 such that β ≤ |B(ξ)v(ξ)|2. Let Y (ξ) := χ

Ξ(β)
v(ξ), where χ

Ξ(β)
is the

characteristic function of the set Ξ(β). We have

β2

∫
Ξ(β)

pξ(ξ)dξ ≤
∫

Ξ
|B(ξ)Y (ξ)|22 pξ(ξ)dξ ≤ C

∫
Ξ(β)

pξ(ξ)dξ.

If we select β2 > C, we obtain
∫

Ξ(β) pξ(ξ)dξ = 0, which implies that ‖B(ξ)‖ ≤ β a.e.

We remark that the linear bounded operator B in (32) is the infinitesimal generator of the
semigroup {S(t)}t≥0, where S(t) : Y → Y is the multiplication operator given by

(33) (S(t)Y )(ξ) = etB(ξ)Y (ξ), ξ ∈ Ξ, Y ∈ Y, t ≥ 0.

The semigroup {S(t)}t≥0 is uniformly continuous; i.e., the map t 7→ S(t) is continuous in the
uniform operator topology [24].

Similarly, we are able to prove the following propositions.
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Proposition 4.4. Assume that the family {L(ξ)}ξ∈Ξ of linear and bounded operator L(ξ) :
W → Rd satisfies (31). Then the linear operator L : D(L) ⊆ W → Y induced on W by the
family {L(ξ)}ξ∈Ξ given by{

LΦ(ξ) := L(ξ)Φ(·, ξ), a.e. ξ ∈ Ξ,
D(L) = {Φ ∈ W : ξ ∈ Ξ→ L(ξ)Φ(·, ξ) ∈ Y}

is bounded. Moreover D(L) =W.

Proposition 4.5. If the linear operator L :W → Y induced on W by the family of operators
{L(ξ)}ξ∈Ξ given in (26) is bounded, then (31) holds.

Both the operators B and L are multiplication operators. By defining

Y (t+ θ)(ξ) := y(t+ θ, ξ), t ≥ 0, θ ∈ [−τ, 0], a.e. ξ ∈ Ξ,

the UDDE (25) can be recast as the following linear ADDE on Y:

(34) Y ′(t) = BY (t) + LYt, t ≥ 0,

where both the operators B and L are bounded.
Now all the steps in section 2 for DDE (1) can also be followed in the case of ADDE (34):

classical and mild solutions of the associated initial value problem can be defined, and the
well-posedness of the problem can be proved. Moreover, the semigroup of solution operators
and the infinitesimal generator can be introduced [6].

For any X ∈ Y and Φ ∈ H, the IVP for the linear ADDE (34) reads as

(35)


Y ′(t) = BY (t) + LYt, t ≥ 0,
Y (0) = X,
Y0 = Φ.

To study the existence and uniqueness of solutions of the IVP (35), we have to define what
a solution is. We carry on as in section 2.

Definition 4.6. We say that Y is a classical solution of the IVP (35) on [τ,+∞) if Y ∈
C([−τ,+∞),Y) ∩ C1([0,+∞),Y), Yt ∈ W for all t ≥ 0, and Y satisfies (35) for all t ≥ 0.

Definition 4.7. We say that Y is a mild solution of the IVP (35) on [τ,+∞) if
∫ t

0 Ys ds ∈ W
for all t ≥ 0, Y satisfies the integral abstract formulation

Y (t) = X + B
∫ t

0
Y (s) ds+ L

∫ t

0
Ys ds, t ≥ 0,

and the initial condition Y0 = Φ.

According to [6, Theorem 3.23] the IVP (35) has a unique (classical or mild) solution.
The extended state is

(36) U(t) := (Y (t), Yt), t ≥ 0,
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and it belongs to the state space E := Y ×H, equipped with the norm

‖(X,Φ)‖E =
√
‖X‖2Y + ‖Φ‖2H.

It is important to observe that according to Fubini’s theorem E ∼ L2(Ξ,Rd ×H).
The solution operator T (t) : E → E is the linear and bounded operator that associates the

state (Y (t), Yt) at time t to the initial state (X,Φ), i.e.,

(37) T (t)(X,Φ) = (Y (t), Yt), t ≥ 0.

The family {T (t)}t≥0 forms a C0-semigroup. The associated infinitesimal generator A :
D(A) ⊆ E → E is the linear unbounded operator given by

(38)

{
A(X,Φ) = (BX + LΦ, ddθΦ),
D(A) = {(X,Φ) ∈ Y ×W : Φ(0) = X}.

Given (X,Φ) ∈ E , the ACP associated with A on the space E reads as

(39)

{
U ′(t) = AU(t), t ≥ 0,
U(0) = (X,Φ).

Again, classical and mild solutions of (39) can be defined, and it can be proved that (35)
and (39) are equivalent [6].

4.2. The semigroup approach. The abstract reformulation (34) allows us to address also
the norm-stability of the zero solution of (25) through the semigroup theory [24, 31]. With
regard to the spectral analysis, it is necessary to work on C, and we implicitly assume that
H, Y, and all the operators involved have been complexified. Since we are in the infinite-
dimensional case, the eventual compactness of the semigroup will generally be lacking, and
the spectral bound and the growth bound may be different. In this more general context
the asymptotic behavior of the semigroup cannot be described by analyzing the spectrum
of the infinitesimal generator, and the notions of essential and nonessential are important.
But in the particular case of UDDE the spectral bound and the growth bound coincide, and
consequently the asymptotic behavior of the solutions can be described by the location of the
infinitesimal generator spectrum in the complex plane. The key is that all the operators can
be represented by a family of operators indexed by ξ ∈ Ξ. In fact, the introduction of the
family of operators (28) and (29) allows us to express the solution operator (37) as

(40) (T (t)Φ)(·, ξ) = T (t, ξ)Φ(·, ξ), a.e. ξ ∈ Ξ,

whereas the associated infinitesimal generator (38) permits the representation

(41) (AΦ)(·, ξ) = A(ξ)Φ(·, ξ), a.e. ξ ∈ Ξ,

since for all realizations ξ ∈ Ξ the function Φ(·, ξ) belongs to D (A(ξ)) . The operators T (t)
and A are multiplication operators, and since T (t) is a multiplication operator for all t ≥ 0,
we call {T (t)}t≥0 an SO-multiplication semigroup.
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Since {S(t)}t≥0 in (33) is uniformly continuous, and from (26) the operator L is given
by the Riemann–Stieltjes integral of a bounded variation function, we can apply [6, Theorem
4.11] in order to obtain s(A) = ω0(T ). If s(A) < 0, then the SO-multiplication semigroup is
exponentially asymptotically stable and every classical or mild solution of the linear UDDEs
is mean-square stable. The next theorem relates the spectrum of (38) to the spectrum of the
family of operators (29). Similar results were derived in [29] under continuity assumptions
on the family of operators and in [28] in the case of partial differential operators arising in
hydrodynamics.

Theorem 4.8. Let A be the infinitesimal generator (38) of the SO-multiplication semigroup
{T (t)}t≥0. Then

(i) σ(A) =
⋃

a.e. ξ∈Ξ σ(A(ξ)),
(ii) s(A) = ess-supξ∈Ξ <(σ(A(ξ)),

where the operators A(ξ) are defined in (29).

Proof. (i) As a first step we will describe the resolvent set ρ(A) of A in terms of the
resolvent sets of the family of the operators A(ξ). In particular we will prove that

ρ(A) =
⋂

a.e. ξ∈Ξ

ρ(A(ξ)).

By standard analysis, we obtain that a necessary and sufficient condition for λ ∈ ρ(A) is that
the operator ∆(λ) : Y → Y given by

(42) ∆(λ) := λ− B − Leλ·

is invertible [6, p. 56]. Moreover, it is easy to see that ∆(λ) is a multiplication operator
induced by the family of matrices ∆(λ, ξ) = I −B(ξ)− L(ξ)eλ·, ξ ∈ Ξ.

If λ ∈ ρ(A), then ∆(λ, ξ) is invertible a.e. ξ ∈ Ξ. Therefore λ ∈ ∩ξ∈Ξρ(A(ξ)), a.e. ξ ∈ Ξ.
If λ ∈ ρ(A(ξ)) a.e. ξ ∈ Ξ, then the matrix ∆(λ, ξ) is invertible for a.e. ξ ∈ Ξ. Hence there

exists ε > 0 such that the set B = {ξ ∈ Ξ : σ(∆(λ, ξ)) ∩ Dε} has measure zero, where Dε is
the open disk in C with center 0 and radius ε. Let ν := inf{|det(∆(λ, ξ))| : ξ ∈ Ξ \ B}.
Then ‖∆(λ, ξ)−1‖ ≤ ‖∆(λ,ξ)‖d−1

| det(∆(λ,ξ))| ≤
1
ν ‖∆(λ)‖, and the family ∆(λ, ξ)−1 is essentially bounded.

Therefore we can define ∆(λ)−1 for λ ∈ ρ(A).
Since the spectrum is the complementary set of ρ(A), and it is closed, the first point of

the theorem is completed.
(ii) This is a consequence of (i).

4.3. The IG approach for uncertain delay differential equations. In order to analyze
and quantify the effect induced by the uncertain parameters on the norm stability of the zero-
solution of linear UDDEs (25), which is described by s(A), we combine the IG approach for
linear deterministic DDE (25) with the SC method applied to the resulting random eigenvalue
problem. The SC method extends the definition of collocation methods to stochastic problems.
Selecting a set of collocations points in the random space, the SC method solves a deterministic
problem at each point and then recovers the solution statistics. The facility of implementation
is one of its advantages. Basic ideas and results behind the SC method can be found in [52, 59].
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Given λ ∈ σ(A) and ε > 0, we know from Theorem 4.8 that there exists λ∗ ∈ σ(A(ξ∗)) for
ξ∗ ∈ Ξ such that |λ−λ∗| ≤ ε. Let us assume that λ∗ has multiplicity m, and let AN (ξ∗) be the
finite-dimensional operator obtained by applying the IG approach to A(ξ∗). Then Theorem
2.4 ensures that, for a sufficiently large N, AN (ξ∗) has exactly m eigenvalues λiN , i = 1, . . . ,m,
such that

max
i=1,...,m

∣∣λ− λiN ∣∣ ≤ ε+

(
Ĉ1√
N

)1/m(
Ĉ2

N

)N/m
≤ 2ε,

where Ĉ1, Ĉ2 are constants independent of N and proportional to |λ∗| ≤ |λ|+ ε.
As already pointed out in section 2, the spectral convergence and the boundedness of the

linear operator L allow us to determine a small N, such that the eigenvalues of A(ξ) in a
ball of radius ρ around the origin are approximated by the eigenvalues of AN (ξ) with the
prescribed accuracy a.e. ξ ∈ Ξ.

Now, by solving the random eigenvalue problem

(43)

{
AN (ξ)VN (ξ) = ΛN (ξ)VN (ξ),
VN (ξ)HVN (ξ) = 1

for the random matrix AN (ξ) obtained by applying the IG approach to the operator (29) for
a fixed N, we can construct the random variable

SN (ξ) = max
ΛN (ξ)∈σ(AN (ξ))

Re(ΛN (ξ)), a.e. ξ ∈ Ξ

and, from point (ii) of Theorem 4.8, the following approximation:

s(A) ≈ ess-supξ∈Ξ SN (ξ).

Proposition 4.9. We have that ΛN (ξ) and SN (ξ) are second-order functions on Ξ, respec-
tively, with complex and real values.

Proof. Denote as vH the complex conjugate of v. Since VN (ξ)HVN (ξ) = 1 a.e. ξ ∈ Ξ,
we can conclude that all the components VN,i(ξ) of VN (ξ) are second-order complex-valued
functions on Ξ. The definition of the matrix AN (ξ) and the assumptions (30), (31) ensure
that all the elements AN (ξ)VN (ξ) are second-order complex-valued functions on Ξ. Hence by

|ΛN (ξ)|2 = (AN (ξ)VN (ξ))H(AN (ξ)VN (ξ))

and the Cauchy–Schwarz inequality, it follows that ΛN (ξ) is a complex-valued second-order
function on Ξ. Finally, since the maximum of second-order real-valued functions is again a
second-order real-valued function, we obtain the desired statement.

Finally, we apply the SC method to (43) according to the following steps.
1. For a given integer P, we construct the set ΞP of n := (P + 1)M distinct collocation

points ξβ ∈ ΞP using tensored grids, i.e., ξβ = (ξβ1 , . . . , ξβM ) with β = (β1, . . . , βM ) ∈
NM0 such that 0 ≤ βi ≤ P, i = 1, . . . ,M.
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2. For each ξβ ∈ ΞP , we solve the deterministic eigenvalue problem

(44) AN (ξβ)vN,β = λN,βvN,β

to compute

Sβ = max
λN,β∈σ(AN (ξβ))

Re(λN,β).

3. We estimate

s(A) ≈ max
β ∈ NM

0 , 0 ≤ βi ≤ P,
i = 1, . . . ,M

Sβ.

4. We recover the chaos coefficients sα of the algebraic polynomial of degree P in each
of the components ξi, i = 1, . . . ,M,

SN,P (ξ) =
∑

α ∈ NM
0 , 0 ≤ αi ≤ P,

i = 1, . . . ,M

sαΨα(ξ),

via tensored (P + 1)-point Gaussian quadrature, to approximate the statistical mo-
ments, e.g., expectation and variance, of SN .

Here the subscript P in SN,P stresses the maximum degree of each of the components
of the polynomial, whereas its total degree is M × P. In contrast to the one-dimensional
case, multidimensional interpolation is not usually treated in the numerical texts; a basic
introduction can be found in [40], whereas results on multivariate interpolation error and
Jackson’s are given in [23] and [55], respectively. The properties of the underlying one-
dimensional interpolation can be maintained by using the tensor product construction. The
convergence rate of SN,P to SN w.r.t. P depends on the stochastic dimension M and the
regularity of SN . For large dimension M the convergence can be very slow w.r.t. the total
number n of collocation points, and moreover, the SG method based on tensored grids becomes
computationally expensive. This is the well-known curse of dimensionality. For this reason,
tensor product construction is mostly used for low to moderate stochastic dimension M. The
reduction of complexity can be achieved by using sparse grids, and further comments and
results can be found in the books [52, 59] and the references therein. SG has been proposed to
solve random eigenvalue problems for real symmetric random matrices in [36]. It is worthwhile
to remark that the SG method also works for small M . Typically Monte Carlo sampling
methods are an appropriate choice when M ≥ 10. The computational cost also depends on
the dimension of the matrix AN . It is important to emphasize that the total computational
cost could be significantly reduced by solving the deterministic eigenvalue problems (44) in
parallel.

5. Numerical results. In this section we test our numerical approach on a number of
“academic”examples of UDDEs of a small stochastic dimension M. The uncertain parameters
are described by uniformly distributed random variables, for which we assume to already
know the polynomial approximation as in [36]. Therefore, the basis for L2(Ξ,R) is given
by the tensor product of Legendre polynomials. For a given P the collocation points are
constructed by using P + 1 tensored Legendre points. Then the total number of collocation
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Figure 1. Rightmost eigenvalues of (46) using a = −0.5, b = −0.5e, and N = 20.

points is n = (P + 1)M , whereas the maximum degree of SN,P is M × P. It is known that
in Monte Carlo methods the statistics based on a sample set of dimension n converge to the
true values as 1/

√
n for sufficiently large n, according to the law of large numbers.This low

convergence rate is the main limitation in using the Monte Carlo method. To assess the
efficiency of our approach, we experimentally investigate the convergence w.r.t. P of the mean
and the variance of the stability indicator SN . To construct the matrix and solve (44) at the
collocation points, we adapt the MATLAB codes available in [19].

Consider the scalar DDE

d
dty(t) = ay(t) + by(t− 1), t ≥ 0,

with a = −0.5, b = −0.5e. By applying the IG approach of section 2 with N = 20, the
computed rightmost pair of eigenvalues is −0.245203898536± 1.71803022843i (see Figure 1),
and the zero solution is asymptotically stable. We emphasize that in [36] the authors consider
random symmetric matrices, which have only real eigenvalues. Hereafter, if not differently
specified, we assume N = 20. To quantify the effect on the stability of the uncertain data

(45)
ξ = (ξ1, ξ2), ξ1, ξ2 ∼ U [−1, 1],

a(ξ) = −0.5 + ξ1
2 , b(ξ) = −0.5e+ ξ2

2 ,

we consider the following linear UDDE of stochastic dimension M = 2:

(46) d
dty(t, ξ) = a(ξ)y(t, ξ) + b(ξ)y(t− 1, ξ), t ≥ 0.

We first apply the classical Monte Carlo sampling method to SN . We generate n = (P + 1)M

random realizations Si, i = 1, . . . , n, of SN , and we estimate the first two statistical moments

using En =
∑N
i=1 Si
n and Vn = En(SN −En)2. The results are given in Table 1. Note that the

dimension n of the sample set is equal to the number of the collocation points in section 4.3.
Now we consider the numerical method of section 4.3, and we compute the mean EN,P :=

E[SN,P ] and the variance VN,P := V ar[SN,P ] of the numerical stability indicator SN,P for
the UDDE (46). Varying P, we get the numerical results in Table 2, where the errors are
computed w.r.t. the values EN,40 = −0.2632158062801188, VN,40 = 3.160813907441763e− 02.
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Table 1
Numerical results of the Monte Carlo method for the UDDE (46) using data (45) and N = 20.

n En Vn
25 -0.360817 0.029511
100 -0.265429 0.021630
225 -0.276423 0.028096
400 -0.210894 0.028528

10000 -0.266186 0.029296

Table 2
Numerical results for the UDDE (46) using data (45) and N = 20.

P EN,P |EN,P − EN,40| VN,P |VN,P − VN,40|
5 -0.2632157770148609 2.93e-08 0.031608092975692 4.61e-08
10 -0.2632158062794730 6.46e-13 0.031608139074244 1.74e-13
15 -0.2632158062801199 1.11e-15 0.031608139074415 2.47e-15
20 -0.2632158062801233 4.55e-15 0.031608139074419 1.11e-15

In Figure 2 the error plot shows the spectral convergence behavior [21]. Moreover we get the
estimate Prob{SN,P < 0} = 0.936 when P = 40.

The results in Tables 1 and 2 confirm expectations: the Monte Carlo method is robust
but its convergence rate is slow, whereas the SC method takes advantage of the smoothness
of SN and provides very accurate results. To experimentally investigate how the regularity
of SN affects the convergence rates of mean and variance, we consider the UDDE (46) and
uncertain data

(47)
ξ = (ξ1, ξ2), ξ1, ξ2 ∼ U [−1, 1],

a(ξ) = −0.5 + ξ1+1
2 , b(ξ) = −0.5e+ ξ2.

Varying P, the numerical results given in Table 3, where the errors are computed w.r.t. the
values EN,80 = −0.1637698319566630, VN,80 = 0.1162072745963336, show a lower accuracy
w.r.t. to the previous case. Note that Prob{SN,P < 0} = 0.603 when P = 80.

Table 3
Numerical results for the UDDE (46) using data (47) and N = 20.

P EN,P |EN,P − EN,80| VN,P |VN,P − VN,80|
5 -0.158494 5.27e-03 0.114104 2.10e-03
10 -0.162381 1.39e-03 0.115432 7.75e-04
20 -0.163878 1.23e-04 0.116288 8.05e-05
30 -0.163761 8.49e-06 0.116205 2.16e-06

Now let us consider the UDDE of stochastic dimension M = 3:

(48) d
dty(t, ξ) = a(ξ)y(t, ξ) + b(ξ2)y(t− τ(ξ), ξ), t ≥ 0,

where

(49)
ξ = (ξ1, ξ2, ξ3), ξ1, ξ2, ξ3 ∼ U [−1, 1],

a(ξ) = −0.5 + ξ1
2 , b(ξ) = −0.5e+ 2ξ2, τ(ξ) = 1 + 0.5ξ3 + 0.5ξ2

3 .
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Figure 2. Errors for the UDDE (46) using data (45) (left), data (47) (right), and N = 20.

The numerical results in Table 4 and the loglog plots in Figure 3 show the spectral convergence
of the errors computed w.r.t. E20,20 = −0.2632012891827310, V20,20 = 3.164449449949752e −
02.

Table 4
Numerical results for the UDDE (48) using data (49) and N = 20.

P EN,P |EN,P − EN,20| VN,P |VN,P − VN,20|
5 -0.2632012599175010 2.93e-08 0.031644448400687 4.61e-08
10 -0.2632012891819914 7.39e-13 0.031644494499311 1.86e-13
15 -0.2632012891827369 5.88e-15 0.031644494499502 4.47e-15

Finally, let us consider the UDDE of stochastic dimension M = 3 and both discrete and
distributed delays:

(50)
d

dt
y(t, ξ) = a(ξ)y(t, ξ) + b(ξ)y(t− 1, ξ) +

∫ 0

−1
e5θc(ξ) cos(4πθ)yt(θ, ξ) dθ,

where

(51)
ξ = (ξ1, ξ2, ξ3), ξi ∼ U [−1, 1], i = 1, 2, 3,

a(ξ) = −0.5 + ξ1
2 , b(ξ) = −0.5e+ 0.5ξ2, c(ξ) = ξ3.

Again, the results in Table 5 and the loglog plots in Figure 3 suggest a spectral convergence of
the errors computed w.r.t. EN,20 = −2.632012891829257e−01, VN,20 = 3.164449449950082e−
02. Moreover Prob{SN,P < 0} = 0.936 when P = 20.

Table 5
Numerical results for the UDDE (50) using data (51) and N = 20.

P EN,P |EN,P − EN,20| VN,P |VN,P − VN,20|
5 -0.2632012599175010 2.93e-08 3.164444840068725e-02 4.61e-08
10 -0.2632012891819914 6.45e-13 3.164449449931055e-02 1.74e-13
15 -0.2632012891827369 7.10e-15 3.164449449950190e-02 1.67e-16

We conclude the section by testing the approach on two delay systems arising in applica-
tions.
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Figure 3. Errors for UDDE (48) (left), UDDE (50) (right) using N = 20.

5.1. Intravenous glucose tolerance test. Let us consider the DDE modeling the intra-
venous glucose tolerance test for the dynamics of glucose G and insulin I [26]:{

G′(t) = −b1G(t)− b4G(t)I(t) + b7,

I ′(t) = −b2I(t) + b6
τ

∫ 0
−τ G(t+ s)ds.

Let us assume that τ and b6 are uncertain. In order to study the effect on the stability of
the equilibrium (Ĝ, Î), we linearize the equation at (Ĝ, Î) and thus obtain the following linear
UDDE of stochastic dimension M = 2:

(52)

{
d
dty(t, ξ) = −(b1 + b4Î(ξ2))y(t, ξ)− (b4Ĝ(ξ2))z(t, ξ),
d
dtz(t, ξ) = −b2z(t, ξ) + b6(ξ2)

τ(ξ1)

∫ 0
−τ(ξ1) y(t+ s, ξ) ds,

where ξ = (ξ1, ξ2). Let b1 = 0.0226e + 05, b2 = 0.0437e + 05, b4 = 3.80e − 03, and τ(ξ1) =
14.9+6.2ξ1, b6(ξ2) = 0.074e+05+0.052e+05ξ2, with ξ1, ξ2,∼ U [−1, 1]. The numerical results
given in Table 6 show a spectral convergence rate w.r.t. P of the errors computed w.r.t. EN,40 =
7.296148024211029e − 02, VN,40 = 6.955156074497970e − 03. Moreover Prob{SN,40 < 0} =
0.209. By assuming that b4(ξ3) = 0.0437e+05+0.208e+05ξ3, with ξ3 ∼ U [−1, 1], the resulting
UDDE has stochastic dimension M = 3. In this case we get EN,40 = 0.8186, VN,40 = 0.888,
and Prob{SN,40 < 0} = 0.426.

Table 6
Numerical results for the UDDE (52) using N = 20.

P EN,P |EN,P − EN,40| VN,P |VN,P − VN,40|
5 7.29735194437e-02 1.20e-05 6.948428401299340e-03 6.73e-06
10 7.29614955045e-02 1.52e-08 6.955152555470955e-03 3.52e-09
20 7.29614802422e-02 1.00e-13 6.955156074479580e-03 1.84e-14

5.2. Heat exchanger with control. The temperature dynamics of two fluids TA, TB in a
heat exchanger with control can be described by the linear DDEs{

T ′A(t) = −(α+ γ)TA(t) + αTB(t)− γkTB(t− τ),
T ′B(t) = βTA(t)− (β + δ)TB(t) + δTb,
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where α = 1
CARAB

, β = 1
CBRAB

, γ = maca
CA

, δ = mbcb
CB

, and ma,mb are, respectively, the mass
flow rate of the hot and the cold fluid entering the device; ca, cb are their specific heats;
and CA, CB, Rab, and k are suitable constants. Tb is the temperature of the cold fluid which
represents disturbance [10]. The delay τ is θcb

CBδ
with θ a positive constant.

The introduction uncertain parameters γ, δ and linearization around equilibrium give the
following linear UDDE of stochastic dimension M = 2:

(53)

{
d
dty(t, ξ) = −(α+ γ(ξ1))y(t, ξ) + αz(t, ξ)− γkz(t− τ(ξ2), ξ)
d
dtz(t, ξ) = βy(t, ξ)− (β + δ(ξ2))z(t, ξ),

where ξ = (ξ1, ξ2). Let α = 5, β = 3, k = 2.8, and γ(ξ1) = 3 + 0.2ξ1, δ(ξ2) = 1 + 0.5ξ2 with
ξ1, ξ2,∼ U [−1, 1]. Let us fix N = 40. Once more the numerical results in Table 7 indicate a
spectral convergence rate of the errors computed w.r.t. E40,40 = −9.5317923319357e− 02 and
V40,40 = 2.68624339274695e− 02. Moreover Prob{S40,40 < 0} = 6.23e− 01.

Table 7
Numerical results for the UDDE (53) using N = 40.

P EN,P |EN,P − EN,40| VN,P |VN,P − VN,40|
5 -9.531716525436598e-02 7.58e-07 2.686348400478623e-02 1.05e-06
10 -9.531792327475509e-02 4.46e-11 2.686243393194849e-02 4.48e-12
20 -9.531792331935225e-02 4.75e-15 2.686243392746746e-02 2.04e-15

The robustness of the system under the effect of uncertainty in parameters γ, δ can be
improved by varying parameter k in the control loop, as the results in Table 8 show, where
N = P = 40.

Table 8
Numerical results for (53) varying k using N = P = 40.

k 2 2.2 2.4 2.6 2.8 3

Prob{SN,P < 0} 0.98 0.89 0.80 0.71 0.62 0.54

6. Conclusions. We have considered linear DDEs with uncertain parameters, and by re-
formulating them as abstract DDEs we have proved that mean-square stability can be inferred
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from the spectrum of the infinitesimal generator. In order to quantify the uncertainty propa-
gation in the stability indicator, we have combined the pseudospectral differencing approach
with the stochastic collocation method. We have tested it on a number of examples, comput-
ing the low-order moments of the output, i.e., mean and variance. We have experimentally
investigated convergence w.r.t. to P, showing that it is computationally efficient and can rep-
resent an alternative to the Monte Carlo method for small stochastic dimension M. Since an
effective implementation of the method was not the main goal of the paper, we focused instead
on the theoretical aspects as well as on the extension of the IG approach from deterministic
to uncertain DDEs. Computational improvement through the use of sparse and adaptive col-
location points, the derivation of alternative stochastic methods to solve random eigenvalue
problems, the extension of the approach for sensitivity analysis, as well as challenging delay
models are topics for future work. Time-integration methods for UDDEs will also be studied.
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[33] P. Erdős and P. Turán, On interpolation I. Quadrature and mean convergence in the Lagrange-

interpolation, Ann. of Math., 38 (1937), pp. 142-155.
[34] T. Erneux, Applied Delay Differential Equations, Surv. Tutor. Appl. Math. Sci. 3, Springer-Verlag, New

York, 2009.
[35] O. G. Ernst, A. Muglera, H.-J. Starkloff, and E. Ullmanna, On the convergence of generalized

polynomial chaos expansions, ESAIM Math. Model. Numer. Anal., 46 (2012), pp. 317–339.
[36] D. Ghosh and R. Ghanem, Efficient characterization of the random eigenvalue problem in a polynomial

chaos decomposition, Internat. J. Numer. Methods Engrg., 72 (2007), pp. 486–504.
[37] J. K. Hale, Theory of Functional Differential Equations, 2nd ed., Appl. Math. Sci. 3, Springer-Verlag,

New York, 1977.
[38] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Appl. Math.

Sci. 99, Springer-Verlag, New York, 1993.
[39] T. Insperger and G. Stépán, Semi-discretization for Time-Delay Systems: Stability and Engineering

Applications, Appl. Math. Sci. 178, Springer-Verlag, New York, 2011.
[40] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, John Wiley & Sons, New York, 1966.
[41] K. Ito, On the approximation of eigenvalues associated with functional differential equations, J. Differen-

tial Equations, 60 (1985), pp. 285–300.

https://doi.org/10.1137/100815505


STABILITY OF UNCERTAIN DDEs 303

[42] K. Ito, Legendre-tau approximation for functional differential equations, in Distributed Parameter Sys-
tems, Lect. Notes Control Inf. Sci. 75, F. Kappel, K. Kunisch, and W. Schappacher, eds., Springer-
Verlag, Heidelberg, 1985, pp. 191–212.

[43] K. Ito and F. Kappel, A uniformly differentiable approximation scheme for delay systems using splines,
Appl. Math. Optim., 23 (1991), pp. 217–262.

[44] K. Ito and F. Kappel, Two families of approximation schemes for delay systems, Results Math., 21
(1992), pp. 93–137.

[45] K. Ito and F. Kappel, Evolution Equations and Approximations, Ser. Adv. Math. Appl. Sci. 61, World
Scientific, River Edge, NJ, 2002.

[46] K. Ito and R. Teglas, Legendre-tau approximation for functional differential equations, SIAM J. Control
Optim., 24 (1986), pp. 737–759, https://doi.org/10.1137/0324046.

[47] F. Kappel and D. Salamon, On the stability properties of spline approximations for retarded systems,
SIAM J. Control Optim., 27 (1989), pp. 407–431, https://doi.org/10.1137/0327021.

[48] V. B. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations, Mathematics
and Its Applications (Soviet Series) 85, Kluwer, Dordrecht, 1992.

[49] V. B. Kolmanovskii and V. R. Nosov, Stability of Functional Differential Equations, Math. Sci. Eng.
180, Academic Press, London, 1986.

[50] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Math. Sci. Eng. 191,
Academic Press, Boston, MA, 1993.

[51] I. Lasiecka and A. Manitius, Differentiability and convergence rates of approximating semigroups for
retarded functional differential equations, SIAM J. Numer. Anal., 25 (1988), pp. 883–907, https://doi.
org/10.1137/0725050.

[52] O. Le Mâıtre and O. Knio, Spectral Methods for Uncertainty Quantification with Applications to Com-
putational Fluid Dynamics, Springer-Verlag, New York, 2010.

[53] W. Michiels and S. I. Niculescu, eds., Stability, Control, and Computation for Time-Delay Systems:
An Eigenvalue Based Approach, 2nd ed., Adv. Des. Control 12, SIAM, Philadelphia, 2014, https:
//doi.org/10.1137/1.9781611973631.

[54] I. G. Rosen, A discrete approximation framework for hereditary systems, J. Differential Equations, 40
(1981), pp. 377–449.
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