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Abstract

In this paper we study the obstacle problems for the fractional Lapalcian of order

s € (0,1) in a bounded domain  C R™, under mild assumptions on the data.

1 Introduction

Let © be a bounded domain in R”, n > 1. Given s € (0,1), a measurable function
1 and a distribution f on €2, we consider the problem

4

u > in

(—AYu>f inQ (L.1)
(—AFu=f in{u>}

u=0 in R\ Q0.

Our interest is motivated by the noticeable paper [19], where Louis E. Silvestre
investigated (LI)) in case Q = R™, f = 0 and ¢ smooth. His results apply also to
Dirichlet’s problems on balls, see [19, Section 1.3]. Besides remarkable results, in

[19] the interested reader can find stimulating motivations for (L), arising from
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mathematical finance. In addition, Signorini’s problem, also known as the lower
dimensional obstacle problem for the classical Laplacian, can be recovered from
([TI) by taking s = %

Among the papers dealing with (ILT]) and related problems we cite also [1I, 3] 4]
[7, 15, 18] and references there-in, with no attempt to provide a complete reference
list.

In the present paper we show that the free boundary problem (LI admits a
solution under quite mild assumptions on the data, see Theorems [Tl and below.
However, our starting interest included broader questions concerning the variational

inequality
ue Ky, (AYu— fiv—u) >0 Yve Ky, (P, f))
where f € H*(Q)’ and
Kj,:{veﬁs(f)) | v>1 ae. onQ}.

Notation and main definitions are listed at the end of this introduction. We will
always assume that the closed and convex set K{z is not empty, also when not
explicitly stated.

Problem [P (v, f)| admits a unique solution u, that can be characterized as the

unique minimizer for

. 1 5
JE (AT~ (). (12)

The variational inequality [P (v, f)|and the free boundary problem (LI]) are nat-
urally related. Any solution u € H5(Q) to (LI) coincides with the unique solution

to see Remark Conversely, if u solves then (—A)Yu— fis a
nonnegative distribution on 2, compare with Theorem By analogy with the
local case s = 1 one can guess that (—A)u = f outside the coincidence set {u = 1},
at least when u is regular enough. This is essentially the content of Section 3 in
[19], where f = 0 and v is a smooth, rapidly decreasing function on 2 = R", and of
Theorems [I.1] below.

To study the variational inequality we took inspiration from the classical
theory about the local case s = 1. In particular, we refer to the fundamental

monograph [9] by Kinderlehrer and Stampacchia, and to the pioneering papers [2]
[10, 111 12, 13, 20, 21], among others.



Standard techniques do not apply directly in the fractional case, mostly because
of the different behavior of the truncation operator v — vt, H*(R™) — H*(R").
Section [2] is entirely devoted to this subject; we collect there some lemmata that
might have an independent interest.

We take advantage of the results in Section 2] to obtain equivalent and useful
formulations for and to prove continuous dependence theorems upon the
data f and 1), see Sections [3] and @] respectively.

Some extra difficulties arise from having settled a nonlocal problem on a bounded
domain, producing at least, but not only, the same (partially solved) technical dif-
ficulties as for the unconstrained problem (—Afu = f, u € H*(Q) (see for instance

[6], [16], [T7] and references there-in, for regularity issues).
Our main results proved in Section Bl They involve the unique solution wy to
(~AYws=f nQ,  w;eHQ). (1.3)
Theorem 1.1 Assume that ¢ and f € ﬁS(Q)’ satisfy the following conditions:
Al) (¢ —wp)™ € H*(Q);
A2) (=AY (Y —wyp)T — fis a locally finite signed measure on ;
A3) (A (W —wp)t = )T € L1 (Q) for some p € [1,00].
Let u € ﬁS(Q) be the unique solution to . Then the following facts hold.
i) (AYu— feLl (Q);
it) 0 < (—AYu—f < (AP W —wp)t = /)T ae. on Q;
i11) (—AYu= f a.e. on {u>}.

In particular, u solves the free boundary problem (I.1]).

Theorem 1.2 Assume that Q is a bounded Lipschitz domain satisfying the exterior
ball condition. Let v € C°(Q) be a given obstacle, such that K;Z 18 not empty, Y <0
on OQ and f € LP(Q), for some exponent p > n/2s.

Then the unique solution u to is continuous on R™ and solves the free
boundary problem (I1).



Our results plainly cover the non-homogeneous Dirichlet’s free boundary problem
u > in

(—AYu>f inQ

(~AYu=f in {u> )}

u=g in R\ Q,

under appropriate assumptions on the datum ¢g. Notice indeed that u solves the
related variational inequality if and only if u — g solves P(¢ — g, f + (—A)g).
Free boundary problems for the operator (—A)u + u can be considered as well,

with minor modifications in the statements and in the proofs.

Notation The definition of the fractional Laplacian (—A)’ involves the Fourier transform:

1 —i&-x
W/e STy(z) da .

Rn

FU=AYu] = [ Flu],  Flu](€) =

Let 2 C R™ be a bounded domain. We adopt the standard notation

H*R") = {ue L’(R") | (~A)ue L*(R") },

H*(Q) = {u€ H*R") |u=0 on R"\Q}.
We endow H*(R™) and H*(2) with their natural Hilbertian structures. We recall that the
norm of u in H*(Q) is given by the L2(R")-norm of (—A)2w.

We do not make any assumption on 2. Thus 92 might be very irregular, even a frac-
tal, and C5°(€2) might be not dense in H*(£2). Notice that H*() coincides with H*(Q'),
whenever Q0 =0V

We denote by (-, -) the duality product between H*(€2) and its dual H*(€2)’. In particular,
(=AYu e H*(Q) for any u € H*(Q), and

(~Afu,v) = / (~Afu- (~Afvds = / (€2 Flu) Fo] de.
J

Rn

2 Truncations

For measurable functions v, w we put, as usual,
vVw=max{v,w}, vAw=min{v,w}, vF=vVv0, v_=—(vA0),

so that v = vt —v™. It is well known that vV w € H*(R™) and v A w € H*(R") if
v,w € H¥(R™).



Lemma 2.1 Let v € H*(R™). Then

2
i) (—AYv,vt) —/|(—A)%v+|2da: >0,
2

In addition, if v € H*(R™) does not have constant sign, then all the above inequalities

are strict.

Proof. In [14] Theorem 6], the Caffarelli-Silvestre extension argument [5] has been
used to check that

J1CaPdn < [P ds,

Re Re

whenever v changes sign. That is,
/y (—A (ot + 072 da < /\ (=AY (v — o) de.
R R™
The conclusion is immediate. ]

Remark 2.2 One can use ii) in Lemma[Z1 to get the well known weak mazimum
principle, that is, if u € H*(Q) and (=AYu >0 in Q then u > 0 in €.

Corollary 2.3 Let vy, be a sequence in H*(R™) such that vy, converges to a nonpos-
itive function in H*(R™). Then vy’ — 0 in H*(R™).

Proof. Statement i) in Lemma 2] provides the estimate

/ |(—AY v Pz < (—AYon o), (2.1)
J

that gives us the boundedness of the sequence U;{ in H¥(R™). Since v;{ — 0 in

L%(R™), we have v}’ — 0 weakly in H*(R"). Thus ((—=AYvp, v} ) = 0, as (=AY vy,
converges in H*(R™)’, and the conclusion follows from (2:1]). O



Lemma 2.4 Let v € H5(Q) and m > 0. Then (v4+m)~, (v —m)*, 0 Am € H*(Q)

and

i11) /| %v/\m|2dx</| 2v|2dx—/| %v— m)"|? d.

Proof. Clearly, (v +m)~ € L?(R") and (v +m)~ = 0 outside Q. Fix a cutoff
function n € C§°(R™), with 0 < n < 1, and such that 7 = 1 in a ball containing (2.
Then (v+m)~ = (v+mn)~ € H¥(Q), as trivially mn € H5(R").
For any integer h > 1 we set
x
m(@) =n(7):

so that n, — 1 pointwise. A direct computation shows that

(~Afm(@) = b2 ((=AFn) (F) — 0 i LR ®"). (2:2)
By i) in Lemma 2] we have that

0 > ((—AF(u-+mm), (v +m)" /| A (v +m) 2 de
= ((-AYv,(v+m)~ /\ v—i—m) ]2dx+m/ AYnp)(v4+m)” dx
= ((-AYv,(v+m)~ /\ gv—i-m)_]de—Fo(l),

by ([22) and since (v+m)~ has compact support in €. Claim 4) is proved. To check
i) notice that (v —m)* = ((—v) +m)~ and then use i) with (—v) instead of v.
It remains to prove iii). Notice that vAm = v—(v—m)T. Hence vAm € H*(1).
Using ii) we get
(AR @AmP = |[(=A)]* = 2(=AYv, (0 = m)™) + [ (-A)2 (v — m)*|*
| (=AYol® = [ (—A) (0 —m)*|*.

The proof is complete. U

IN



3 Equivalent formulations

We start this section by introducing a crucial notion.
Definition 3.1 A function U € ﬁS(Q) is a supersolution for (—AYv = f if
(AYU = f,0) >0 for any p € H(Q), ¢ > 0.

The above definition extends the usually adopted one in the local case s = 1, see [9]
Definition 6.3]. A different definition of supersolution is used in [19] for f = 0. We

refer to [19] Subsection 2.10], for a stimulating discussion on this subject.
Theorem 3.2 Let u € K;Z The following sentences are equivalent.
a) u is the solution to problem [P (1, f)|;

b) w is the smallest supersolution for (—AYv = f in the convex set K. That is,

U > u almost everywhere in ), for any supersolution U € K5 ;

¢) u is a supersolution for (—AYv = f and
(FAYu—fi(v=u)") =0  for anyv € Kj,.

d) ((=AYv—f,v—u) >0 for any v € K.

Proof. a) <= b). Assume that u solves Fix any nonnegative ¢ € H*(2).
Testing [P(¢, )] with u + ¢ € K, one gets ((=AYu — f,p) > 0, that proves that u
is a supersolution.

Next, take any supersolution ¢ € K. Then u — (u—UT=UANuE K. Thus

(=AVu—f,—(u—-U)") >0
On the other hand, from (—AYU — f > 0 we get
(=AU = f,(u—U)T) > 0.

Adding the above inequalities we arrive at

0> (“AY(u—U), (u /| i (u— ) P e,



thanks to 4ii) in Lemma 211 Thus (u —U)* = 0 almost everywhere in 2, that is,
u < U and proves that a) implies b).

Conversely, assume that u satisfies b) and let @ be the solution to We
already know that a) = b). Thus u and @ must coincide, because both obey the

condition of being the smallest supersolution to (—A)v = f in K. Hence, a) holds.

a) <= ¢). Let u be the solution to[P (¢, )l We already know that u is supersolution.
Fix any function v € K, Notice that

u+w—u)” >u>Y, u—(v—u)” =vAu>1.

Thus, testing with u & (v —u)™ we get ((—AYu— f,+(v —u)”) >0, that
is, ¢) holds.

Conversely, assume that u satisfies c). Let @ € K be the solution to [P(1, f)
We already proved that u is the smallest supersolution in K i In particular, @ < u
and thus

(=AYu— fou—i) = (~Afu— f.(G—u)") =0

by the assumption ¢) on u. Since @ solves [P(1), f)l we also get
(=AYa— f,u—u) >0.

Substracting, we infer (=AY (u —@),u — @) < 0, that is, u = 4.

a) <= d). Clearly a) implies d) because

(=A)v—fiv—u)
= (=AVu—fio—u) + (A (v —u),v —u) = (-Afu—f,v—u).

Now assume that u satisfies d) and fix any v € K. From LS K and d) we
obtain
SV U v+u 1 s
0 < 2A-AF(50) - £ —w) = SUA (0 + u) v — ) = (fo—u)
2 2 2
1 S 1 S
= 5((_A) U7U> - <f,'U> - §<(_A) U,U> - <f7u> :
Thus u solves the minimization problem (L2)), that is, u solves [P (), f) O

8



Remark 3.3 In the local case s = 1, the equivalence between a) and d) is commonly

known as Minty’s lemma, see [13].

Corollary 3.4 Let f1, fo € ﬁS(Q)’ and let u; be the solution to P(v, f;), i = 1,2.
If f1 > fo in the sense of distributions, then uy > us a.e. in §Q.

Proof. The function w; is a supersolution for (—=AYv = fo and u; € K .- Hence
uy > ug, by statement b) in Theorem O

Remark 3.5 Let u € H*(Q) be a solution to (I1). Then (—AYu — f can be
identified with a nonnegative Radon measure on Q having support in {u = 1}.
If v € K, then (v —u)~ vanishes on {u =1}. Thus (=Afu — f,(v—u)") =0,
hence u solves by Theorem [3.2.

4 Continuous dependence results

Theorem 4.1 Let 91,19 be given obstacles, f € ﬁS(Q)’ and let u; be the solution
to P(Wi, f), 1 =1,2. If 1 — 1pg € L°(R), then uy — ug is bounded, and

i) [(ur = u2)Tlloo < 11 = 2)Tlloo »  84) (w1 — u2) " [loo < 141 = 2) " [loo

Proof. Put m := ||(¢1 — 1)t |lse. Since (ug —uy +m)~ € H*() by Lemma 24
then

vy i=ugp — (ug —ug +m)” = (ug +m) Aug GK;ZI.
Hence we can use vy as test function in P(1)1, f) to get
(=AYuy — f,—(ug —uy +m)~) > 0.
On the other hand, we can test P(¢2, f) with up + (u2 —u1 +m)~ € K . Hence
(=AYup = f, (ug —ur +m)7) = 0.

Adding and taking ¢) of Lemma [24] into account, we arrive at

- / (A (s — ug +m) " [2dz > (—AY (uz — ur), (up — ug +m)™~) > 0.
R?’L

Hence, (ug —u; +m)~ = 0. We have proved that (u; — u2)t < m a.e. in 2, hence

i) holds. Inequality i) can be proved in the same way. O



Corollary 4.2 Let ¢ € L>®(Q2) and f € LP(Q), with p € (1,00), p > n/2s. Let
w e H5(Q) be the unique solution to [P0, [) Then u € L®() and

YVwr<u< U oo +cllfF]l, ae inQ, (4.1)

where wy solves (I3) and ¢ depends only on n,s,p and Q. In particular, if f =0
then
P << Y | -

Proof. First of all, notice that f € H* (Q)" by Sobolev embedding theorem. Since
u is supersolution of (L3]), the first inequality in (£I) follows by the maximum
principle in Remark

Denote by wg+ the unique solution to (L3) with f replaced by f . If n > 25 we

use convolution to define
U= cllaz\%_" *(ftxa).

For proper choice of the constant c¢;, U solves (—A)°U = f*-xq in R”. Convolution
estimates give U < ¢[|f*||, on R". By the maximum principle, ws+ < U on , hence
wp+ < e[ fH|p. For n =1 < 2s this inequality also holds, see, e.g., [16, Remark 1.5].
Now let u; be the unique solution of P(¢, f*). Then u; > u by Corollary 3.4
Finally, we can consider wy+ as the solution of the problem P(w , f *). Theorem
(1] gives
u< (ur —wpe)t Fwpe <@ —wpe) oo +wps,s

and the last inequality in (41]) follows. O

Roughly speaking, Theorem [£.1] concerns the continuity of L 3 ¢ — u € L.
The next result gives the continuity of the arrow L™® 3 1 — u € H*(€).

Theorem 4.3 Let 1, € L(Q) be a sequence of obstacles and let f € H5(Q) be
given. Assume that there exists vy € HS(Q), such that vy > vy, for any h.

Denote by uy, the solution to the obstacle problem P (i, f). If ¥, — 1 in L>(§2),
then up, — u in PNIS(Q), where u is the solution to the limiting problem [P(1), f))

Proof. Let u be the solution to [P(¢, f)l We already know from Theorem [4.1] that
lu—uplloo < || —1n|lo- Hence, in particular, up — u a.e. in Q. Now, test P(1y, f)

10



with vy to obtain that

(=AYun,un) < ((=AVup = f,v0) + (f, un)-

Hence, the sequence uy, is bounded in H*(Q). Therefore, u, — u weakly in H5(€).
To prove that wj, — u in the H #(Q2) norm we only need to show that

limsup || (—=A)2upll2 < || (—A)2uls.

h—o00

For any € > 0 we introduce the function
ve =u+ (vg —u) Ae.

Since ¢y, — ¥ in L>®(§2), we have v, > 9y, for h large enough. Using v. as test
function in P(¢p, f) we get

(=AYup — fyu+ (vo—u) Ae —up) >0,
and hence
(=AY upll3 = (=AY un,up) < (=AFup = fu+ (vg —u) Ae) + (f,up).
Letting h — oo we infer

limsup || (A upll3 < (=AYu— fou+ (vo —u) Ae) + (f,u)

h—o00

= ||(~A2ul+ (~Afu~— f,(vo—u) Ae). (4.2)

Now we let ¢ — 0. Clearly (vg —u) Ae — —(vo —u)~ in L*(Q). In addition, the
functions (vg — u) A € are uniformly bounded in H*(Q) by iii) in Lemma 24l Thus
(vo — u) A e — —(vg — u)~ weakly in H5(2). Thus, from [@2) we get

limsup || (=A)2up3 < || (=A)2ull = (=Afu— £, (vo —u)7) = || (-=A)2ul3

h—o00

since u solves [P(1), f)l and therefore it satisfies condition ¢) in Theorem Thus
wp — uin H(Q). O

11



Next we deal with the continuity of the arrow H*® 3 ¢ — u € H*.

Theorem 4.4 Let v, € H*(R™) be a sequence of obstacles such that %j’ € I;TS(Q),
and let fy be a sequence in H*(Q). Assume that

v = in H¥(R™), and  fr, — f in H(Q)'.

Denote by uy, the solution to the obstacle problem P (¢, fr). Then up — u in ]?IS(Q),
where u is the solution to the limiting obstacle problem [P(1), f).

Proof. We can assume that fj, f = 0. If not, replace the obstacles v, and 1 with

Y, —wy, and ¥ — wy, respectively, see (L3).
Let uy, solve P(1,,0) and let u be the solution to the limiting problem P(1),0).

Recall that u is the unique minimizer for

0161}% (=AYv,v). (4.3)

Since u V ¢y, = u+ (¢, —u)* and ¢, —u — ¥ —u <0, then
wV i, —u in H3(Q) (4.4)
by Corollary 2.3l Moreover, u V vy, € K w, and thus from P(¢p,0) we infer
(=AY up,up) < (=AY up,u V). (4.5)

Inequality (£35]) guarantees the boundedness of the sequence uy in H* (©). Hence
we can assume that u, — 4 weakly in ]?IS(Q) Since 1, — ¥ and up — @ a.e. in €,
clearly u € K{Z
Next, by weak lower semicontinuity, (£35]) and (4] we get
(=AY a,a) <lUminf((—A)Yup, up) < limsup((—AYup,up) < (—AYa,u). (4.6)
h—o00 h—o00

Thus
(=AY al < || (—A)zala] (—A)zuls.

Hence, 4 = u, as the minimization problem (43]) admits a unique solution, and (4.6l)
implies || (—A)2up|l2 — || (—=A)?ul|2. Hence uy, — u strongly in H*(£). O

12



5 Proof of the main results

We start with a preliminary theorem of independent interest, that gives distribu-

tional bounds on (—A)u — f under mild assumptions on the data.

Theorem 5.1 Let ¢ and f € ]?IS(Q)’ satisfying assumptions Al) and A2) in The-
orem Il Let u € H%(Q) be the unique solution to[P(&, f)} Then

0< (—AYu—f < (=AY —wp)™ = )T in the distributional sense on 1.

Proof. The main tool was inspired by the penalty method by Lewy-Stampacchia
[10] and already used for instance in [I§] under smoothness assumptions on the data

and on the solution.

In order to simplify notations we start the proof with some remarks. First, we
can assume that f = 0, as we did in the proof of Theorem L4l Thus (—A)u > 0 and
u > 1), that imply « > 9™, use the maximum principle in Remark Clearly u is

the smallest supersolution to (—AYwv = 0 in K%, , and hence it solves the obstacle

er )
problem P(¢)*,0). In conclusion, it suffices to prove Theorem [5.I]in case f = 0 and

1 > 0 in R". Our aim is to show that

0 < (=AYu < ((~A)Yy)T in the distributional sense on €, (5.1)

for ¢ € ﬁS(Q), ¥ > 0, such that (—A)1) is a measure on Q.
The proof of (B1) will be achieved in few steps.

Step 1 Assume (=AY € LP(Q) for any large exponent p > 1. Then (2.1) holds.

We take p > %, that is needed only if n > 2s. Then H*(Q) < L” (Q) and

LP() € H5(Q) by Sobolev embeddings. In particular ((—A)y)t € H5(Q)'.
Take a function 6. € C*°(R) such that 0 < . <1, and
0:-(t) =1 fort <0, 6.(t)=0 fort>e.

By standard variational methods we have that there exists a unique u. € H*(1)

that weakly solves
(=AYue = 0 (u: — ) ((_A)Sl/’)+ n Q.

13



We claim that

u<u: <u-+e ae. in .

By iii) in Lemma 2] we can estimate

I(=A2W—u)t 3 < (AP —ue), (¥ —ue) ™)
< [ (A7) (1 - bufue 9@ — ) dz =0,

Q

Hence, u. > 1. Since (—A)’u. > 0, then u. > u by b) in Theorem B2l Next, we use
i11) in Lemma 24 and (—A)’u > 0 to estimate

I (—A)2 (ue —u— )T |3

IN

(=AY (ue — u), (ue —u —e)™)
< /((—A)%W 6o (te — ) (e —u— &) d = 0.
Q

Thus u. < u+e¢, and the claim is proved. In particular, we have that ||u; —ul/co — 0

as € — 0. Therefore, for any nonnegative test function ¢ € C§°(€2) we have that

(~Afug) = / u(—AYpdz = / ue (~Afpdi +o1)
Q Q
= (~AFus @) +o(1) < {(—AFR)*, )+ o(1),

that readily gives (—A)u < ((—=A)%)" in the distributional sense in Q.

Step 2 Approximation argument.

Fix a small £ > 0 and put Q. := {x € Q | dist(z,Q) < £}. The convex set
K.={veH*(Q)|v>1v¢ ae onR"}

contains K;Z, hence it is not empty. We denote by u. the unique solution to the

variational inequality
ue € K, , (=AYug,v—us) >0  YveK,, (P-)
so that u. € H* () and is nonnegative. Next we prove that

0 < (=AYu: < ((—AYy)*  in the distributional sense on €. (5.2)

14



For, we approximate v in a standard way, via convolution. Let (pp,); be a sequence
of mollifiers such that supp(pn) C B 1 and put ¢, = ¥ * p,. Notice that for h large
enough, ¥, = 0 outside €).. Therefore

p € H* (), n =1 in H(R™), (5.3)

The convex set K. p :={v € H*(Q.) | u> vy} is not empty, as it contains b,. The

variational inequality
up € K, ((=AVup,v —up) 20 Vv € Kep, (Pe,n)

has a unique solution wuy € HS (Qc). Theorem A4 readily gives that up — wu. in
ﬁS(Qe). Since (—A)*, € LP(R™) for any p > 1, then Step 1 applies. In particular

0 < (=AYup < ((—AY+)T in the distributional sense on . (5.4)
Next, ((—AY)T % pp, is a nonnegative smooth function, and
(AP # pp = (=AFY) * pp = (=Af 4y
Thus ((—AY)t * pp, > (=A)¢Y,) T, and (54) implies
0< (=AYu, < ((=AYy¥)" *p, in the distributional sense on €.

Claim (5.2) follows, since ((—A)9¥)T * p, — ((=A)’)™ in the sense of measures,
and (—AYu, — (—A)u. in the sense of distributions.

Step 3 Conclusion of the proof.

The last step in the proof consists in passing to the limit along a sequence € — 0.
First, we notice that u € Hs (Q:) and in particular v € K. Therefore, using the

variational characterization of the unique solution u. to (P.) we find

1 1

S A U ) < S((~AFu,w). (5.5)
Now we fix 9 > 0. Thanks to (5.0, we get that the sequence u. is bounded in
H(S.,), and therefore we can assume that u. — @ weakly in H5(Q.,). From (5.5)
we readily get

L (-AyaE) <

= (A u,u). (5.6)

N =
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On the other hand, u. — @ almost everywhere. Hence u € H* () and @ > ) on
Q, that is, u € K}, Using the characterization of u as the unique solution to the
minimization problem (@3], from (.0), (B.5) we get that ©« = u and u. — w in
H*(Q.,). In particular, ((—AYuc, ©) = (=AY u, @) for any ¢ € C5°(Q). Now, from
[E2) we know that ((—A)4)" — (=AY u. is a nonnegative distribution on €. Thus
((=AY)t — (—=A)u is nonnegative as well, and (5.0]) is proved. O

Proof of Theorem [I.1]
Statements 7) and i) hold by Theorem [5.Il It remains to prove the last claim.

It is not restrictive to assume f = 0. Hence u solves P(,0), (—AYu > 0
by Theorem B2l and u is nonnegative in €2, see Remark Actually u is lower
semicontinuous and positive by the strong maximum principle, see for instance [8]
Theorem 2.5]. Thus u > " and {u > ¢} = {u > T},

Next we use ¢) in Theorem B2 with v = ¢ € H5(9), to get

(=AYu,u—yT) =0.
Let ' be any domain compactly contained in €. We claim that

/(—A)su =) dr = 0. (5.7)
o
Since (—AYu - (u — ™) is a measurable nonnegative function then the integral in
(&) is nonnegative. To prove the opposite inequality we put g, = (u — ™) A m,
m > 1. Let ¢ be any nonnegative cut off function, with ¢ € C§°(€2) and ¢ =1 on
Q. Since (—AYu > 0, (-AYu € LL (Q), u — YT > ¢g, and ¢g, € L®(Q) has

compact support in 2, we have that

0= ((=AYu,u—¢") = (=Afu, ogm) Z/(—A)su (ogm)dx = /(—A)su'gmdw-
Q Qf
Next, use the monotone convergence theorem to get
0= tim [ (-AFu-gndo= [(-AFu-(u-v7)da,
Qf Qf

that concludes the proof of (5.7)).

Now, since Q' was arbitrarily chosen and (—AYu - (u — ™) > 0, equality (E.7))
implies that (—A)u- (u— ™) =0 a.e. in Q, and #4i) is proved. O
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Remark 5.2 Theorem [I1] holds with the same proof also in the local case s = 1.
Notice that no reqularity assumptions on 2 are needed, and the cases p =1,p = o0

are included as well.

Remark 5.3 To obtain better reqularity results for w, one can apply the reqularity
theory for
(-Afu=geLP(Q) inQ, uweHQ).

In particular, if p > 5= and §Q is Lipschitz and satisfies the exterior ball condition,
then u is Hélder continuous in 2. See for example [16, Proposition 1.4] and [17,
Proposition 1.1].

Proof of Theorem

As usual, we can assume f = 0. Fix a small € > 0, and let v; be a mollification of
¢ —e. Then ¢ is smooth on 2, 15 < 0 on 9Q and ¢ — 1) — £ uniformly on €, as
h — oo.

By Theorem [T}, the solution u, € H*() to P(¢5,0) satisfies (—A)u; € LP(Q)
and therefore uj is Holder continuous, see Remark Moreover, the estimates in
Theorem [l imply that uj — «® uniformly on 2, where u® solves P(y) —€,0). In
particular, u® € C°(QQ). Finally, use again Theorem EIlto get that u® — w uniformly,
where u solves P(1,0). In particular, u is continuous on R".

To check the last statement notice that the set {u > 9} C Q is open; for
any test function ¢ € C*({u > ¢¥}) we have that u & tp € K, and therefore
t((—AYu,+p) > 0 for |¢| small enough. The conclusion is immediate. O
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