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Dear Editor, 
I would like to submit to your attention the manuscript entitled “Exploitation of κ-carrageenan 
aerogels as template for edible oleogel preparation” (Lara Manzocco, Fabio Valoppi, Sonia 
Calligaris, Francesco Andreatta, Sara Spilimbergo, Maria Cristina Nicoli for consideration for 
publication on Food Hydrocolloids.
Oleogels result from liquid oil entrapment in a three-dimensional network without modifying the 
chemical characteristics of the oil. Although oleogelation is a recent research topic, the possibility 
to structure oil into self-standing structured solids has received considerable attention in the last 
decade due to their high potential number of applications of food area. 
In the current research, oleogels were prepared by using k-carrageenan aerogels as template. In 
particular, hydrogels containing increasing concentration of k-carrageenan were firstly converted 
into alcoholgel and subsequently dried by using supercritical CO2 to obtain aerogels. The latter 
were porous and structurally stable materials with high mechanical strength. Aerogels showed a 
good capacity of oil absorption. The maximum oil loading capacity (about 80 %) was obtained for 
aerogel containing the highest k-carrageenan content. Thus, it can be concluded that aerogels based 
on the structuring of water soluble polymers have potential as material for oil absorption and 
delivery. 
We would greatly appreciate your comments on the paper.

Best regards
Sonia Calligaris



Dear Editor,
Please find the revised version of our manuscript (FOODHYD_2017_271). We have endeavoured to 
take into account or to respond to the Reviewer’s comments as indicated below.

We hope that this response is satisfactory and that the manuscript will be suitable for publication in 
Food Hydrocolloids.

Best regards,
Sonia Calligaris

Reviewer 1

This work is interesting and worthy of publication but the absence of key references makes this 
reviewer concerned about the work.  Firstly, the foam-templating approach was first reported by 
Patel et al. in 2013, are referenced by the authors. The approach was established there and shown to 
work. The authors extend the approach to Xanthan gum here. However, for some reason, the authors 
fail to quote key recent references on foam-templated cellulosic xerogels used to bind oil and stabilize 
peanut butter and cookie creams, both published in Food Hydrocolloids in 2016. Copies are enclosed 
with this review.  

We thank the reviewer for his/her appreciation of the topic. We also agree with the reviewer that the 
reference from Tanti et al. (2016) should have been properly quoted. For this reason we added it in 
the text (lines 59-61). It is our feeling that the proposed approach is different from that reported in 
the literature since we considered oil absorption by aerogels and not by xerogels, as performed by 
Patel et al. 2013 and the two papers of Tanti et al., 2016. Please note that Xanthan gum was not used 
in our experiments, which were developed by using k-carrageenan.

Moreover, the authors also discuss oil binding as a two-step process, without quoting another key 
reference which has previously used this approach to model oil binding in oleogel systems (Blake et 
al, 2014).  

Blake et al. (2014) was actually cited in the R&D session (line 404). As suggested by the reviewer, 
mention to this paper was also added in the M&M section (line 267).

Reviewer 2

I congratulate for this very new approach of oleogel preparation. Although it seems hard to apply 
for actual productions, it is quite novel an approach. Furthermore, the study was well planned and 
carried out. It is worth to be published.

We thank the reviewer for his/her comments. As the reviewer pointed out, more work needs to be 
done to apply this approach for an actual production. Mention to this need was reported in the 
conclusion section of the manuscript (lines 449-451).

Reviewer 3

The paper contains a sufficient work in term of analysis of the k-carrageenan aerogels and the 
subsequent conversion into oleogels. The authors applied supercritical carbon dioxide drying to 
obtain the aerogels. They converted the hydrogels with increasing concentration (0.4, 1.0, and 2.0% 
w/w) of k-carrageenan into alcoholgel and afterwards they dried them.



In the introduction the authors stated that supercritical carbon dioxide drying shown several 
advantages in terms of product quality compared to air and freeze drying. These assumptions could 
be accepted considering that several studies have been published so far claiming the potential of 
supercritical carbon dioxide drying. However, it is completely unacceptable the lack of the 
experimental design presented in this study. The authors just applied one pressure and one 
temperature (11 MPa and 45 °C) to obtain aerogels at different concentrations of k-carrageenan. 
How did they choose this conditions? As the process is so innovative, I suggest to test several 
conditions of pressure and temperature to investigate the effect of the process on the microstructure 
and oil absorption of the product.
In materials and methods, the authors wrote that the drying was performed “….at 3.5 NL/min using 
a micrometric valve. After 3 h of drying, the outlet flow rate was increased to 5.0 NL/min for 
additional 4 h, maintaining the same pressure. Finally, flow rate was increased to 6.0 NL/min for 1 
h.” Why did they use this drying procedure? Did they find references supporting it? Probably no 
differences (or significant differences) could be observed drying at 3.5 NL/min or 6.0 NL/min or 
combining several carbon dioxide flow rates. But the authors needed to prove it.

We thank the reviewer for his/her suggestions and comments. The conditions adopted in the 
experiments were selected based on different considerations:

Pressure and temperature above the critical point of carbon dioxide were selected based on pilot plant 
performance. Flow rate program was selected on the basis of preliminary trials. The latter were 
performed in a wide range of flow rate from 2.0 to 8.0 NL/min. The adopted program was selected 
since associated with short drying time while guarantee the structural integrity of the sample. 
Excessive flow rates in the initial part of the drying process actually produced large cracks on the 
sample surface and were discarded. By contrast, initial flow rate was kept low and progressively 
increased up to the final steps of drying. This information was added in the manuscript (lines 140-
143 and lines 151-156)  

In materials and methods, Table 1 could be erased and included in the text (paragraph 2.2 hydrogel 
preparation).

We agree with the reviewer and text was modified accordingly (lines 123-125).

In results and discussion, it was stated that “The removal of ethanol resulted complete after 6, 7, and 
8 h of drying for samples containing 0.4, 1.0 and 2.0 % (w/w) k-C.”
How did the authors assume that drying was complete after 6, 7, and 8 h? What did they measure? I 
suggest to include the drying kinetics to show the efficiency of the process at different conditions of 
pressure and temperature. An optimization of the process parameters will highly increase the 
scientific value of the manuscript.

The drying kinetics were assessed recording the evolution of ethanol concentration over time using a 
digital alcoholmeter (see Material and Method section, lines 160-161). Drying kinetics were added 
as supplementary information (Figure S1).
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25 Abstract

26 In the current research, oleogels were prepared by using k-carrageenan aerogels as template. In 

27 particular, hydrogels containing increasing concentration (0.4, 1.0, and 2.0% w/w) of k-

28 carrageenan were firstly converted into alcoholgel and subsequently dried by using supercritical 

29 CO2 to obtain aerogels. The latter were porous and structurally stable materials with high 

30 mechanical strength. The polymer content affected the aerogel structure: increasing the initial 

31 k-carrageenan concentration a coarser structure with larger polymer aggregates was obtained. 

32 However, the aerogel obtained at intermediate polymer concentration resulted the firmest one, 

33 probably due to the formation of a less aerated and more isotropic structure. Aerogels 

34 demonstrated a reduced capacity of water vapor sorption, remaining glassy and porous at room 

35 temperature at relative humidity lower that 60%. Aerogels showed a good capacity of oil 

36 absorption. The maximum oil loading capacity (about 80 %) was obtained for aerogel 

37 containing the highest k-carrageenan content. Thus, it can be concluded that aerogels based on 

38 the structuring of water soluble polymers have potential as material for oil absorption and 

39 delivery. 

40

41

42 Keywords: oleogel; hydrogel; κ-carrageenan; structure; supercritical CO2 drying; sorption 

43 kinetics 

44
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45 1. Introduction

46 Oleogels result from liquid oil entrapment in a three-dimensional network without modifying 

47 the chemical characteristics of the oil. Although oleogelation is a recent research topic, the 

48 possibility to structure oil into self-standing structured solids has received considerable 

49 attention in the last decade since they have been proposed as hydrogenated/saturated fat 

50 replacers, oil migration inhibitors, oil binders, and oxidation protective systems (Da Pieve, 

51 Calligaris, Panozzo, Arrighetti, & Nicoli, 2011; Patel et al., 2014; Stortz & Marangoni, 2013; 

52 Yilmaz & Ogutcu, 2015; Zetzl, Marangoni, & Barbut, 2012; Zulim Botega, Marangoni, Smith, 

53 & Goff, 2013). 

54 The simplest approach to oil gelation is based on the formation of crystalline networks by self-

55 assemble lipid additives (Co & Marangoni, 2012) or by networking of chemically modified 

56 biopolymers such as ethyl cellulose and hydrolyzed chitin (Co & Marangoni, 2012; Laredo, 

57 Barbut, & Marangoni, 2011; Nikiforidis & Scholten, 2015). However, oleogels could also be 

58 generated by absorption of liquid oil into a porous template made of a dried polymeric network 

59 of gelatin, xanthan gum, methylcellulose and hydroxypropyl methylcellulose (Patel & 

60 Dewettinck, 2016; Patel, Schatteman, Lesaffer, & Dewettinck, 2013; Tanti, Barbut, & 

61 Marangoni, 2016a, 2016b). To this aim, the polymer is pre-hydrated to form a hydrogel. The 

62 latter is then dried to block the polymer network and obtain a porous material that can uptake 

63 oil. However, this procedure is hardly applied due to structural collapse during hydrogel drying.  

64 Traditional air drying is actually unable to prevent hydrogel collapse due to the formation of 

65 liquid-vapor menisci in the gel pores. This produces a capillary pressure gradient that causes 

66 pore collapse, leading to xerogel materials with limited oil sorption capacity (Scherer & Smith, 

67 1995). Similarly, freeze-drying of hydrogels causes intense network stress due to formation of 

68 crystals before drying. As a result, cryogels undergo internal breakage of polymer network and 

69 surface cracking (Garcia-Gonzalez, Camino-Rey, Alnaief, Zetzl, & Smirnova, 2012). To 

70 prevent pore collapse phenomena and maintain as much as possible the hydrogel network 
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71 architecture, a two-step procedure may be exploited: firstly, solvent exchange is carried out so 

72 that water in the hydrogel is replaced by ethanol to obtain an alcoholgel; secondly, ethanol is 

73 extracted from the alcoholgel by supercritical carbon dioxide drying to obtain an aerogel 

74 (Garcia-Gonzalez et al., 2012). Supercritical drying prevents structure collapse since it does not 

75 involve vapor transitions nor intense surface tensions in the pores. The resulting aerogels are 

76 thus low density and highly porous materials (Gesser & Goswami, 1989; Hrubesh & Poco, 

77 1995). 

78 Most aerogels are inorganic, being often made of silica, metal oxides or polystyrenes (Du, Zhou, 

79 Zhang, & Shen, 2013; Gesser & Goswami, 1989; Pierre & Pajonk, 2002). They  are lightweight 

80 materials with high mechanic strength and excellent thermal insulation and dielectric properties 

81 (Pierre & Pajonk, 2002). However, according to Pierre & Pajonk (2002), not only inorganic 

82 polymerizing agents but all organic biopolymers are potential candidates to form aerogels. To 

83 this regard, the preparation of aerogels from different polysaccharides, including starch, 

84 cellulose, pectin, and carrageenan, have been recently reviewed by Mikkonen, Parikka, Ghafar, 

85 & Tenkanen (2013) and Ivanovic, Milovanovic, & Zizovic (2016). These materials have been 

86 proposed for packaging purposes but also for encapsulation and controlled release of drugs, 

87 aroma or antioxidants. They have also been shown to quickly absorb aqueous solutions and 

88 surfactants by capillary forces, due to the open pore structure and large surface area (Escudero, 

89 Robitzer, Di Renzo, & Quignard, 2009; Mallepally, Bernard, Marin, Ward, & McHugh, 2013). 

90 Recently, aerogels have been proposed also as oil carrier. Comin, Temelli, & Saldana (2012) 

91 studied the oil impregnation capacity of β-glucan aerogels. In this case, the highest 

92 impregnation capacity was about 65%. Similarly, Ahmadi, Madadlou, & Saboury (2016) 

93 proposed aerogels made of whey proteins and crystalline cellulose. The latter presented a 

94 maximum oil loading capacity of about 70%. 
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95 Based on this information, the possibility to obtain food-grade aerogels with high oil loading 

96 capacity could open new opportunities in the exploitation of aerogels for novel food 

97 applications. 

98 This work represents a first attempt to develop food-grade oleogels by oil sorption into aerogels 

99 by using κ-carrageenan as structuring biopolymer. This widely used food additive was chosen 

100 because, in the presence of K+, it forms hydrogels with a tubular architecture, which could be 

101 particularly interesting for oil sorption (Dunstan et al., 2001). κ-carrageenan hydrogels with 

102 different concentration were converted to alcoholgels by a solvent exchange procedure. Ethanol 

103 was then removed from the alcoholgel by supercritical carbon dioxide drying to obtain the 

104 aerogels. The supercritical drying has been indicated as the most promising drying methodology 

105 to obtain aerogels mainly because it prevents the gel structure from pore physical collapse 

106 phenomenon and shrinkage upon solvent removal (Ivanovic et al., 2016). κ -carrageenan based 

107 aerogel were characterized for appearance, network density, firmness, microstructure, water 

108 vapor adsorption and glass transition. Finally, the capability of aerogels to absorb sunflower oil 

109 and form oleogels was evaluated. 

110

111 2. Materials and methods

112 2.1 Materials

113 κ-carrageenan (κ-C) was purchased from Sigma-Aldrich (Milan, Italy); lithium chloride (LiCl), 

114 calcium chloride hexahydrate (CaCl26H2O), potassium carbonate (K2CO3), sodium chloride 

115 (NaCl), potassium acetate (CH3COOK), potassium chloride (KCl), and potassium sulfate 

116 (K2SO4) were purchased from Carlo Erba Reagents (Milan, Italy); absolute ethanol was 

117 purchased from J.T. Baker (Griesheim, Germany); phosphorus pentoxide (P2O5) was purchased 

118 from Chem-Lab NV (Zedelgem, Belgium); sunflower oil was purchased in a local market. All 

119 solutions were prepared using milli-Q water.

120
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121 2.2 Hydrogel preparation

122 Aqueous suspensions containing 0.4, 1.0, or 2.0% (w/w) κ-C and 1.0, 1.0 or 2.0 % (w/w) KCl, 

123 respectively, were prepared. In particular, κ-C was slowly added to the KCl aqueous solution 

124 at 90 °C under stirring. The homogeneous κ-C suspension was then poured into cylindrical 

125 molds of 2.9 cm diameter and 12 cm height. Samples were cooled in an ice bath and stored for 

126 1 day at 4 °C before analysis or further processing. 

127

128 2.3 Hydrogel to alcoholgel conversion by solvent substitution

129 κ-C hydrogels were cut in cylinders with a height of about 4.5 cm and diameter of 2.9 cm and 

130 were maintained for 1 day into aqueous solutions of ethanol with increasing concentrations (25, 

131 50, 75% v/v). Finally, samples were introduced into absolute ethanol twice (the first time for 8 

132 h and the second one for 1 day) in order to remove residual water. The ratio between hydrogel 

133 and ethanol solutions was 1:8 (v/v). Conversion was carried out at room temperature (about 22 

134 °C). 

135

136 2.4 Alcoholgel to aerogel conversion by supercritical CO2 drying

137 Alcoholgels were converted to aerogel by supercritical CO2 drying using the apparatus (Figure 

138 1) developed at the Department of Agricultural, Food, Environmental and Animal Sciences of 

139 the University of Udine. Preliminary tests were carried out to define supercritical CO2 drying 

140 conditions to obtain aerogels in the available equipment. Based on these preliminary results, 

141 aerogels were produced after their maintenance in a continuous flow of supercritical CO2 at 11 

142 ± 1 MPa and 45 °C. Liquid carbon dioxide (purity 99.995%, Sapio, Monza, Italy) was cooled 

143 to 4 °C using a F34-ED chiller (C; Julabo, Milano, Itlay) after been filtered with a 15 μm filter 

144 (B1; Ham-Let, Milano, Italy). Subsequently, CO2 was pressurized at 11 ± 1 MPa with an Orlita 

145 MhS35/10 diaphragm pump (D; ProMinent Italiana S.r.l., Bolzano, Italy) and heated to 45 °C 

146 using a water bath connected to a CB8 − 30e thermostatic bath (G; Heto, Allerød, Denmark). 
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147 Before pressurization, alcoholgel sample was placed inside the stainless steel cylindrical reactor 

148 (E, volume ~265 mL) with two screwed caps, each one equipped with a sintered stainless steel 

149 filter that allowed a uniform distribution of the CO2 during drying. Different combinations of 

150 supercritical CO2 flows in the range from 2.0 to 8.0 NL/min were initially tested. The 

151 combination allowing drying time to be minimized while maintaining the structural integrity of 

152 the material were selected by visual assessment of the absence of surface cracks on the samples. 

153 The adopted conditions were: the outlet flow through the reactor was 3.5 NL/min for 3 h; 5.0 

154 NL/min for subsequent 4 h and 6.0 NL/min for subsequent 1 h. Finally, a slow decompression 

155 from 11 MPa to atmospheric pressure was carried out at 6.0 NL/min in 30 min. The outlet flow 

156 was set by a micrometric valve (V4) and controlled with a RAGK41 rotameter (H; Rota 

157 Yokogawa, Milan, Italy). To avoid malfunctioning of the rotameter, CO2 was filtered with a 40 

158 μm filter (B2; Ham-Let, Milano, Italy). Ethanol content in the gaseous outlet was measured 

159 using a AL9000L digital alcoholmeter (L; Alcoscan, Milan, Italy) every 60 min. In order to 

160 carefully control temperature and pressure during experiments, a thermocouple (TT) connected 

161 to a digital data logger (F) and a manometer (PT2) were used. The valves V3 and V4 were heated 

162 in a water bath connected to a thermostatic bath (G) to prevent freezing during decompression. 

163 In order to assure an adequate heat exchange in the water bath, a small water pump (P) was 

164 used. 

165 Aerogels were stored in a desiccator containing P2O5 at room temperature until use.

166

167 2.5 Aerogel to oleogel conversion by oil absorption

168 Aerogel samples were introduced into 250 mL beakers previously filled with 125 mL of 

169 sunflower oil. At defined time intervals during conversion from aerogel to oleogel, samples 

170 were withdrawn, wiped with absorbing paper and weighted. Absorbed oil was expressed as the 

171 ratio between weight gain at time t and the initial weight of the aerogel sample. The immersion 
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172 of aerogel into oil was prolonged until a constant weight after two consequent readings was 

173 reached.

174

175

176 2.6 Analytical determinations

177 2.6.1 Volume and network density 

178 Sample volume was calculated as the volume of the cylinder whose diameter and height were 

179 measured by a CD-15APXR digital caliper (Absolute AOS Digimatic, Mitutoyo Corporation, 

180 Kanagawa, Japan). Volume changes following conversion of hydrogel to alcoholgel and 

181 aerogel were expressed as the percentage ratio between the variation of sample volume and 

182 volume of the corresponding hydrogel. Network density was then calculated as the ratio 

183 between aerogel sample weight and volume of hydro-, alcohol-, aero- or oleogel samples.

184

185 2.6.2 Firmness

186 Firmness was measured by uniaxial compression test using an Instron 4301 (Instron LTD., High 

187 Wycombe, UK). The instrumental settings and operations were accomplished using the 

188 software Automated Materials Testing System (version 5, Series IX, Instron LTD., High 

189 Wycombe, UK). In particular, hydrogel and alcoholgel samples (about 2.9 cm diameter and 1.5 

190 cm height) were tested using a 6.2 mm diameter cylindrical probe mounted on a 100 N 

191 compression head at a 25 mm/min crosshead speed. Force–distance curves were obtained from 

192 the compression tests and firmness was taken as the maximum force (N) required to penetrated 

193 the sample for 5 mm. Aerogel and oleogel samples (about 1 cm diameter and 3 mm height) 

194 were tested using a 12.7 mm diameter cylindrical probe mounted on a 1000 N compression 

195 head at a 25 mm/min crosshead speed. Force–distance curves were obtained from the 

196 compression tests and firmness was taken as the maximum force (N) required to compress the 

197 sample by 1 mm. The analyses were repeated at least 3 times for each sample. 
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198

199 2.6.3 Image acquisition

200 Sample images were acquired using an image acquisition cabinet (Immagini & Computer, 

201 Bareggio, Italy) equipped with a digital camera (EOS 550D, Canon, Milano, Italy). In 

202 particular, the digital camera was placed on an adjustable stand positioned 45 cm above a black 

203 or white cardboard base where the samples were placed. Light was provided by 4 100 W frosted 

204 photographic floodlights, in a position allowing minimum shadow and glare. Images were 

205 saved in jpeg format resulting in 3456×2304 pixels. 

206

207 2.6.4 Scanning Electron Microscopy (SEM)

208 Aerogel samples were mounted on aluminum sample holders and sputter coated with 10 nm of 

209 gold using a Sputter Coater 108 auto (Cressington Scientific Instruments, Watford, United 

210 Kingdom). The aluminum holder was transferred to the SEM unit (EVO 40XVP, Carl Zeiss, 

211 Milan, Italy), which was at ambient temperature and under vacuum. Samples were imaged using 

212 an acceleration voltage of 20 kV and SmartSEM v. 5.09 (Carl Zeiss, Milan, Italy) application 

213 software was used to capture images of the samples. Images were saved in tiff format resulting 

214 in 1696×2048 pixels. 

215

216 2.6.5 Water vapor sorption

217 Aerogel samples were weighted and transferred into a dried weighting bottle. The latter was 

218 then transferred into desiccators containing LiCl, CH3COOK, CaCl2, K2CO3, NaCl, KCl, and 

219 K2SO4 saturated solutions with equilibrium relative humidity (ERH%) values of 11, 25, 31, 43, 

220 75, 86, and 96%, respectively. Samples were kept inside desiccators until constant weight was 

221 reached. The Brunauer-Emmet-Teller (BET) sorption isotherm model (eq. 1) was fitted into 

222 water sorption data (Brunauer, Emmett, & Teller, 1938). 

223 (1)
𝑎𝑤

𝑚 ∙ (1 ‒ 𝑎𝑤) =
1

𝑚0 ∙ 𝑐 +
𝑐 ‒ 1
𝑚0 ∙ 𝑐 ∙ 𝑎𝑤



10

224 where aw is the water activity, m is the moisture of the sample expressed as ratio between the 

225 weight (g) of absorbed water and the weight (g) of dry matter, m0 is the moisture of the water 

226 monolayer, and c is an experimental constant. 

227

228 2.6.6 Differential Scanning Calorimetry (DSC)

229 DSC analysis was carried out using a TA4000 differential scanning calorimeter (Mettler-

230 Toledo, Greifensee, Swiss) connected to a GraphWare software TAT72.2/5 (Mettler-Toledo). 

231 Heat flow calibration was achieved using indium (heat of fusion 28.45 J/g). Temperature 

232 calibration was carried out using hexane (m.p. -93.5 °C), water (m.p. 0.0 °C) and indium (m.p. 

233 156.6 °C). Samples were prepared by carefully weighing around 10 mg of hydrogel or aerogel 

234 in 160 mL aluminum DSC pans, closed with hermetic sealing. An empty pan was used as a 

235 reference in the DSC cell.

236 Aerogel samples equilibrated at different aw values were heated from -150 to 250 °C. The scan 

237 speed was set at 10 °C/min and samples were analyzed under nitrogen flow (20 mL/min). The 

238 start of melting transition was taken as on-set (Ton) point of transition, that is the point at which 

239 the extrapolated baseline intersects the extrapolated tangent of the calorimetric peak in the 

240 transition state. Total peak enthalpy (ΔHm) was obtained by integration of the melting curve. Tg 

241 was determined from the on-set temperature of the glass transition of aerogels. The machine 

242 equipment program STARe ver. 8.10 (Mettler-Toledo, Greifensee, Switzerland) was used to 

243 plot and analyze the thermal data.

244 The amount of frozen water was then calculated as the ratio between aerogel ∆Hm and pure ice 

245 ∆Hm (333.5 J/g). The concentration of the maximally cryo-concentrated solution (c′g) was 

246 calculated from the amount of unfrozen water and total solids. 

247

248

249
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250 2.6.7 State diagram and modified state diagram

251 Aerogel state diagrams were obtained plotting the Tg values for samples equilibrated at different 

252 ERH% as a function of mass fraction of the sample. The obtained curve was fitted using the 

253 Gordon-Taylor equation (eq. 2) (Gordon & Taylor, 1952).

254 (2)𝑇𝑔 =
𝑤1 𝑇𝑔1 + 𝑘𝑤2𝑇𝑔2

𝑤1 +  𝑘𝑤2

255 where Tg1 is the glass transition temperature of the amorphous solute, Tg2 is the glass transition 

256 temperature of the solvent (-137.5°C), w1 and w2 are the mass fraction of the solute and the 

257 solvent, respectively, and k is an experimental constant.

258 The modified state diagram was then obtained plotting the Tg values for samples equilibrated 

259 at different ERH% as a function of their aw values.

260

261 2.6.8 Oil absorption kinetics

262 Oil content of the oleogel was defined as the percentage ratio between the maximum amount 

263 of absorbed oil and the weight of the oleogel.

264 Oil absorption capacity was calculated as the ratio between weight gain at time t and aerogel 

265 network density. The kinetics of oil absorption were then elaborated by fitting a two-phase 

266 exponential decay model (eq. 3) to absorption data (Blake, Co, & Marangoni, 2014).

267 (3)𝑦 = 𝑦𝑓𝑎𝑠𝑡(1 ‒ 𝑒
( ‒ 𝑘𝑓𝑎𝑠𝑡𝑡)) + 𝑦𝑠𝑙𝑜𝑤(1 ‒ 𝑒

( ‒ 𝑘𝑠𝑙𝑜𝑤𝑡))
268 (4)𝑦𝑚𝑎𝑥 = 𝑦𝑓𝑎𝑠𝑡 + 𝑦𝑠𝑙𝑜𝑤

269 where yfast and yslow are the asymptote values of the fast- and slow-decaying components, 

270 respectively, kfast and kslow are the rate constants for the fast- and slow-decaying component, 

271 respectively, and ymax is the maximum amount of absorbed oil when time t tends to infinite and 

272 is the sum of yfast and yslow (eq. 4). ymax can also be considered the theoretical plateau value.

273

274 2.6.9 Oil holding capacity (OHC) 
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275 Around 100 - 200 mg of oleogel was placed into 1.5 mL microtubes between two pieces of 

276 absorbing paper. Samples were centrifuged at 13,000 rpm (15,871 x g) for 30 min using a 

277 microcentrifuge (Mikro 120, Hettich Zentrifugen, Andreas Hettich GmbH and Co, Tuttlingen, 

278 Germany). Oil holding capacity (OHC) was computed as the percentage ratio among the weight 

279 of oil retained in the oleogel after centrifugation and total weight of oil in the sample.

280

281 2.6.10 Data analysis

282 All determinations were expressed as the mean ± standard error (SE) of at least two 

283 measurements from two experiment replicates (n ≥ 4), if not otherwise specified. Statistical 

284 analysis was performed by using R v. 3.0.2 (The R foundation for Statistical Computing). 

285 Bartlett's test was used to check the homogeneity of variance, one way ANOVA was carried 

286 out and Tukey-test was used as post-hoc test to determine statistical significant differences 

287 among means (p < 0.05). Linear regression analysis by least squares minimization was 

288 performed using GraphPad Prism v.5.03 (GraphPad Software, San Diego, USA). The goodness 

289 of fit was evaluated on the basis of statistical parameters of fitting (R2, p, standard error) and 

290 the residual analysis. Non-linear regression analysis of Tg values as a function of aerogel mass 

291 fraction was performed on TableCurve 2D software (Jandel Scientific, ver. 5.01). Levenberg–

292 Marquardt algorithm was used to perform least squares function minimization and the goodness 

293 of fit was evaluated on the basis of statistical parameters of fitting (R2, p, standard error) and 

294 the residual analysis.

295

296 3. Results and discussion

297 3.1 From hydrogel to aerogel

298 κ-carrageenan (κ-C) hydrogels were used as template to obtain aerogels by applying a solvent 

299 exchange procedure. Hydrogels were initially formed thanks to the well-known ability of k-C 

300 random coils to transit to a double helix conformation. The double helices, in the presence of 



13

301 monovalent ions, such as potassium (K+), aggregated in water forming a gelled system 

302 (Rinaudo, 2008; Rochas & Rinaudo, 1984). Hydrogels containing different concentration of k-

303 C appeared as self-standing materials with a network density and firmness that linearly 

304 increased as the concentration of the structuring polymer increased (R2 > 0.99) (Table 1). This 

305 was due, as known, to the formation of a higher number of junction zones among the double 

306 helices (Rinaudo, 2008). The hydrogels were firstly converted to alcoholgels by substituting 

307 the water solvent with ethanol. Ethanol was then removed from the alcoholgel by a continuous 

308 flow of supercritical CO2, obtaining the aerogels. The removal of ethanol resulted complete 

309 after 6, 7, and 8 h of drying for samples containing 0.4, 1.0 and 2.0 % (w/w) k-C (see Figure 

310 S1 in supplementary material). 

311 Figure 2 shows the visual appearance of hydrogels, alcoholgels and aerogels. It is evident that 

312 gel characteristics changed upon solvent exchange. Aerogels appeared completely opaque, 

313 differently from hydrogel and alcoholgel, suggesting the aerogel can be regarded as a porous 

314 material. Porosity would favor intense light scattering, providing a dense and white appearance. 

315 Turning hydrogels into alcoholgels and then aerogels also promoted an intense shrinkage 

316 (Figure 2). The latter can be probably attributable to the different structural organization of the 

317 gel network depending on the solvent nature. During the first solvent substitution, ethanol is 

318 forced to diffuse through the k-C network even if this polymer is insoluble in ethanol 

319 (Therkelsen, 1993). For this reason, ethanol difficulty interacts with k-C and is unable to fill all 

320 the space previously occupied by water. The interactions among k-C chains became thus 

321 stronger, leading to gel shrinkage. The alcohol removal caused a further shrinkage, probably 

322 indicating a collapse of the structure upon drying (Figure 2). k-C concentration in the hydrogels 

323 negatively affected the level of shrinkage, so that volume contraction progressively decreased 

324 as k-C concentration increase. This suggests that samples richer in structured polymer chains 

325 were less prone to shrinkage and begot a more porous aerogel structure.
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326 As a consequence of shrinkage, the gel network density progressively increased moving from 

327 hydrogel to aerogel, at all k-C concentrations (Table 1). This result confirms the hypothesis that 

328 solvent substitution led to a reduction of the distance among polymer network chains. It is 

329 interesting to note that the network density of aerogels decreased as k-C concentration 

330 increased, differently from hydrogels and alcoholgels. This suggests that the higher the polymer 

331 content, the more porous the aerogel structure. A maximum firmness value was observed for 

332 sample at intermediate k-C concentration. It could be inferred that the higher resistance to 

333 mechanical deformation of this sample could be the result of less aerated and/or more isotropic 

334 aerogels. To confirm this hypothesis, SEM analysis of aerogels was performed. Images in 

335 Figure 2 revealed the presence of a compact matrix of k-C with superficial pores in all samples, 

336 even if with some morphological differences. Sample at the lowest k-C concentration was 

337 characterized by a compact structure embedding restricted porous areas. The latter showed a 

338 fine-grain and appeared evenly distributed in the aerogel with intermediate k-C content. Finally, 

339 sample with the highest k-C content showed a coarse structure with larger polymer aggregates 

340 as well as cracks and microchannels onto the surface. Results clearly indicate that aerated 

341 structures were achieved when hydrogel structural collapse was hindered by increasing its 

342 initial polymer concentration. 

343 In order to investigate the properties of the developed aerogels, their capacity of absorbing 

344 water vapor was evaluated. Samples were thus equilibrated at constant temperature and 

345 different relative humidity to obtain their sorption isotherms. Moisture content  data were then 

346 modelled as a function of aw, using the procedure proposed by Brunauer et al. (1938). 

347 Regression analysis showed good determination coefficients (> 0.85) and statistically 

348 significant model parameters (p < 0.05). The monolayer water content (m0) and the BET 

349 constant (c) were thus estimated (Table 2).

350 The m0 parameter showed comparable values for the three aerogels. The constant c showed 

351 values between 2 and 50 revealing the presence of a type II isotherm (Al-Muhtaseb, McMinn, 
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352 & Magee, 2002; Brunauer, Deming, Deming, & Teller, 1940). This means that the aerogels 

353 were characterized by a poor capacity of water vapor sorption since an increase in the relative 

354 humidity was reflected into a great aw increase. In other words, water vapor difficulty interacted 

355 with the porous aerogel structure. Its swelling and solvation only occurred when direct 

356 hydration of the aerogels was carried out by water immersion (data not shown).

357 To study the physical stability of the aerogels, DSC analysis was performed. Aerogels were 

358 characterized by a glass transition temperature of 180 ± 1 °C, indicating that they were in the 

359 glassy state at room temperature. The effect of equilibration at different ERH% on aerogel glass 

360 transition temperature was then studied. Glass transition temperature data were  modeled as a 

361 function of mass fraction using the approach proposed by Gordon & Taylor (1952). Non-linear 

362 regression analysis showed good determination coefficients (> 0.93) and significant (p < 0.001) 

363 values of the model experimental constant (k) (Table 2). Also in this case, no differences among 

364 samples were detected.

365 The modified state diagrams of the aerogels were thus obtained combining the water vapor 

366 sorption curve with the glass transition temperature one, and resulted comparable for the three 

367 aerogels. This suggests that the ERH% dependence of aerogel physical stability is mainly 

368 governed by the intrinsic properties of k-C rather than by the structure of the aerogel. As an 

369 example, Figure 3 shows the modified state diagram of the aerogel obtained from a hydrogel 

370 containing 1% k-C. 

371 At room temperature, the system was below the glass transition temperature up to an aw value 

372 of 0.6. However, when an amount of water equal to the 10% of the aerogel sample mass was 

373 absorbed, the system decreases its glass transition temperature below 20 °C and a transition to 

374 the rubber state was observed. This transition led to a structural collapse and the system became 

375 thermodynamically unstable. Based on these data, the aerogels here developed would remain 

376 glassy and porous at room temperature if maintained at ERH lower than 60%. For these reasons, 
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377 aerogels can be easily stored for prolonged time if protected from atmospheric moisture through 

378 appropriate packaging.

379

380 3.2 From aerogels to oleogels

381 Based on their physical properties, aerogels could be exploited to entrap liquid oil, potentially 

382 leading to oleogels. The capacity of aerogels to absorb oil was thus evaluated (Figure 4).

383 Oil absorption progressively increased during immersion in oil and was considered complete 

384 after the plateau value was reached (Figure 4A). The rate of oil absorption was also greatly 

385 affected by the aerogel structure, so that the maximum amount of absorbed oil was reached 

386 after 3, 24 and 48 h for samples containing 0.4, 1.0 and 2.0% k-C, respectively. Data in Figure 

387 4A were further elaborated to evidence the effect of the network density on oil absorption. Oil 

388 absorption capacity of the aerogel was computed as the ratio between absorbed oil and network 

389 density. Normalization of absorbed oil based on network density (Figure 4B) clearly shows that 

390 the capacity of the aerogel to absorb oil progressively increased in the order 0.4 < 1.0 < 2.0% 

391 k-C. This suggests that the aerogels, which had experienced a lower level of structural collapse 

392 (lower shrinkage), also showed a higher capacity of oil absorption, regardless the network 

393 density. In other words, the capacity of oil to be entrapped in the aerogel depends not only on 

394 the density of the polymer network but also on its architecture. Liquid absorption by a porous 

395 material is actually affected by several factors such as number, dimension and size distribution 

396 of pores, pores tortuosity and internal surface (i.e. roughness) (Bear, 1972; Khosravi & Azizian, 

397 2016). The diameter of the pores is known to steer the rate of oil absorption while the number 

398 and length of pores affect the amount of absorbed oil. To further investigate these aspects, 

399 kinetics of aerogel oil absorption were analyzed. In particular, data shown in Figure 4B were 

400 elaborated by fitting a two-phase exponential decay model (eq. 3) (Blake et al., 2014). This 

401 model was chosen since it describes oil absorption kinetics as a result of two different 

402 components. The fast component, which is related to pore diameter, and the slow component, 
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403 which accounts for pore number and length. Non-linear regression analysis showed good 

404 determination coefficient (> 0.99) and significant (p < 0.001) model parameters (Table 3). 

405 The rate constant for the fast-decaying component (kfast) resulted always higher than the slow 

406 one, indicating that the limiting factor of the initial phase of oil absorption was pore size. The 

407 value of kfast decreased by increasing the aerogel network density. As discussed by Khosravi & 

408 Azizian (2016), lower value of kfast could be related to the presence of pores with larger 

409 diameter, which are known to be less effective in initial oil uptake. These larger pores were 

410 probably more numerous and longer according to the sample order 2.0 > 1.0 > 0.4% (w/w) k-

411 C in the initial hydrogel. This result is in agreement with the microscopic structure of the 

412 aerogels (Figure 2) and gives reason for the increasing overall absorption of oil, as indicated by 

413 the higher value of ymax (Table 3). 

414 Samples after absorption of the maximum amount of oil can be regarded as oleogels. Table 4 

415 shows their visual appearance, composition, firmness and oil holding capacity. 

416 Oleogels obtained from hydrogels containing 0.4 and 1.0% (w/w) k-C were able to entrap 

417 around 2.5 times their initial weight, whereas the aerogel obtained from 2.0% k-C hydrogel 

418 held circa 4.5 times its initial weight (Figure 4A). Firmness of oleogels showed the same trend 

419 observed for aerogels (Table 1) with a maximum value for sample containing 1.0% (w/w) k-C. 

420 The maximum loading capacity resulted about 81% (w/w) that is higher than that reported for 

421 aerogels containing other food-grade biopolymers, such as β-glucans (Comin et al., 2012) and 

422 whey proteins (Ahmadi et al., 2016). Finally, the capability of the oleogels in retaining absorbed 

423 oil was finally assessed by an accelerated oil release test based on centrifugation. The highest 

424 values of oil holding capacity (OHC) were recorded for samples containing 0.4 and 1.0% (w/w) 

425 κ-C in the initial hydrogel. By contrast, aerogels from 2.0% (w/w) κ-C hydrogel showed a lower 

426 ability to retain oil. In other words, this sample, which was characterized by a higher number 

427 of longer pores absorbed the highest amounts of oil (Figure 4) that can be easily released upon 

428 centrifugation. This suggest that oil is physically entrapped in the system cavities. 
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429

430 Conclusions

431 κ-carrageenan aerogels resulted to be highly porous and structurally stable materials with high 

432 mechanic strength. Similarly to other organic aerogels, they were made from renewable sources 

433 and were completely biodegradable. Given these properties, they could be used for a number 

434 of different applications, including thermal and electric insulation but also development of 

435 novel packaging materials and selective carriers for drugs, nutrients, aroma compounds or 

436 additives. In the present work, a novel application of κ-carrageenan aerogels was studied. The 

437 latter were actually demonstrated to uptake large amounts of oil without compromising their 

438 structural integrity and leading to stiff oleogels. Oil content and retention depended on the 

439 aerogel architectural organization, as described by the pore number, size and length. These 

440 results suggest that k-carrageenan based aerogels could be used to absorb lipophilic molecules, 

441 including unintentionally discharged oil spills. Reversely, κ-carrageenan oleogels could be 

442 exploited in the food, pharmaceutical or cosmetic sectors for pioneering applications. The 

443 results acquired were relevant to κ-carrageenan oleogels but the methodology here developed 

444 could be definitely extended to other biopolymers. Further research is thus needed to explore 

445 this possibility and obtain food grade oleogels with tailored characteristics.

446
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549 Table 1. Network density and firmness of hydrogel containing increasing κ-carrageenan 

550 concentration, and of the derived alcoholgel and aerogel. 

κ-carrageenan

in hydrogel

(% w/w)

Network density 

(gd.m./cm3)

Firmness 

(N)

Hydrogel Alcoholgel Aerogel Hydrogel Alcoholgel Aerogel

0.4
0.004 ± 

0.001c

0.009 ± 

0.001b 

0.237 ± 

0.026a

0.84 

± 0.06c

8.00 ± 

0.66c

114.00 ± 

7.21a

1
0.008 ± 

0.001b

0.014 ± 

0.002b

0.180 ± 

0.014ab

3.37 ± 

0.05b

18.92 ± 

0.94b

165.67 ± 

7.22b

2
0.016 ± 

0.001a

0.026 ± 

0.003a

0.129 ± 

0.001b

7.37 

± 0.70a

45.22 ± 

1.50a

136.67 ± 

2.03a

551 a, b, c: means with different letters in the same column are significantly different (p < 0.05).

552
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553 Table 2. Experimental regression coefficients estimates m0 (g H2O/g d.m.) and c for BET equation 

554 (R2 > 0.85; p < 0.05), and k for Gordon-Taylor equation (R2 > 0.93; p < 0.001) of aerogels 

555 obtained from hydrogels containing increasing κ-carrageenan concentration. Standard error of 

556 fitting is also reported.

557

558

κ-carrageenan in hydrogel BET equation Gordon-Taylor equation

(% w/w) m0 ± SE c ± SE R2 k ± SE R2

0.4 0.04 ± 0.01 9.23 ± 6.16 0.95 10.33 ± 1.55 0.97

1.0 0.05 ± 0.01 43.88 ± 13.91 0.85 9.79 ± 1.27 0.93

2.0 0.04 ± 0.01 4.86 ± 0.52 0.99 9.92 ± 0.94 0.98
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559 Table 3. Experimental regression coefficients estimates kfast, kslow, and ymax for the two-phase 

560 model of oil absorption in aerogels obtained from hydrogels containing increasing κ-

561 carrageenan concentration. Standard error of fitting is also reported.

κ-carrageenan in hydrogel 

(% w/w)

0.4 1.0 2.0

kfast (h-1) 3.825 ± 0.320 2.080 ± 0.153 1.734 ± 0.198

kslow (h-1) 0.602 ± 0.058 0.313 ± 0.017 0.139 ± 0.006

ymax (g oil/g aerogel/cm3
 aerogel) 1.077 ± 0.049 3.195 ± 0.112 13.845 ± 0.310

562

563
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564 Table 4. Visual appearance, firmness, oil content, and oil holding capacity (OHC) of oleogels 

565 obtained from hydrogels containing increasing κ-carrageenan concentration.

κ-carrageenan 

in hydrogel

(% w/w)

Visual 

appearance

κ-carrageenan 

in  oleogel

(% w/w)

Oil in oleogel

(% w/w)

Firmness 

(N)

OHC

(% w/w)

0.4          27.58 ± 0.83a 72.42 ± 0.83a
158.33 ± 

9.16c

83.44 ± 

1.35a

1.0         26.76 ± 0.33a 73.24 ± 0.33a
311.70 ± 

11.78a

82.18 ± 

1.11a

2.0
      

18.72 ± 0.31b 81.28 ± 0.31b
216.40 ± 

6.79b

62.21 ± 

1.31b

566 a, b, c: means with different letters in the same column are significantly different (p<0.05)

567
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568 Figure captions

569 Figure 1. Schematic representation of supercritical CO2 drying apparatus.

570

571 Figure 2. Visual appearance of hydrogel containing increasing κ-carrageenan concentration, 

572 and of the derived alcoholgel and aerogel. A ruler in cm is also reported as reference. Scanning 

573 electron microscopy images of aerogels obtained from hydrogels containing increasing κ-

574 carrageenan concentration.

575

576 Figure 3. Modified state diagram of aerogel obtained from hydrogel containing 1% (w/w) κ-

577 carrageenan.

578

579 Figure 4. Absorbed oil (A) and oil absorption capacity (B) of aerogels obtained from hydrogels 

580 containing increasing κ-carrageenan concentration as a function of time.
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Figure S1. Ethanol concentration as a function of time during supercritical CO2 drying of alcoholgels 

obtained from hydrogels containing increasing κ-carrageenan concentration.



Highlights

k-carrageenan aerogels with tailored properties can be obtained by supercritical CO2  drying;

k-carrageenan aerogels showed high oil loaded capacity;

k-carrageenan oleogels could have interesting potential application in food area.


