
Epigenomics (Epub ahead of print) ISSN 1750-1911

part of

Review

10.2217/epi.15.106 © Claudio Brancolini

Epigenomics

Review 2016/01/30
8

2

2016

In response to environmental cues, enzymes that influence the functions of proteins, 
through reversible post-translational modifications supervise the coordination of cell 
behavior like orchestral conductors. Class IIa histone deacetylases (HDACs) belong to 
this category. Even though in vertebrates these deacetylases have discarded the core 
enzymatic activity, class IIa HDACs can assemble into multiprotein complexes devoted 
to transcriptional reprogramming, including but not limited to epigenetic changes. 
Class IIa HDACs are subjected to variegated and interconnected layers of regulation, 
which reflect the wide range of biological responses under the scrutiny of this gene 
family. Here, we discuss about the key mechanisms that fine tune class IIa HDACs 
activities.
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The class IIa HDACs
Lysine acetylation is a post-translational 
modification (PTM) that, when exercised 
on histones, plays a key role in marking 
transcriptionally active genomic regions. 
Similarly to other PTMs, acetylation is not 
restricted to chromatin remodeling but it can 
modulate different molecular machineries, 
which control cell cycle progression, actin 
nucleation, splicing and nuclear transport [1].

Lysine-acetylation homeostasis is under 
the supervision of two families of enzymes, 
with antagonistic activities: the histone ace-
tyl transferases and the histone deacetylases 
(HDACs). HDACs repertoire in mammals 
comprises 18 genes that can be grouped into 
five subfamilies on the basis of their sequence 
homology and phylogenetic criteria  [2]. To 
the subclass IIa belong HDAC4, HDAC5, 
HDAC7 and HDAC9 (for an excellent review 
on HDACs see [2]). These proteins share spe-
cific and characteristic features, which are 
highlighted in Box 1.

Class IIa HDACs as part of multiprotein 
complexes are involved in the regulation of 
assorted cellular responses. They generally act 
at the apex of specific genetic programs, by 
influencing the landscape of gene expressed in 
a specific context. Although principally investi-
gated as regulators of transcription and in par-
ticular of myocyte enhancer factors (MEF2) 
transcription factors, alternative partners and 
functions, in particular when localized in the 
cytoplasm, cannot be excluded (for a discus-
sion on some class IIa HDACs partners see [3]).

Similarly to other epigenetic modifiers, 
class IIa HDACs do not recognize the DNA, 
instead by interacting with a selected num-
ber of transcription factors, they are recruited 
on specific genomic regions in a sequence-
dependent manner  [2]. During embryonic 
development, class IIa HDACs are actively 
involved in controlling specific differentia-
tion pathways and tissue morphogenesis. In 
adult tissue they are part of several adaptive 
responses (for recent reviews see [4,5]).
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Not surprisingly, these arenas of copious interven-
tions find correspondence in the multiple options 
available to oversee class IIa HDACs activities. In this 
review, we will discuss about these different options 
and how cells and the microenvironment govern 
class IIa HDACs activities.

Transcription is  the first decision: when  
& where
Paradoxically, although the tissue-specific expression 
of class IIa HDACs was immediately considered a dis-
tinctive trait of this subfamily [4], a limited number of 
studies have addressed the control operated at the level 
of transcription on these genes. Apparently, class IIa 
HDACs transcription is under the control of many 
signaling pathways.

Genomic organization
The complexity of such regulation is mirrored by the 
existence of several transcriptional variants. A sum-
mary of the genomic organization of the different 
class IIa HDACs is shown in Table 1. Concerning 
HDAC4 only a single isoform has been described up to 
now, composed by 26 coding exons and 1 noncoding 
exon (mRNA 8980 bp and ORF/open reading frame, 
3252 bp-long) [6]. The reference sequence of the longer 
RNA encoded by HDAC5 locus is 5324 bp and pro-
duces a 3369 bp ORF that comprises all coding exons of 

its paralog HDAC4 [6]. A second described transcription 
variant of HDAC5 lacks exons 14 and 15 and produces a 
protein of 75 amino acids (aa) shorter, characterized by 
a deficient catalytic domain  [6]. Two different splicing 
isoforms of HDAC7 have been characterized  [6,7]: the 
most common spliced isoform is made up of 25 exons 
and an unspliced isoform that retains the first intron 
after the first ATG [7]. This unspliced mRNA could in 
principle produce two products. A small peptide of 7 
aa and a protein of 22 aa shorter compared with the 
common form [7]. In this case a second ATG proficient 
in translation is used  [7]. The unspliced and spliced 
isoforms differentially influence cell proliferation and 
their generation is regulated during vascular smooth 
muscle cells (VSMCs) differentiation  [7,8]. Curiously, 
the last 612 bp of HDAC7 are antisense respect to the 
SLC48A1 gene, raising the possibility of an involvement 
in controlling the translation of this gene [6].

The canonical isoform of HDAC9 is made up of 
23 coding exons, which are translated into a 1011 aa 
polypeptide  [6,9]. A well-known variant of HDAC9 is 
called MITR or HDAC9ΔCD (HDRP/MITR)  [10]. It 
generates a shorter protein (593 aa) lacking the deacet-
ylase domain. This variant is not a simple truncation of 
full-length HDAC9, because it retains 16 unique resi-
dues codified by intron 12 which are 3′ to the canoni-
cal splice donor site [9]. Despite the truncation, MITR 
represses MEF2-dependent transcription [10].

Box 1. Class IIa histone deacetylases hallmarks.

•	 An extended amino-terminal region involved in the interaction with several partners and different 
transcription factors, which recruits these repressors on specific genomic regions

•	 A carboxy-terminal deacetylase domain that, in vertebrates, is enzymatically ‘inactive’ (or at least inactive vs 
acetyl-lysine)

•	 The co-presence of nuclear localization sequences and of nuclear export sequences, which confers 
environmental signaling regulated nuclear/cytoplasmic shuttling

•	 Interactions with several partners, comprising multiprotein complexes recruiting class I histone deacetylases, 
which confer the deacetylase activity

Table 1. Class IIa histone deacetylases genomic organization.

Histone 
deacetylases 

Localization Extension TSSs SV mRNA Exons Longer ORF

HDAC4 Chr 2q37.3 minus 
strand

353479 7 16 s 6 uns 1 27 
(26c/1nc)

3256

HDAC5 Chr 17q21 minus 
strand

46893 8 17 s 6 uns 2 27 
(26c/1nc)

3369

HDAC7 Chr 12q13.1 
minus strand

37890 17 31 s 5 uns 2 25 2856

HDAC9 Chr 7p21.1 plus 
strand

912579 9 17 s 6 uns 6 23 3033

Extension: Genomic bp; mRNA: Described mature mRNAs; ORF: Open reading frame; S: Spliced; SV: Different splicing variant; TSS: Different 
transcription start site; Uns: Unspliced.
Data were taken from [6].
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Removal of exon 7 during splicing generates a protein 
(HDAC9Δexon7) which is 37 aa shorter and that lacks 
two serines (Ser223 and Ser253) involved in the nuclear 
export and a portion of the nuclear localization signal. 
Another exon that may be removed is the twelfth. The 
corresponding protein is 981 aa long and, since the exon 
12 contains the SUMOylation site, this splice variant 
cannot be SUMOylated  [9,11]. Additional HDAC9 
splicing variants include an isoform lacking both the 
seventh and the twelfth exons  [9] and a deletion of a 
portion of the 15th exon, which generates similarly to 
MITR, a protein deprived of the deacetylase domain [9].

Transcriptional control
Experimentally, the expression of HDAC4 can be 
repressed by mithramycin  [12], which after binding to 
GC-rich sequences displaces the Sp transcription fac-
tors [13]. Binding of Sp1 and Sp3 to the HDAC4 promoter 
was confirmed by EMSA and ChIP experiments and the 
manipulation of Sp1 and Sp3 expression was coupled to 
a parallel variation of HDAC4 expression  [12]. Further-
more, the antineoplastic properties of the turmeric root 
derivative curcumin seem to partially depend on the 
inhibition of the Sp1 action on HDAC4 promoter [14].

Also HDAC7 transcription seems to be under the 
control of Sp1. In particular, it was reported that Sp1 
stimulates the transcription of HDAC7 mRNAs dur-
ing the PDGF-BB-induced differentiation of murine 
embryonic stem cells into smooth-muscle cells 
(SMCs) [15]. HDAC7 expression is similarly induced by 
PDGF-BB also in VSMCs [16].

In addition to Sps, class IIa HDACs transcription 
must depend on additional circuits, operating in a 
tissue-specific manner. For example, HDAC4 expres-
sion is induced after denervation in atrophic muscles, 
where it influences a metabolic shift  [17]. A feed-for-
ward mechanism is involved in such regulation. The 
initial nuclear relocalization of HDAC4 in atrophic 
muscles causes the activation of myogenin, which in 
turn induces HDAC4 transcription, thus alimenting 
the expression of the deacetylase [17].

In bones, HDAC4 is the highest expressed class IIa 
HDACs and it plays an irreplaceable role in the process 
of chondrocyte hypertrophy [18]. During skeletogenesis, 
the levels of HDAC4 increase in murine prehypertro-
phic chondrocytes in the growth plate at E18.5, while 
HDAC4 is not expressed at detectable levels in pro-
liferating chondrocytes, in bones and osteoblasts  [18]. 
The contribution of the transcriptional machinery in 
this switch is unknown.

Similarly, HDAC7 is highly expressed in pre-B cells 
but dramatically downregulated, both at RNA and pro-
tein levels, during lineage conversion to macrophages [19]. 
Although HDAC7 repression is necessary for the tran-

scription of MEF2-target genes, which are important 
for macrophage functions, the mechanisms that control 
HDAC7 levels still need to be investigated [19].

In embryonic stem cells Oct3/4 prevent HDAC4-
mediated repression of stemness, by binding the first 
intron of the deacetylase and thus interfering with 
splicing maturation [20]. This regulation was hypothe-
sized to limit the negative influence of class IIa HDACs 
on stemness, possibly through the repression of Oct3/4 
and Klf4 genes.

Upregulation of class IIa HDACs transcription is 
observed during muscle differentiation, as part of a 
negative-feedback loop, to fine tuning the rate of differ-
entiation. In this case MEF2A, MEF2C and MEF2D 
are able to bind the promoter of Hdac9 and to induce 
its expression [21]. It is not clear at the moment whether 
MEF2s regulate directly also the transcription of other 
class IIa HDACs (see below).

The control operated by MEF2s on class IIa tran-
scription could also be involved in the compensatory 
responses observed in different experimental settings. 
In certain cell lineages when a class IIa HDAC mem-
ber is depleted another member is upregulated [22–24]. 
Once MEF2 get rid of a class IIa HDACs member, 
they might transcribe other members of the family, by 
binding to the proximal promoter (in case of HDAC5 
and HDAC9) or to the enhancer (for HDAC4 and 
HDAC7; see below).

Although few information are available on the tran-
scriptional control operated on class IIa HDACs, the 
ENCODE project disposes of the ChIP-Seq data for 
several transcription factors (TFs) and other elements 
controlling transcription  [25]. Numerous elements 
including TFs, epigenetic modifiers and architec-
tural proteins bind the proximal promoter of HDAC4 
and HDAC7, thus suggesting that transcription of 
these two deacetylases is under intense supervision 
(Figure 1). Less covered are the proximal promoters 
of HDAC5 and of HDAC9. Binding of MEF2 TFs 
was confirmed in the proximal promoter of HDAC9 
(Figure 2). MEF2s bind also the HDAC5 proximal pro-
moter, hence also this deacetylase can be under control 
of MEF2s as part of a negative feedback loop  [24]. In 
general, the complexity of TFs and epigenetic regula-
tors assembling onto the promoters of class IIa HDACs 
testifies the importance of the transcriptional control 
in the homeostasis of this gene family.

Different proto-oncogenes and cell cycle supervisors 
bind the promoters of class IIa HDACs (Figures 1 & 2). 
Interestingly, in support of an involvement of HDAC4 
and HDAC7 in the processes of oncogenic transfor-
mation [26], some proto-oncogenes such as JUN, FOS, 
MYC, which control the G0/G1 transition, bind the 
proximal promoters of these deacetylases  [25]. These 
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Figure 1. Available ChIP-Seq data from eight different cells lines were analyzed for the binding to the proximal promoters (-1/-1000) 
of HDAC4 and HDAC7. Transcription factors (red), epigenetic modifiers (green), basic transcriptional machinery (blue), architectural 
proteins (violet) and their relative region of binding are indicated.
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proto-oncogenes could be responsible for the upreg-
ulation of HDAC7 mRNA observed in response to 
PDGF or serum stimulation [15] and of HDAC4 dur-
ing differentiation of osteoblasts exposed to EGF-like 
ligands  [27]. The ENCODE project finds at least six 
regulators, which bind the immediate early promoter 
of all the four class IIa HDACs: Pol2, TAF1, TBP, 
SP1, YY1, MAX. Not surprisingly, the first three 
belong to the basal transcription machinery. The 
presence in this list of Sp1 confirms the early studies 
above described. Regarding YY1, it usually binds the 

chromatin in close proximity of the transcription start 
site of highly expressed genes [28]. The contemporary 
presence of MAX and YY1 on the promoters of these 
deacetylases suggests that class IIa HDACs could be 
part of the Myc transcription network.

Control of the mRNA stability: miRNAs 
targeting class IIa HDACs in physiological 
contexts
The regulation of the mRNA stability offers another 
strategy to impact on class IIa HDACs. microRNAs 
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targeting these enzymes were initially discovered by 
studying muscular and chondrocyte differentiation. 
During myogenesis MEF2, in addition to the nega-
tive feedback loop involving HDAC9, controls also the 
expression of miR-1, which targets HDAC4 mRNA, 
thus fueling a positive feedback loop  [29,30]. However, 
this model is complicated by the fact that miR-1 can 
also target the 3´UTR of MEF2A [31]. A similar posi-
tive feedback loop is operative during neurogenesis. In 
this case MEF2C promotes the transcription of miR-9, 
which targets the 3´UTR of HDAC4 [32].

In myoblasts the relative abundance of miR-1 and 
miR-133 contributes to the equilibrium between pro-
liferation and terminal differentiation  [29]. In partic-
ular, miR-1 targets the 3´UTR of HDAC4 and pro-
motes myogenesis, while miR-133 destabilizes serum 
response factor and sustains proliferation. Curiously, 
the two miRNAs derive from the same polycistronic 
pre-miRNA and are transcribed together  [29]. Impor-
tantly, in embryonic hearth and in the somite, MEF2 
together with MyoD positively regulate the tran-
scription of both these miRNAs, by binding to an 
miR-1/-133 intragenic enhancer [30].

miR-1 is required for the correct fusion of myoblasts 
but it is also induced by the mTOR pathway and has 
prohypertrophic properties  [33]. miR-1 stimulates also 
chondrocyte hypertrophy again through HDAC4 
inhibition  [34]. Another miRNA upregulated during 
chondrogenesis is miR-365. In particular, miR-365 is 
mechanosensitive and determines the induction of Hh 
and collagen X expression, the latter through the direct 
targeting of HDAC4  [35]. During osteoblast differen-
tiation, HDAC4 is also regulated by miR-29b, which 
promotes osteogenesis [36].

TGF-beta represses myogenesis and muscle differ-
entiation. In C2C12 cells, TGF-beta inhibits muscle 
differentiation, through the repression of miR-206 and 
miR-29 and thereby by augmenting HDAC4 expres-
sion [37]. Importantly, miR-206 represses hypertrophy 
of myocytes in vitro but has no effects in the regulation 
of muscle hypertrophy in vivo, although in both cases 
it causes a massive drop in HDAC4 levels [37]. Among 
the plethora of responses regulated by miR-206, it 
was described that the repression of HDAC4 delays 
amyotrophic lateral sclerosis progression and pro-
motes regeneration of neuromuscular synapses  [38,39]. 
Finally, miR-206 displays strong tumor-suppressive 
properties in gastric cancers, again partially due to 
the repression of HDAC4  [40]. Recently, a cross-talk 
between the NRF2, HDAC4 and miR-1/miR-206 
was described in cancer cells and in vivo tumor mod-
els  [41]. In KEAP-1-deficient lung cancer cells NRF2 
is hyperactive and promotes the reduction of cyste-
ines 667 and 669 in HDAC4 (see below). As a conse-

quence, HDAC4 accumulates in the nucleus [41,42] and 
represses the transcription of miR-1 and miR-206 [41]. 
Among miR-1 and miR-206 targets there are key-genes 
involved in the control of pentose phosphate pathway 
and tricarboxylic acid cycle  [41]. Therefore the activa-
tion of NRF2 in cancer cells, at least in part through 
the HDAC4-mediated repression of miR-1/miR-206, 
reprograms glucose metabolism toward the pentose 
phosphate pathway thus providing the substrates 
needed to support cell growth [41].

Another pathway controlling HDAC4 mRNA sta-
bility, via the same miRNAs (MEF2/miR-1/miR-206/
NOTCH3) is active in myoblasts, where it ensures that 
differentiation takes place with the right timing [43,44]. 
NOTCH3 delays muscle differentiation at least in 
part by promoting the dephosphorylation of MEF2. 
An increase in MEF2 levels is sufficient to overcome 
this inhibition and to directly transcribe miR-1 and 
miR-206. In turn, these miRNAs have a double pro-
differentiative effect since they target both HDAC4 [29] 
and NOTCH3 [43].

Certain studies have proposed a role of HDAC4 
in the pathogenesis of Huntington’s disease  [45,46]. In 
agreement, targeting of HDAC4 by miR-22 shows 
neuroprotective effects  [47]. miR-22 is upregulated 
also during myocyte differentiation and cardiomyo-
cyte hypertrophy  [47]. Its overexpression is sufficient 
to induce cardiomyocyte hypertrophy in vivo, while 
miR-22-null hearts are resistant to stress-induced car-
diac hypertrophy [48]. These phenotypes at least in part 
might be explained by the suppression of HDAC4 [48].

miR-22-mediated silencing of HDAC4 is also 
involved in the pathogenesis of emphysema  [49]. In 
particular, high levels of miR-22 are present in antigen 
presenting cells, derived from a murine model of lung 
emphysema. This upregulation causes a strong decrease 
in HDAC4 levels and the subsequent increase in the 
release of IL-6. IL-6 stimulates the activation of the 
TH17 subset of helper T cells that are responsible for the 
establishment of a state of chronic inflammation [49].

Finally, some miRNAs regulated during embryo-
genesis recognize HDAC4 mRNA, thus abolishing its 
repressive activities on certain loci. For example in the 
fetal brain, levels of the epigenetic regulators methyl 
CpG-binding protein 2 and HDAC4 are kept low by 
presence of miR-483-5p [50].

While in literature the stability of the 3´UTR of 
HDAC4 has been studied in details, little information 
are currently available on the regulation of the other 
class IIa HDACs by miRNAs. Few miRNAs target 
the 3´UTR of HDAC5 in an exclusive manner. One of 
them is miR-2861 [51,52]. Similarly and redundantly to 
miR-1, miR-2861 is a positive regulator of chondrocyte 
hypertrophy and osteoblast differentiation, through 
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Figure 2. Available ChIP-Seq data from eight different cells lines were analyzed for the binding to the proximal 
promoters (-1/-1000) of HDAC5 and HDAC9 (see facing page). Transcription factors (red), epigenetic modifiers 
(green), basic transcriptional machinery (blue), architectural proteins (violet) and their relative region of binding 
are indicated.
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the targeting of HDAC5 and the subsequent activation 
of RUNX2  [51]. miR-2861 also targets the 3´UTR of 
HDAC5 in hamster ovary CHO cells [52]; by decreasing 
HDAC5 levels, miR-2861 enhances the productivity of 
these cells that are frequently used as cell factories for 
the production of recombinant proteins, feeding the 
industrial and economic interest around this miRNA.

Very recent is the finding that HDAC9 dysregula-
tion may be involved in the age-related bone loss [53]. In 
particular, old mice are characterized by an increase of 
miR-188 levels in bone marrow stromal cells. miR-188 
targets HDAC9 and RICTOR expression and the silenc-
ing of these two genes seems to be sufficient to regulate 
the switch between osteogenesis and adipogenesis in 
bone marrow stromal cells [53].

Control of the mRNA stability: miRNAs 
targeting class IIa HDACs in cancer
Interestingly, most of the miRNAs that target the 
3´UTR of class IIa HDACs are repressed in certain can-
cers and display tumor suppressive traits. This observa-
tion is in agreement with the reported oncogenic prop-
erties of class IIa HDACs [23,26]. miR-1 is repressed in 
several cancers, such as lung cancer  [54], hepatocellu-
lar carcinoma (HCC) [55] and chordoma [56]. In these 
contexts its repression is associated to the upregulation 
of FoxP1, MET and HDAC4  [54,55]. A similar upreg-
ulation of HDAC4 was correlated, in several HCC 
samples, with a reduced expression of miR-22  [57]. 
HDAC4 is targeted also by miR-140. In osteosarcoma 
and colon cancer cells this miRNA is associated with 
chemosensitivity [58].

Waldenström macroglobulinemia, a rare B cell low-
grade lymphoma, is characterized by a reduced expres-
sion of miR-9* [59]. This microRNA directly affects the 
levels of HDAC4 and HDAC5. Restoring of miR-9* 
levels provokes the downregulation of class IIa HDACs 
and increases p21/CDKN1A levels  [60,61], thus limit-
ing Waldenström macroglobulinemia cells prolifera-
tion  [59]. An autoregulatory loop, as above described 
for miR-1, involves miR-200a and it is deregulated in 
HCC. miR-200a affects the stability of HDAC4 and, 
in a feedback manner, the deacetylase decreases miR-
200a transcription, by disturbing the binding of Sp1 to 
its promoter. Downregulation of miR-200a enhances 
the proliferation and migration of HCC cells, whereas 
its upregulation inhibits both the responses [62].

Similar correlations between HDAC4, microRNAs 
and tumors have been observed in breast cancer, 
where low levels of miR-125a-5p are bad prognos-

tic markers and the majority of the tumor suppres-
sive properties of miR-125a-5p depends on HDAC4 
suppression [63].

In B cells, unlike the aforementioned cases, the upreg-
ulation of a miRNA (miR-155) that targets HDAC4 
has proliferative effects  [64]. These differences could 
reflect cell lineages specificities or the contribution of 
additional genes under the influence of miR-155.

In tongue squamous cell carcinoma, miR-140-5p can 
influence the expression of a gene cluster that includes 
ADAM10, LAMC1, PAX6 and HDAC7. These genes 
affect cell motility and could be responsible for the 
metastatic phenotype [65]. miR-34 can repress HDAC7 
as well as HDAC1 expression. In breast cancer miR-34 
is significantly downregulated, HDAC1 and HDAC7 
levels are augmented and as a consequence HSP70 is 
deacetylated. The authors proposed that such modi-
fication confers resistance to chemotherapy-induced 
autophagic cell death [66].

A summary of the different microRNAs targeting 
class IIa HDACs is reported in Table 2.

Proteolytic processing or massive 
degradation
Selective proteolysis can influence class IIa HDACs 
activities. During apoptosis, HDAC4 and HDAC7 
are cleaved, respectively, by caspase-3  [67] and cas-
pase-8 [68]. In both cases the cleavage products increase 
the apoptotic rate  [67–69], but only for HDAC4 the 
amino-terminus generated-fragment is competent for 
MEF2 repression [67].

Another selective proteolytic processing was 
observed to modulate the hypertrophic response. In 
cardiomyocytes, protein kinase A (PKA) activation 
causes the cleavage of HDAC4 between residues 201 
and 202, operated by an unidentified protease [70]. The 
generated amino-terminal fragment accumulates in the 
nucleus and it is competent for MEF2 repression but 
it is incompetent for SRF repression [70]. The binding 
site for PKA is present only in HDAC4 (aa 638–651), 
among all class IIa HDACs. The anti-hypertrophic 
effect of PKA is sufficient to antagonize the pro-
hypertrophic actions of CaMKII, without affecting 
cardiomyocyte survival [70].

The ubiquitin-proteasome system (UPS) can also 
affect class IIa HDACs levels. Treatment of HEK293 
cells with ALLN and MG132, two inhibitors not 
entirely proteasome-specific, provokes an increase 
in the levels HDAC4, HDAC5 and HDAC7  [71]. 
In the case of HDAC7, the authors suggested that 
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HDAC7 is degraded mainly in the cytoplasm after its 
phosphorylation-mediated export from the nucleus [71].

The UPS degradation of HDAC7 in the cytoplasm 
was recently confirmed during endochondral ossifica-
tion [72]. Class IIa HDACs are negative modulators of 
endochondral ossification, at the stage of chondrocyte 
hypertrophy, by repressing the activity of RUNX2 and 
MEF2s  [18,73]. HDAC7 is highly expressed in prolif-
erating cells within the growth plate and its postna-
tal deletion increases the proliferation rate, because of 
β-catenin activation. During chondrocytes matura-
tion, HDAC7 is exported into the cytoplasm where it 
is degraded by the UPS and liberates β-catenin [72].

The degradation of HDAC4 and HDAC5 was 
observed in vivo in muscles during fiber type conver-
sion [74]. Contrary to HDAC7, the degradation of these 
class IIa HDACs takes place in the nucleus [74]. Nuclear 
degradation of class IIa HDACs was confirmed in 
untransformed cells exposed to serum starvation  [75]. 
In this case GSK3β phosphorylates HDAC4 on serine 
298 and this phosphorylation acts as a priming event 
required for its ubiquitylation and nuclear degradation 
(Figure 3 and Table 3) [75].

Degradation of class IIa HDACs as an environment 
driven process was observed also in a rat osteoblastic cell 
line. Here, the stimulation of differentiation with para-
thyroid hormone (PTH) causes PKA-dependent phos-
phorylation of HDAC4 on serine 740, its export in the 
cytoplasm and the degradation through a system that is 
lysosomal dependent  [76]. Another set of studies using 
mice knock-out for HDAC4 and HDAC5 indicates that 
during osteoclast differentiation, PTH signaling favors 
MEF2C-dependent transcription by inducing HDAC4 
poly-ubiquitylation and degradation via the E3 ubiquitin 
ligase SMURF2 [77]. Whether these differences reflect a 
specific cellular context still needs to be investigated.

Class IIa HDACs can also be SUMOylated  [11]. 
In particular, HDAC4 becomes SUMOylated on 
lysine 559 by the SUMO E3-ligase RanBP2 on the 
nucleopore complex, during nuclear import  [11]. The 
SUMOylation increases the interaction of HDAC4 
with HDAC3 and therefore its repressive capability [11]. 
Also HDAC5 and HDAC9, but not HDAC7, are 
SUMOylated respectively on lysines 605 and 549 [11]. 
The lack of HDAC7 SUMOylation is probably due to 
the absence of the glutamine rich region [78].

Table 2. miRNAs targeting class IIa histone deacetylase.

miRNA Target Biological process regulated Pathway/feed-back Ref.

miR-1 HDAC4 Myogenesis, chondrocyte hypertrophy, some 
cancers

Induced by MEF2; induced by 
myod after mtor activation

[29–31,33–

34,54–56]

miR-9 HDAC4 Neurogenesis Induced by MEF2C [32]

miR-2861 HDAC4, HDAC5 Chondrocyte hypertrophy, productivity of 
recombinant CHO cell lines

  [51,52]

miR-365 HDAC4 Chondrocyte hypertrophy   [35]

miR-29a HDAC4 Myogenesis   [37]

miR-206 HDAC4 Myogenesis, muscle hypertrophy, amyotrophic 
lateral sclerosis, gastric cancer

Represses by HDAC4 in KEAP-
1 deficient lung cancer cells

[37–41]

miR-22 HDAC4 Neurodegeneration, myogenesis, cardiac 
hypertrophy, hepatocellular carcinoma

  [47–49,57]

miR-483-5p HDAC4 Neurogenesis   [50]

miR-140 HDAC4 Chemosensitivity   [58]

miR-9* HDAC4, HDAC5 Waldenström macroglobulinemia 
pathogenesis

  [59]

miR-200a HDAC4 HCC proliferation and migration Repressed by HDAC4 [62]

miR-125a-5p HDAC4 Breast cancer aggressiveness   [63]

miR-155 HDAC4 B-cells proliferation   [64]

miR-140-5p HDAC7 Metastatization of tongue squamous cell 
carcinoma

  [65]

miR-34 HDAC7 Breast cancer refractoriness to treatment   [66]

miR-188 HDAC9 Osteogenesis   [53]

When available, a pathway of regulation is provided.
CHO: Chinese hamster ovary; HCC: Hepatocellular carcinoma.
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Figure 3. Schematic representation of class IIa histone deacetylases amino-terminal region highlighting the 
principal domains and the ‘canonical’ and ‘not canonical’ 14-3-3 phosphorylation sites see also Table 3. As 
prototype of class IIa we selected HDAC4.
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Class IIa HDACs are not merely targets of SUMO 
E3-ligases, but several evidences indicate that they 
could promote the SUMOylation of some partners. 
They are involved in the activation of Ubc9, the 
SUMO E2-ligase [79]. In this manner, class IIa HDACs 
promote the SUMOylation of MEF2s  [79], of promy-
elocytic leukemia protein [80] and of the nuclear recep-
tors LXRα/NR1H3 and LXRβ/NR1H2  [81]. In the 
last example, SUMOylation stimulates the binding of 
the nuclear receptors to STAT1 and thus the inhibition 
of an inflammatory response [81].

In & out from the nucleus
The control of the nuclear/cytoplasm shuttling is a 
widespread strategy to influence class IIa HDACs 
activities. This regulation provides evident advantages 
in terms of reaction time. A redistribution of class IIa 
between the two compartments is a quick response that 
allows an immediate and reversible adaptation of the 
cells to the new environmental conditions [82–84]. Once 
dephosphorylated and nuclear, class IIa HDACs may 
associate with HDAC3 and N-CoR/SMRT, forming 
the enzymatically active multiprotein complex capable 
of driving epigenetic changes [85].

Since class IIa HDACs exert their function mainly 
in the nucleus, a cytoplasmic accumulation is gener-
ally considered as a negative regulation  [23,86]. For 
example, the nuclear localization prevails in undiffer-
entiated cells, whereas differentiated cells prevalently 
accumulate class IIa in the cytosol [87].

By controlling the availability of the NLS to bind 
importin-α and of the NES to bind CRM1, cells mod-
ulate class IIa HDACs protein localization. Phosphor-
ylation is the PTM used to modulate these bindings 
and hence, to control class IIa subcellular localization 
(Figure 3 & Table 3). CaMKII was initially discovered 
as the kinase that elicits the nuclear export [86]. Today 
we know that various kinases are involved in such task. 
The supervisors of the opposite action (dephosphoryla-
tion and nuclear import) were discovered much later, 

associated to the activity of the phosphatases PP1 and 
PP2A [84,88–89].

The control is operated through the phosphoryla-
tion of at least three (four in HDAC7) serine residues 
conserved among HDAC4, 5, 7 and 9 (HDAC4: Ser 
246, 467, 632; HDAC5: Ser 259, 497, 661; HDAC7: 
Ser 155, 181, 321, 446; HDAC9: Ser 220, 451, 611); 
these phosphorylation events facilitate the binding by 
dimers of 14-3-3 chaperones [90,91].

Binding of 14-3-3 proteins could either mask the 
NLS, thus preventing the nuclear import  [82,83], or 
unmask the NES and thus promoting the direct inter-
action with CRM1  [89], or both conditions (although 
direct evidences of an interaction between HDAC4 
and CRM1 are not available). It is still an open ques-
tion whether the interaction between 14-3-3 proteins 
and class IIa HDACs occurs in the nucleus, in the cyto-
plasm or in both compartments. The interaction with 
14-3-3 proteins would induce a conformational change 
in the deacetylases, which would make them able to 
expose the carboxy-terminal fragment containing the 
NES to CRM1 [86]. A work by Nishino et al. proposed 
that instead, the 14-3-3 proteins act primarily by slow-
ing down the nuclear import of the deacetylases, in 
particular of HDAC4 [83].

In cardiomyocytes, HDAC4 is phosphorylated by 
the splicing isoforms, b and c, of CaMKIIδ and this 
finding demonstrates that the phosphorylation of 
HDAC4 could occur both in the nucleus (isoform b) 
and in the cytoplasm (isoform c). In the first case the 
export is favored whereas, in the second, the nuclear 
import is prevented [92].

Different class IIa HDACs members evidence dif-
ferent propensity to accumulate into the nucleus. 
For example, in transformed fibroblasts HDAC5 
is almost nuclear, while HDAC4 is largely cyto-
plasmic or present in both compartments  [93,94]. 
This observation indicates that within the same 
cell the two HDACs undergo different cycle of 
phosphorylation/dephosphorylation.
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In this review the discussion is focused on three 
families of kinases.

Calcium-regulated kinases
The kinases responsive to calcium are historically 
associated to HDACs nuclear export. CaMKI and IV 
phosphorylate all family members and show preference 
for residues 246 and 467 (in HDAC4 and the cor-
responding aa in other deacetylases), while CaMKII 
preferentially phosphorylates serines 467 and 632 of 
HDAC4  [87,95]. CaMKII phosphorylates and exports 
directly only HDAC4, because only HDAC4 has a 
CaMKII-specific docking site, centered on Arg601 [95]. 
However, since HDAC4 can form heterodimers with 
HDAC5 and 9, but not with HDAC7  [96], the asso-
ciation between HDAC4 and HDAC5/9 renders such 
proteins responsive to CaMKII. In particular HDAC4 
interacts strongly with HDAC5 through the glutamine-
rich region  [96]. The lack of this region in HDAC7 
explains its inability to interact with HDAC4 [78,96].

The calcium-mediated export of class IIa HDACs 
is involved in the regulation of many physiological 
processes, such as myogenesis, hypertrophy and neu-
ronal survival [97–99]. In general, the prosurvival effect 
associated to HDAC4 nuclear export depends on the 
activation of a MEF2-transcriptional response [98].

In cardiomyocytes, the pro-hypertrophic stimuli 
can be transduced by cAMP via the exchange protein 
directly activated by cAMP sensor, which activates 
PLC, H-Ras and CAMKII. This pathway culminates 
in the cytoplasmic accumulation of HDAC4  [100]. 
Exchange protein directly activated by cAMP is a gua-
nosine nucleotide exchange factor for the Rap small 
GTPase. In particular PLC, and the subsequent sig-

naling cascade of the inositol 1,3,5 triphosphate causes 
a release of calcium in the cytoplasm that determines 
the export of HDAC4 via CaMKII, followed by the 
activation of MEF2-dependant transcription [100].

For further and more detailed reviews on 
calcium-mediated class IIa regulation see [5,90,91].

PKD
PKD, a serine/threonine kinase activated by PKC, 
was associated to class IIa HDACs export during 
lymphocyte maturation and thymic selection  [101,102]. 
B-lymphocyte activation, following BCR (B cell recep-
tor) engagement is accompanied by the stimulation 
of PKD1 and PKD3, which in turn phosphorylate 
HDAC5 and HDAC7 on classical 14-3-3 sites. As a 
consequence, HDAC5 and HDAC7 accumulate in the 
cytoplasm and chromatin relaxation can occur  [102], 
thus switching on the MEF2 transcriptional pro-
gram  [103]. Since the two kinases are redundant, in 
order to abrogate the export of HDAC5, a double 
knock-out of PDK1 and PDK3 is required.

PKD1 is also a regulator of T-lymphocyte thymic 
selection [104]. In ‘resting’ double positive CD4+CD8+ 
thymocytes, nuclear HDAC7 maintains switched 
off the MEF2 genetic program and in particular the 
transcription of the proapoptotic nuclear receptor 
Nur77/NR4A1, the main responsible for the negative 
selection. In response to T-cell receptor engagement, 
PKD1 becomes active and phosphorylates HDAC7, 
which is exported into the cytoplasm. This export deter-
mines the activation of MEF2s and the derepression of 
NR4A1 that promotes cell death [101,104].

PKD is also an important inducer of cardiac hyper-
trophy via phosphorylation and export of HDAC5 and 

Table 3. Main kinases involved in class IIa histone deacetylases phosphorylation.

Kinase HDAC4 HDAC5 HDAC7 HDAC9

CaMKI, IV 246, 467 259, 497 155, 181, 321 220, 451

CaMKII 467, 632 – – –

PKD1 246, 467, 632 259, 497, 661 155, 181, 321, 446 220, 451, 611 (?)

C-TAK1, EMK 246 259 155 220 (?)

AMPK 246, 467 (?) 259, 497 ? ?

SIK1 246, 467 259, 497 155, 321 (?) 220, 451 (?)

SIK2 246, 467, 632 259, 497, 661 155, 321, 446 220, 451, 611 (?)

PKA 265, 266, 740 278, 279 – 243

DIRK1B 266 276   240

GSK3β 298, 302      

AURKB 265 278   242

CDK5 – 279 – –

Phosphorylation together with the residues targeted.
?: Not defined.
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the relative derepression of MEF2  [105]. Mice with a 
cardiac-specific deletion of PKD1 show diminished 
hypertrophy in response to pressure overload or chronic 
adrenergic and angiotensin II signaling. Several selec-
tive inhibitors of PKD are now under clinical stud-
ies for the treatment of malignant cardiac hypertro-
phy [105]. PKD1 seems to be an inducer of hypertrophy 
also in VSMCs. Here, treatment with the hypertrophic 
inducer angiotensin II stimulates the phosphorylation 
of HDAC5 via PKD1  [106]. Similarly, angiotensin II 
through PKD1 triggers HDAC4 (serines 246/632), 
HDAC5 (serines 259/498) and HDAC7 (serine 155) 
phosphorylation in intestinal epithelium [107].

Finally, exogenous expression of PKD1 in type II 
skeletal muscle fibers promotes the phosphorylation 
and the nuclear export of HDAC4 and HDAC5, the 
subsequent activation of MEF2 TFs and the fibers-
switch from fast/glycolytic into red oxidative (slow-
twitch type I)  [108], in accordance to the phenotype 
observed in transgenic MEF2C-VP16 mice [74].

LKB1-ARK family
The tumor suppressor kinase LKB1 regulates different 
downstream kinases, which belong to the ARK fam-
ily (AMP-related kinases) and includes AMP-activated 
protein kinase (AMPK), microtubule affinity regulat-
ing kinases (MARKs), SNF-related kinases (SNRKs), 
NUAKs (NUAK family, SNF1-like kinases), BR 
serine/threonine kinases and salt inducible kinases 
(SIKs) [109].

Early studies reported that MARK kinases phos-
phorylate class IIa HDACs constitutively on a con-
served residue (S159 in HDAC7, S246 in HDAC4, 
S259 in HDAC5). This base-line phosphorylation 
facilitates the subsequent signal-dependent phos-
phorylation by other kinases of the remaining resi-
dues required for 14-3-3 binding [110]. MARK/PAR-1 
kinases are involved in the determination of polarity. 
During early embryogenesis they control gastrula 
polarization in Drosophila [111] and the first asymmet-
ric division in Caenorhabditis elegans  [112]. Scenarios 
where the nuclear or cytoplasmic activities of class IIa 
HDACs are still unexplored.

The AMPK
The AMPK is activated under conditions of metabolic 
stress and ATP depletion  [109]. Some evidences corre-
late AMPK activity to HDAC4 and HDAC5 cytosolic 
accumulation  [113,114]. In skeletal muscle, the stress 
induced by physical exercise is sufficient to trigger the 
export of HDAC4 and 5 and this relocalization cor-
relates with the activation of AMPK and CaMKII [115]. 
In myotubes the AMPK agonist AICAR (5-amino-
imidazole-4-carboxamide-1-beta-D-ribofuranoside) 

triggers HDAC5 phosphorylation at S259 and S498 
and association with 14-3-3 isoforms. HDAC5 phos-
phorylation determines its detachment from the 
GLUT4 promoter and the concomitant increase in 
GLUT4 expression [116]. This metabolic regulation can 
be supervised also by other kinases such as PKDs [117].

The SIK subfamily
The SIK-subfamily is composed of three isoforms: 
SIK1, SIK2 and SIK3, conserved from C. elegans to 
humans. SIK1 expression is highly induced in adrenal 
glands of high-salt diet-fed rats, whereas SIK2 is highly 
expressed in adipose tissue. By contrast, SIK3 is ubiq-
uitously expressed  [118]. Several studies have reported 
correlations between SIKs activities, class IIa HDACs 
relocalization and transcriptional changes [119–121].

The SIK-class IIa HDAC axis is a critical compo-
nent of the adaptation to fasting in liver  [22]. After 
feeding, the release of insulin stimulates in liver and 
skeletal muscle, the synthesis of glycogen and in adi-
pocytes the storage of energy reserves. These responses 
involve the engagement of Akt and culminate in the 
phosphorylation-mediated inactivation of PGC-1α 
and FOXO1/3 [122]. The FOXO TFs are also negatively 
regulated by acetylation, which promotes their export 
into the cytoplasm. Here, the SIK-class IIa HDACs 
axis becomes protagonist.

In mouse hepatocytes, in response to insulin SIK2 
mediates phosphorylation, 14-3-3 binding and cyto-
solic accumulation of HDAC4. Accordingly, the fast-
ing hormone glucagon, through the PKA-mediated 
inhibition of SIK2 favors dephosphorylation and 
nuclear accumulation of HDAC4 [123].

Inhibition of LKB1/AR kinases is followed by the 
nuclear relocalization of class IIa HDACs, a key-event 
in order to promote the activation of the gluconeo-
genesis in the liver. Nuclear class IIa HDACs associ-
ated with HDAC3 in order to deacetylate and activate 
FOXO1/3. Then, FOXO1/3 stimulate the transcription 
of key enzymes for the gluconeogenesis [22].

In the adipose tissue, modulation of SIK2 influ-
ences HDAC4 phosphorylation through a multipro-
tein complex, which comprises also CREB-regulated 
transcription co-activator 2 and 3, as well as PP2A. 
This complex is under the supervision of PKA and is 
involved in the regulation of GLUT4 transcription and 
glucose uptake [124].

Recently, HDAC4 has been described as an 
immune-metabolic sensor. In particular under over-
nutrition, leptin reduces inflammatory gene expression 
via HDAC4 nuclear accumulation  [125]. PKA-depen-
dant inhibition of SIKs (following AMPc increase) 
represents the operative arm that allows the HDAC4-
dependent repression of NF-κB activity and of proin-
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flammatory genes in M2 macrophages  [125]. Because 
obesity promotes macrophage infiltration in white 
adipose tissues and liver, inflammation and subse-
quent insulin resistance, the negative effect of HDAC4 
on NF-κB suggests for a protective role against obe-
sity  [125]. In agreement, HDAC4 variants have been 
associated with both body mass index and waist cir-
cumference [125] and its expression is downregulated in 
the fat from obese subjects [126].

The involvement of the HDACs-SIKs axis in the 
control of energy supply and metabolism seems to be 
conserved during evolution. In Drosophila HDAC4 
nuclear accumulation in the fat body cells is super-
vised by the LKB1-SIK3 signaling, under the super-
vision of different dietary conditions. SIK3 controls 
lipid metabolism by limiting HDAC4-mediated 
FOXO activation and ATGL/Bmm transcription (adi-
pose triglyceride lipase). In the control of lipid metab-
olism HDAC4 behaves as a lipolytic factor [127].

SIKs can monitor class IIa HDACs activities also 
independently from metabolism. In muscle cells, 
SIK1 phosphorylates class IIa HDACs thus promoting 
their export into the cytoplasm  [119,128]. In this con-
text, SIK1 could integrate cAMP signaling with the 
myogenic program  [129]. In C. elegans the expression 
of chemoreceptors gene in certain chemosensory neu-
rons is under the regulation of a SIK member (KIN-
29), which controls the localization of the class IIa 
HDAC counterpart (HDA-4). This control releases 
the repressive influence of HDA-4 on MEF2-target 
genes. In the circuit participate also the phosphatase 
Calcineurin, which instead promotes HDA-4 nuclear 
accumulation and chemoreceptors repression [130].

Finally, in a detailed study performed in HEK293 
cells, Walkinshaw  et  al. evaluated 13 kinases of the 
LKB1 family (MARK1, MARK2, MARK3/C-
TAK1, NUAK1/ARK5, NUAK2/SNARK, SNRK, 
NIM1) for the regulation of class IIa HDACs subcel-
lular localization  [94]. They demonstrated that only 
the ectopic expression of SIK2 or SIK3 but not of 
SIK1 causes a dramatic cytoplasmic relocalization 
of HDAC5 and HDAC9 and, at a lesser extent, of 
HDAC4 and HDAC7. For the cytoplasmic relocaliza-
tion of class IIa HDACs the catalytic activity of SIK2 
is required, while the catalytic activity of SIK3 is dis-
pensable. Moreover, while SIK2 promotes the nuclear 
export through the phosphorylation of 14-3-3 consen-
sus sites, SIK3 is effective also on the Ser/Ala mutants 
in the 14-3-3 binding sites of HDAC4. This result 
proves that the SIK3-mediated export is both kinase 
activity and classical 14-3-3 binding sites indepen-
dent [94]. Finally, while SIK2 causes the derepression 
of MEF2 and stimulates myogenesis in C2C12 cells, 
SIK3 is incompetent toward MEF2 activation  [96]. 

Whether these differences reflect cell lineage specific 
features or others conditions is currently unknown.

The large number of studies on the LKB1-SIKs-
class IIa HDACs axis underlines the extreme flexibil-
ity of the class IIa HDACs, and in particular of the 
nuclear/cytoplasmic regulation. By a simple operation 
(nuclear exit) it is possible to reset the transcriptional 
landscape of cells by both inducing MEF2-target 
genes and repressing FOXO-target genes.

Phosphatases & nuclear import
More than 15 years ago it was demonstrated that 
Calyculin A, an inhibitor of the phosphatases PP1 
and PP2A, promotes the nuclear export of HDAC4 
and reduces its interaction with importin-α  [82]. 
Several years later the contribution of the PP2A 
complex was proved. PP2A is able to bind the 
amino-terminal portion of class IIa HDACs, in corre-
spondence of the NLS1 and to dephosphorylate these 
regulators [84,88,89].

In HDAC4 two residues have been proposed as tar-
gets of PP2A: serine 246 and 298. Serine 298 is also 
regulated by GSK3β and constitutes a signal for poly-
ubiquitylation and degradation [75]. The PP2A-medi-
ated dephosphorylation may therefore also protect 
HDAC4 from the UPS-mediated nuclear degradation.

The PTH-related peptide suppresses MEF2 and 
RUNX2 transcriptional activities and chondrocyte 
hypertrophy, via PP2A, which dephosphorylates 
HDAC4 at serine 246 [89]. PP2A is sufficient to trig-
ger the import of HDAC4 and inhibition of PP2A, in 
U2OS cells, causes the cytoplasmic relocalization of 
the deacetylase [89].

Ataxia telangiectasia is a complex syndrome char-
acterized by neurodegeneration and epigenetic repro-
gramming and caused by mutations of the ATM 
kinase  [131]. Since ATM phosphorylates and inhib-
its PP2A, ataxia telangiectasia is characterized by 
HDAC4 nuclear accumulation in neurons. Here, 
HDAC4 represses MEF2 and CREB thus inducing 
heterochromatinization and neurodegeneration [132].

The myosin phosphatase complex, consisting of 
PP1β and MYPT1, is necessary to repress NUR77. 
This complex is able to dephosphorylate HDAC7, 
thus stimulating its nuclear relocalization  [94,133]. In 
smooth muscles, the myosin phosphatase dephos-
phorylates the myosin light chain, thus inducing 
muscle relaxation and it is inactivated following the 
phosphorylation of MYPT1 on threonine 696  [134]. 
Kinases regulated by the GTPase RhoA are able to 
phosphorylate and inhibit myosin phosphatase on 
this residue [134] and they are also responsible for the 
nuclear export of HDAC5 [134]. It is therefore possible 
that RhoA activation could neutralize MYPT1, thus 
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resulting in the hyperphosphorylation and export of 
HDAC5 [134].

PP1α is another phosphatase capable of mediat-
ing HDAC4 nuclear import. Its action can overcome 
the antagonist activating effect of calcineurin on 
MEF2 [135].

The regulation of class IIa HDACs phosphoryla-
tion is a complex issue, not limited to 14-3-3 binding 
sites but involving additional residues. In the case of 
HDAC5, at least 17 phosphorylation sites have been 
characterized, 13 of which do not encompass the 
consensus for 14-3-3 proteins [136]. In particular, the 
phosphorylation of serine 279 is essential to induce 
the nuclear import of the protein. This residue is con-
served among all class IIa HDACs, with the excep-
tion of HDAC7 [136]. Curiously, this residue was pre-
viously characterized as an Mirk/DirkB target, but in 
this case its phosphorylation causes the nuclear export 
of class IIa HDACs  [137]. Additional kinases respon-
sible for HDAC5 Ser279 phosphorylation have been 
identified in PKA and CDK5  [138,139]. PKA retains 
HDAC5 in the nucleus by interfering with 14-3-3 
binding, thus causing suppression of MEF2-depen-
dant cardiac fetal gene expression and cardiomyocyte 
hypertrophy  [138]. On the opposite, CDK5 promotes 
HDAC5 nuclear export in neurons. In this con-
text, cocaine administration activates PP2A, which 
dephosphorylates Ser279 and determines the nuclear 
import of HDAC5 [139]. In the nucleus HDAC5 can 
repress genes regulated by cocaine [139].

The opposite influence on HDAC5 subcellular 
localization by the phosphate group on serine 279 is 
puzzling. Additional substrates of these kinases could 
explain the paradox. It is evident that further studies 
are necessary to clarify this point.

14-3-3 independent regulation of 
subcellular localization
There are some indications about a 14-3-3-indepen-
dent control of class IIa nuclear/cytoplasmic shut-
tling. An example concerns the import regulated by 
TRX1 (thioredoxin 1) in cardiomyocytes [140]. TRX1 
is able to recruit HDAC4 in the nucleus and to inhibit 
the activity of some pro-hypertrophic factors such as 
MEF2 and NFAT  [140]. This adjustment of HDAC4 
‘shuttling’ is tissue-specific and mediated through the 
control of the redox state of two cysteines [140].

Cardiac hypertrophy is characterized by an increase 
in intracellular reactive oxygen species (ROS)  [90]. 
Under oxidizing conditions, a disulfide bridge 
between the cysteines 667 and 669 is formed  [140]. 
Cysteine 667 lies in the binding site for the ‘structural’ 
zinc ion [141,142]. In a reducing environment, cysteines 
667 and 669 and the zinc ion bound to its binding 

site leads to a protein folding that brings the struc-
tural zinc-binding domain in contact with the NES. 
In this manner the CRM1 binding site is masked and 
the nuclear export is blocked. In the presence of oxi-
dants, cysteines 667 and 669 are oxidized, the zinc is 
no longer coordinated, the NES is exposed to CRM1 
and the protein is exported into the cytoplasm  [140]. 
TRX1 is able to attenuate cardiac hypertrophy in 
part by restoring the cytoplasmic reducing environ-
ment. Furthermore, after the binding to TBP-2, 
TRX1 reduces DnaJB5 (Hsp40), which in this state 
can interact with HDAC4. Next the complex TRX1-
TBP-DnaJB5 reduces the disulfide bridge 667–669 
of HDAC4. This intervention is sufficient for deter-
mining the nuclear accumulation of HDAC4, in spite 
of its phosphorylation status  [140,143]. Similarly to 
HDAC4, also HDAC5 has been recently described as 
a redox-sensor in adult heart [144].

As discussed above, the AMPc through PKA owns 
different options to influence class IIa HDACs subcel-
lular localization. An additional opportunity consists 
in the PKA-promoted (clearly indirect) dephosphory-
lation of serines 265/266 in HDAC4, independently 
from the above-described action on SIK2. These 
residues are conserved in HDAC5 (278/279) and in 
HDAC9 (242/243) and lie within the NLS [94]. Their 
dephosphorylation favors class IIa nuclear accumula-
tion and the subsequent repression of MEF2D and 
myogenesis  [138]. However, since PKA phosphory-
lates also MEF2D  [145], it is difficult to discrimi-
nate between the repressive activity of PKA due to 
the direct phosphorylation of MEF2s or the nuclear 
import of a class IIa HDACs.

During the cell cycle, HDAC4, HDAC5 and 
HDAC9, but not HDAC7 can be phosphorylated by 
Aurora B kinase, respectively on Ser265, Ser278 and 
Ser242. These phosphorylations allow the relocaliza-
tion of the deacetylases at the mitotic midzone during 
late anaphase, and in the midbody during cytokine-
sis  [146]. This phosphorylation-dependent relocaliza-
tion abolishes the interaction with the NCoR com-
plex, thus limiting part of class IIa deacetylase 
activity [146].

Overall, the regulation of class IIa HDACs func-
tions during the cell cycle is largely unexplored, 
although it could provide important hints on the rela-
tionships between this gene family and the control of 
proliferation.

Conclusion
In this review we have discussed about the multiple 
options that cells have evolved to control class IIa 
HDACs. Although the phosphorylation-dependent 
control of nuclear cytoplasmic shuttling takes a chief 
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role, additional opportunities are emerging such as 
the control of transcription and translation. In sum-
mary, cells dispose of different operating layers to 
influence class IIa HDACs activities. This complexity 
reflects the astonishing number of biological processes 
under the supervision of this gene family. It seems that 
each control is sculptured under the needs of specific 
conditions.

Future perspective
Although studies on class IIa HDACs are intense, 
there are several important questions, which still 
need to be answered, for example, cytoplasmic versus 
nuclear functions, redundancy, compensatory regula-
tive circuits, transcriptional repression and activation, 
histones versus transcription factors modifications and 
many others issues. Investigation on class IIa HDACs 
will certainly proceed in the next future and addi-

tional pieces to this intricate puzzle will be step by step 
added.
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Executive summary

•	 Class IIa histone deacetylases (HDACs) are exposed to multilayered levels of controls, reflecting the multiple 
biological responses under their supervision.

Transcriptional control
•	 Few data are available about the transcriptional machinery responsible for class IIa HDACs expression.
•	 Interrogation of ENCODE database indicates that several transcription factors (TFs) including oncogenes and 

cell cycle regulators bind the proximal promoter of class IIa HDACs.
•	 HDAC4 and HDAC7 proximal promoters are exposed to intense TFs and epigenetic modifiers binding.
Translational control
•	 Different microRNAs can influence class IIa HDACs translation.
•	 In some cases, class IIa HDACs are part of feedback circuits controlling the transcription of their own regulative 

microRNA.
•	 Further studies are necessary to clarify the effective contribution of class IIa HDACs to the biological role of 

the specific microRNAs.
Proteolytic control
•	 Class IIa HDACs levels can be regulated by the ubiquitin-proteasome system and further studies are necessary 

to define the E3 ligases involved.
•	 Specific proteolytic cleavages can also influence class IIa HDACs activities in a member specific fashion.
•	 Although the involvement of caspases during apoptosis is well known, additional proteases operating in 

different circumstances may exist.
Phosphorylation, 14-3-3 binding & subcellular localization
•	 The most common and widespread mechanism to influence class IIa HDACs activities.
•	 Several environmental conditions and signaling pathways use this post-translational modification for 

influencing class IIa HDACs.
•	 A fast response that allows an immediate and reversible adaptation of the cells to the new environmental 

conditions.
14-3-3 independent regulation of subcellular localization
•	 Less characterized, nevertheless experimental evidences indicate that 14-3-3 independent control of class IIa 

HDACs does exist.
•	 Up to now the best characterized mechanism involves the redox control of a pair of cysteine residues lied in 

the deacetylase domain of HDAC4.
Future perspective
•	 Future studies on class IIa HDACs will certainly provide additional key information about this important gene 

family. The mysterious change in the catalytic site occurred with the evolution of vertebrates is a challenging 
and fascinating question. Undoubtedly, the plethora of biological responses supervised by class IIa HDACs 
guarantees that, thanks to these studies, new tools and opportunities for the treatment of different human 
diseases will be established.
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