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INTRODUCTION 

The International Association for the Study of Pain (IASP) defined pain as an unpleasant sensory and 

emotional experience associated with actual or potential tissue damage. In animal experiments we can 

examine only the activation of the nociceptors or the nocifensive behaviour which occurs by one of the 

noxious stimuli. Nociceptors are sensory nerve endings reacting for specifically harmful stimuli, and 

they can be grouped upon several points of view. Based on the nociceptors sensitivity they can be 

either unimodal (activated only by thermal or mechanical stimuli), or polimodal (besides thermal and 

mechanical stimuli they are also sensitive to chemical substances). Nociceptors can be also classified 

based on the their myelinization of axons: they can be either thinly-myelinated fast-conducting (12–30 

m/s) Aδ, or unmyelinated, slowly-conducting (0.5–2 m/s) C nociceptors.  

Capsaicin-sensitive sensory nerve-endings 

A huge number of the peripheral nociceptors (50-70%) produces the capsaicin-sensitive sensory-

nerves (Holtzer et al 1991). Their name came from the alkaloid of hot chilli pepper, since its receptor, 

the Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is located in the membrane of these 

nerve-endings. These nerve-endings have uniquely a three-fold functions:  On the one part the 

classical afferent function is activation by stimuli depolarisation and transmission of information to the 

central nervous system, thus develops the pain perception (nociception). Pro-inflammatory sensory 

neuropeptides (calcitonine-gene-related-peptide (CGRP), tachykinins (substance P and neurokinin-A)  

released from the activated sensory nerve-endings inducing vasodilation, plasma protein extravasation 

and activation of pro-inflammatory cells which leads to the neurogenic inflammation (Szolcsányi 1984 

a, b, 1988). This is the second part named locally efferent function. The neurogenic inflammation 

plays a crucial role in pathomechanism of numerous clinical states, however none of the currently 

available pharmaceutical drugs can inhibited its neurogen component (Helyes et al 2003). The third 

part is the systemic efferent function: besides the pro-infammatory neuropeptides anti-inflammatory 

and analgesic agents (e.g. somatostatin, pituitary-adenylate-cyclase- activating polypeptide (PACAP) 

are also released from the activated sensory nerve-endings and exert systemic anti-inflammatory and 

analgesic actions (Szolcsányi et al 1998 a, b). 

Structure and function of Transient Receptor Potential Vanilloid 1 (TRPV1) and Ankyrin 1 

(TRPA1) ion channels 

Transient Receptor Potential Vanilloid 1 (TRPV1) and Ankyrin 1 (TRPA1) expressed on the 

polimodal nociceptive primer sensory neurons of the dorsal horn and trigeminal ganglia. Both 

receptors play a relevant role due to activation of sensory nerves in mechanisms of pain (Fernandes et 

al 2011) and neurogenic inflammation (Geppetti et al 2008). In the membrain 97% of TRPA1 

expressing sensory nerves presented also TRPV1 ion channels, while 30% of the TRPV1 expressed 

neurons coexpressed TRPA1 receptors (Story et al 2003). TRPV1 receptor is a molecular integrator of 

physical and chemical stimuli (Tominaga et al 1998).The presence of the receptor supposed to by Prof. 
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Szolcsányi in 1975 (Szolcsányi et al 1975). A number of exogeneous plant-derived pungent vanilloid 

agents (resiniferatoxin (RTX), piperin, gingerol) (Pingle et al 2007, Szállási 2007) can stimulate the 

receptor. Therefore its name was originally vanilloid receptor 1 (VR1), which was altered to TRPV1 

because of structural similarity of other transient receptor potential mediated ion channels (Gunthorpe 

et al 2002). Besides capsaicin noxious heat (above 43°C)  can stimuli the receptor, as well as changes 

of the pH, the endovanilloids (e.g.anandamid), arachidicacid-metabolites, or essential oils (Pingle et al 

2007, Szállási 2007). Pro-inflammatory mediators, such as bradykinin, prostaglandins, adenosine-

triphosphate (ATP) protease-activating receptors (PAR 1, 2 ,4), tumor necrosis factor-alfa (TNF-alfa), 

nerve growth factor (NGF) also can sensitize the receptor by phosphorylation. On the effects of these 

mediators the pore proteins are allosteric modified due to increasing the heat, protons and/or capsaicin 

induced receptor activation (Moriyama et al. 2005, Szállási et al. 2007). Exogeneous agonists of 

TRPA1 receptor are remarkable the plant-derived irritant: allyl isothiocyanate (AITC) from mustard 

oil (Jorgt et al 2004, Bandell et al 2004, Bautista et al 2006), allicin from garlic (Macpherson et al 

2005), cinnamaldehyde (Macpherson et al 2006), as well as compounds of toxique gases and smoking 

(e.g. acrolein) (Bautista et al 2006). Endogenous agonists are the reactive oxigenenous radical (Bessac 

et al 2008b), the 4-hydroxi-nonenal (Trevisani et al 2007), lipide peroxydase products (Taylor-Clark et 

al 2008). Endogeneous modulators of TRPA1 are agents released from inflammatory processes e.g. 

bradykinin (Bandell et al 2004), PAR-2 agonists (Dai et al 2007), and hydrogen-sulfide (H2S) 

(Miyamoto et al 2011). Zinc, copper and cadmium ions also can stimuli the TRPA1 receptors (Hu et al 

2009, Gu és Lin 2010). 

The involvement of TRPA1 receptors in cold sensation are contradictory. Numerous different results 

can be found in the literature, there are argues in favour (Story et al 2003, Obata et al 2005, Kwan et al 

2006, Sawada et al 2008), and there are some against (Jordt et al 2004, Nagata et al 2005, Bautista et 

al 2006). It is supposed to that besides other mechanisms TRPA1 ion channel can contribute the 

sensation of temperature below 17 °C.  

Significance of developing novel analgesic drugs 

There was no breakthrough in the development of analgesic drugs acting on novel target in the last 

century. Pain killers with the same mechanism of action are used for decades, which can be divided 

into two main groups: the non-steroidal anti-inflammarory drugs (NSAID) and the opioids.  Although 

these drugs have high efficacy in several clinical states, they are uneffective in some specific pain 

condition (e.g. neuropathic pain). In the treatment of these diseases adjuvant analgetics are necessary. 

However the analgesic effect of these drugs is not always sufficient, and the therapeutic importance is 

decreased by the occasionaly serious side effects. Due to of these, it is highly relevant to identify novel 

targets acting selectively on the peripheral nociceptors, in order to minimalize the classical side effects 

of analgesic drugs. 
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AIMS 

We investigated the activation or inhibition mechanisms of TRP channels located on capsaicin-

sensitive sensory nerve-endings as well as their involvements in pain and inflammation using different 

pharmacological compounds or  gene-deleted animals.  

Our goals were the following: 

I. Investigation of the mechanisms of desensitisation of the capsaicin-sensitive sensory nerve-endings 

and the TRPV1 receptors using noxious heat or cold threshold determination technique.  

II.  Comparison of three novel TRPV1 receptor antagonists, SB705498, BCTC and AMG9810 

developed by different pharmaceutical companies, in TRPV1 agonist induced-, mild heat injury 

induced-, and plantar incision-evoked thermal hyperalgesia models using an increasing temperature 

water bath suitable for noxious heat threshold determination. The effects of these antagonists on the 

RTX-induced heat hyperalgesia were also investigated by measurement of the paw withdrawal latency  

using a plantar test apparatus in order to compare the sensitivity of the newly established method of 

heat threshold determination.  

III. We aimed to adopt the increasing temperature water bath to be suitable for measuring the noxious 

heat thresholds on the murine tail. Since the roles of TRPV1 and TRPA1 in heat and mechanical 

perceptions are contradictory, therefore we investigated these receptor functions with noxious 

threshold determining techniques using gene-deficient mice. 

IV. We aimed to establish and validate a well-functioning passive-transfer trauma murine model for 

the Complex Regional Pain Syndrome to confirm a role for pathogenic autoantibodies with a 

collaboration with Walton Pain Centre, University of Liverpool (dr. Andreas Goebel). 

 

I. INVESTIGATION OF THE DESENSITISATION AND ANTINOCICEPTION EFFECTS OF 

TRPV1 RECEPTOR AGONISTS MEASURING THE NOXIOUS HEAT AND COLD 

THRESHOLDS IN RATS 

The investigation of the roles of TRPV1 receptor-expressing polymodal nociceptors started with 

experiments on capsaicin’s selective excitatory and consequent blocking effects. Resiniferatoxin 

presenting naturelly in Morrocan Euphorbia resinifera plants can activate the TRPV1 receptor. It is 

100 fold potent than capsaicin, which means indicating the same effect as a defined concentration of 

capsaicin: 100 fold lower concentration of RTX is sufficient (Szolcsányi 1990, Szállási 1999). The N-

oleyldopamin is an activator of TRPV1 receptor, but its affinity is lower than capsaicin (Chu et al 

2003, Szolcsányi et al 2004).  

During the activation of TRPV1 ion channel it is permeable to Na
+
 ,Ca

2+
 and K

+
 ions. If the receptor is 

stimulated permanently and freqvently, the concentrate of intracellular cations are increased, which 

leads to swelling of cytoplasma and mithocondria, the energy consumption of the cells are decreased, 

then the nerve-ending became inefficient. This process is the desensibilization, which has 2 forms. 
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With lower concentration or applied for shortly periods only the response to capsaicin and other 

TRPV1 receptor agonists is diminished suggesting desensitization of the TRPV1 receptor. Higher 

concentrations and more prolonged exposure lead to a reduced responsiveness to all stimuli (heat, 

mechanical and chemical) activating the polimodal nociceptors. This form of desenstisation is 

suggested the impairment nociception of the whole sensory nerve terminal expressing TRPV1 

receptors and its background supposed to be dose-dependent ultrastructural or robust morphological 

differences (Szolcsányi et al 1975, 1987, Szállási et al 1989, Bevan and Szolcsányi 1990, Szolcsányi 

1993). 

METHODS 

1. Examination of the desensitization of the sensory nerve-endings: 100 µl capsaicin (3.3 nmol – 1 

µmol), RTX (0.016 – 0.5 nmol) or OLDA (5nmol – 1.25 µmol) was injected into both of the rat’s 

hindpaws. To investige the noxious heat thresholds increasing temperature hot plate was used every 

day, at that timepoint till the significantly differences compared to the controls are disappeared. The 

noxious heat and cold thresholds were examined in a parallel manner: both thresholds were 

determined in the same group of rats before bilater i.pl. capsaicin (0.1 and 1 µmol i.pl.) or RTX (0.16 

and 0.5 nmol i.pl.) administration and subsequently daily for a week. 

2. Examination of the desensitization of the TRPV1 receptors: To investigate the homologue 

desensitization of the TRPV1 receptor, intraplantarly applied RTX (0.016 nmol, 50 µl i.pl.) - or OLDA 

(250 nmol, 50 µl i.pl.) -evoked acute responses such as induction of nocifensive behaviour (time spent 

with paw shaking, licking or linching) and decrease of the noxious heat threshold were assessed. 3 

hours later the heat thresholds were determined and subsequently the same dose of RTX (0.016 nmol, 

50 µl i.pl.) either OLDA (5 nmol, 50 µl  i.pl.) or its vehicles was injected into the previously treated 

paw. To examine the specifity of the desensitization intraplantarly applied RTX (0.016 nmol) or its 

vehicle was injected 3 hours before, then one of the hindpaws was treated with 1% formalin to 

investigate the effects of pretreatment. To observe the possible cross-desensitization between OLDA 

and RTX animals were treated with OLDA (250 nmol, 50µl i.pl.) or its solvent. 3 hour later RTX 

(0.016 nmol, 50µl i.pl.) was injected in the previously treated hindpaw, then the latency of the 

nocifensive reaction and drop of the thermonociceptive thresholds were detected. 

RESULTS 

1. Examination of the desensitization of the sensory nerve-endings: Administration intraplantarly 

capsaicin or RTX increased the thermonociceptive thresholds in a dose-dependent manner measuring 

on the consecutive days. The minimum effective doses (defined as the lowest dose causing a 

significant increase of the heat threshold at any time point of measurement) were 10 and 0.05 nmol, 

respectively. The maximum threshold elevation was 2.3 ± 0.5 °C for capsaicin and 2.8 ± 0.5 °C for 

RTX within the investigated dose. However the effects of the agonists were dose-dependent, neither of 
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OLDA concentration elevated significantly the heat thresholds. Measuring parallel the heat and cold 

thresholds only the higher doses of capsaicin (0.1 and 1 µmol i.pl.) or RTX (0.16 and 0.5 nmol i.pl.) 

induced significant decrease of cold thresholds, which are returned to the control levels within 2-4 

days.  

2. Examination of the desensitization of the TRPV1 receptors: The intraplantar injection of 0.016 

nmol RTX and 5 nmol OLDA elicited acute nocifensive reactions which disappeared within 5 and 10 

min, respectively. On the effects of both agonist indicated a robust drop of heat thresholds (8-10 °C), 

which dissapeared after 30 min. To determinate the desensibilization of TRPV1 ion channels to 

chemical stimulation, in the previously treated hindpaw was injected with the same dose of RTX 

(0.016 nmol) or OLDA (5 nmol). The 3 hours later giving second injection significantly decreased 

both the latency of the nocifensive behaviour and the thermal hyperalgesia compared to the effects 

evoked by the first injection. In contrast, the same RTX pretreatment (0.016 nmol i.pl. for 3 h) failed 

to alter the nocifensive reaction evoked by a subsequent i.pl. injection into the RTX-treated hindpaw 

of formalin (TRPA1 agonist) solution (1%). Pretreatment with OLDA (250 nmol i.pl.) significantly 

diminished the acute effects of 3 hours later i.pl. injected RTX (0.016 nmol) compared to the vehicle-

treated animals, which may indicated a cross-desensitization between the two TRPV1 receptor 

agonists. 

CONCLUSION 

In our experiments the locally (intraplantarly) applied capsaicin and RTX evoked a long-lasting 

elevation of the noxious heat thresholds indicating the thermal antinociception. The latency of the 

effects induced by capsaicin or RTX  was dose-dependent: the effects lasted  with lower concentration  

to 2-5 day, while with higher concentration they could be observed for more than a week, up to 11 

days. The background of long-lasted threshold elevation is the functional elevation, that is the 

impairment of the TRPV1 expressed polimodal nociceptors renders them less to all stimuli. 

Intraplantarly injection of RTX or OLDA induced acute nocifensive reaction and markedly reduced 

the heat thresholds. These were almost abolished by i.pl. pretreatment with the same TRPV1 receptor 

agonist at doses that failed to evoke a lasting elevation of the noxious heat threshold suggests that 

desensitization of the TRPV1 receptor and not the whole sensory nerve ending occurred. 

Interpretation of the drop of cold thresholds induced by TRPV1 agonists is the impairment of the cold-

sensitive nociceptors, which molecular mechanisms are not clear yet. The observation, that the cold 

threshold values recovered faster to the control levels, than the heat thresholds can be normalized 

suggesting the response to noxious heat or cold stimuli mediated –at least partly –by different fibres. 
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II. INVESTIGATION OF THE EFFECTS OF TRPV1 ANTAGONISTS IN DIFFERENT 

THERMAL HYPERALGESIA MODELS 

During preclinical investigations numerous molecular mechanisms have been identified which are 

involved in development and maintaining of pain. Due to the large number of pro-nociceptive 

endogenous activators/sensitizers of TRPV1, this receptor arose as a promising target for the 

development of novel analgesic drugs which act directly on peripheral nociceptors by blocking 

TRPV1 (Brederson and Szállási 2013). 

 

METHODS 

1. RTX-induced drop of noxious heat threshold: After measuring the controls with increasing 

temperature water bath TRPV1 receptor antagonist drugs or its vehicles were administered orally (0.5 

ml/100 g). 1 h later RTX (0.01 μg) was administered intraplantarly into one of the hindpaws. Then the 

noxious heat thresholds were determined 5, 10, 15 and 20 min after RTX treatment.  

2. Mild heat injury-induced thermal hyperalgesia: After control heat threshold measurements rats 

were anaesthetized with halothane and one of the hind paws was immersed in a 51 °C hot water bath 

for 20 s. TRPV1 antagonists were administered intraperitoneally (i.p., 0.5 ml/100 g) after the 20-min 

measurement which was followed by repeated heat threshold measurements at 40, 50 and 60 min after 

heat injury.  

3. Plantar incision-induced thermal hyperalgesia: Following control threshold measurements heat 

threshold drop was induced by a standardized surgical incision performed on the plantar surface of the 

hindpaw (Füredi et al 2009). Rats were anaesthetized with sodium pentobarbital (50 mg/kg i.p.) and a 

1 cm long midline incision was made starting 0.5 cm from the heel involving skin, fascia and muscle. 

24 h after surgery, two heat threshold measurements were performed and TRPV1 blockers were 

administered per os (p.o., 0.5 ml/100 g). Heat threshold measurements were repeated 1, 2, 3 and 4 h 

after treatment. 

4. Paw withdrawal latency measurement with a plantar test apparatus to assess RTX-induced 

thermal hyperalgesia: A separate series of experiments were performed to assess the effect of the 

same TRPV1 antagonists on the RTX-induced thermal hyperalgesia using a Plantar Test apparatus for 

measurement of paw withdrawal latency. After control measurements, RTX was administered 

intraplantarly (0.06 μg) and paw withdrawal latency measurement was repeated 10 min later. One half 

of the group was treated with the drug and the other with its solvent employing oral administration 

(0.5 ml 100 g) 1 h prior to RTX treatment. 

RESULTS 

1. Inhibition of the resiniferatoxin (RTX)-induced thermal hyperalgesia: The control noxious heat 

threshold of rats was 43.2 ± 0.4 °C (n=36). After the RTX treatment a robust drop of heat threshold 
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(8–10 °C) was measured with the increasing temperature water bath which was maintained during the 

20 min of experiment. Pre-treatment with any of the three TRPV1 receptor antagonist compounds 

dose-dependently inhibited the RTX-induced heat threshold drop at all time points in the dose range of 

1–30 mg/kg p.o. The minimum effective dose was 1 mg/kg for each compound. The highest applied 

dose of SB705498 (10 mg/kg) completely abolished the drop of heat threshold, while BCTC (30 

mg/kg) and AMG9810 (10 mg/kg) produced maximal inhibition of 74.5% and 66.2%, respectively.  

2. Inhibition of the heat injury-induced thermal hyperalgesia: All TRPV1 antagonist compounds 

injected i.p. as a posttreatment after the 20-min measurement significantly reversed the heat injury-

induced drop of heat threshold. The minimum effective i.p. doses were as follows: SB705498 10 

mg/kg, BCTC 3 mg/kg and AMG9810 1 mg/kg. The dose–response curves of SB705498 and BCTC 

slightly declined at the maximum applied dose (30 mg/kg) producing their maximal inhibitory effect at 

the 10 mg/kg dose (54.1% and 74.2%, respectively) whereas AMG9810 had a maximal inhibitory 

effect of 60.3% at the 30 mg/kg dose. 

3. Inhibition of the surgical incision-induced thermal hyperalgesia: All antagonist compounds 

applied p.o. after the confirmation of thermal hyperalgesia dose-dependently diminished the  

postoperative drop of the noxious heat threshold in the dose range of 3–30 mg/kg. The minimum 

effective doses were as follows: SB705498 10 mg/kg, BCTC 3 mg/kg and AMG9810 3 mg/kg. The 

maximal inhibitory effects were 40.5% for SB705498, 52.9% for BCTC and 84.4% for AMG9810.  

4. Effects of TRPV1 receptor antagonists on the RTX-induced thermal hyperalgesia assessed by 

paw withdrawal latency measurement: Baseline paw withdrawal latency was 11.03 ± 0.3 s, which 

decreased to 4.38 ± 0.3 s after intraplantar RTX (0.06 μg) injection. The antihyperalgesic effect of 

either SB705498, BCTC or AMG9810 pretreatment (p.o., 1 h prior to RTX injection,), observed as a 

prolongation of paw withdrawal latency, was only significant at the highest applied dose (30 mg/kg), 

with the percentage inhibition values being 43%, 38% and 37%, respectively. 

CONCLUSIONS 

We were the first who published comparing data about TRPV1 receptor antagonists developed by 

different pharmaceutical companies using methods based on a novel approach of noxious heat 

threshold measurement and a traditional technique of latency measurements. Our results demonstrate 

that the heat threshold drop evoked by direct TRPV1 receptor activation, mild heat injury or surgical 

incision are appropriate thermal hyperalgesia models that display a remarkably high sensitivity to 

TRPV1 receptor antagonists. Comparison of the sensitivity to TRPV1 antagonism of our heat 

threshold measurement approach with that of the conventional paw withdrawal latency determination 

(Hargreaves et al 1988) was performed in the RTX hyperalgesia model. It has been shown that the 

heat threshold measurement is much more sensitive as it resulted in considerably (30 times) lower 

minimum effective dose for each TRPV1 antagonist. These results confirmed the role of the increasing 

temperature water bath as a novel reliable preclinical testing method.  
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III. INVESTIGATION OF THE ROLES OF TRPV1 AND TRPA1 RECEPTORS IN PAIN 

MODELS USING GENE-DELETED MICE  

Cloning the TRPV1 receptor opened a new way to study its structure. With the help of this emerged 

that the receptor can be directly activated by noxious heat and low pH, furthermore the receptor also 

plays a central role in the integration of painful stimuli (Caterina et al 1997; Tominaga et al 1998). The  

detailed investigation of the involvement of the receptor in inflammatory or pain processes was 

permitted after generating gene-deleted mice in 2000 (Caterina et al 2000; Davis et al 2000).  

Altrough TRPA1 receptor has been already cloned in 1999 (Jaquemar et al 1999), its expression on the 

neurons was published only in 2003 (Story et al 2003), by whom, the receptor has been identified as a 

sensor of noxious cold. After the first few experiments using gene-deficient mice it was considered, 

that the receptor essential in thermal hyperalgesia (Davis et al 2000), but its role in basic heat 

sensation is unclear (Caterina et al 2000). It is confirmed by previous results of us, that the nociceptive 

heat thresholds of TRPV1 gene-deleted mice were not differ from the thresholds of their wildtypes 

(Almási et al 2003). However the thermal and mechanical hyperalgesia induced by mild heat injury 

was significantly lower in mice lacking TRPV1 gene. (Bölcskei et al 2005).  

Mustard oil was considered as a selective exogeneous agonist of TRPA1 receptor (Jorgt et al 2004), 

but its selectivity is ambigous, since it is supposed to also involving in the activation of TRPV1 

receptors (Gees et al 2013, Everaerts et al 2011). 

Nociceptive thermal threshold determinations on the murine hindpaw is not known in the literature. 

Because of mice are not tolerated well handling by the investigator and the size of the murine paw is 

relatively small, we focused on the investigation of murine tail. During our experiments we adopt the 

increasing temperature water bath developed in our department to be suitable for measuring the 

noxious heat thresholds of the murine tail with the help of a narrow plastic tube. 

METHODS 

1. Preliminary measurements and determination of the basal (control) noxious heat threshold: 

Preliminary measurements were performed on male CD1 mice (25-35g), while during further 

experiments we used male TRPV1 and TRPA1 gene-deleted animals and their wildtype counterparts. 

In order to eliminate the difference resulting from the handling of the investigator, we innovated a 

restrainer (from narrow plastic tube with holes on its walls) for holding the animals during the 

measurements. After putting the animals into the restainers, they were hung over the equipment to let 

the murine tail being immersed into the water bath deep enough. After few minutes habituation, 

noxious heat thresholds were determined on the tails of the animals every 10 minutes during 1 hour on 

two consequetive days. The noxious heat thresholds of their littermates holding in hands by the 

investigator were detected for comparison.  
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2. Investigation of mustard oil-evoked thermal hyperalgesia: Mustard oil-induced drop of noxious 

heat threshold was determined both on the tail and on the paw with increasing temperature water bath 

or increasing temperature hot plate, respectively. After  the control measurements, either the tail or the 

paw was dipped into 1% mustard oil, dissolved in 30% DMSO for 30 or 60 sec, respectively. Heat 

threshold measurements were repeated every 10 minutes for 1 hour after application of mustard oil. 

3. Investigation of mustard oil-evoked mechanical hyperalgesia: The mechanical touch sensitivity 

of the plantar surface of the murine paws were determined with dynamic plantar aesthesiometer. After 

control measurements one of the hindpaws of the mice was immersed into 1% mustard oil for 60 sec. 

Measurements were assessed 30, 60, 120, 180 minutes after the application.  

4. Investigation of the latency of the mustard oil-induced nocifensive behaviour: The murine tail 

or one of the hindpaws was immersed into 1% mustard oil, and the latency of the nocifensive 

behaviour was detected. Strongly tail or paw shaking was accepted as nocifensive behaviour. The 

maximal time of the latency was 3 minutes. 

RESULTS 

1. Preliminary measurements and determination of the basal (control) noxiuos heat threshold: 

Between closing the animals in restainers or holding them in hands during the measurements highly 

reproducible threshold values without significant alterations were obtained. However, application of 

restainers contributes to the semi-automation of the process, allowing less time-consuming 

measurements. Despite of the TRPA1 gene-deleted mice, the basal noxious heat thresholds of the tails 

of TRPV1 gene-deficient mice were significantly higher (TRPV1
-/-

: 45.42 + 0.34 °C), compared to 

their wildtypes (TRPV1
+/+

: 42.98 + 0.4 °C), but these differences were not detectable on the paws 

neither investigated murine strains. 

2. Investigation of the effects of mustard oil-evoked thermal hyperalgesia: The average control 

noxious heat threshold of TRPV1
+/+

 animals was 43.53 + 0.33 °C measured on the murine tails. 10 

minutes after mustard oil application this was decreased to 35.96 + 1.23 °C. This drop of heat 

thresholds was significantly reduced in TRPV1 gene-deleted animals (from 46.05 + 0.35 °C to 40.6 + 

0.6 °C), and this distinction (4-6°C) levelled out during the total time of the measurement. Drop of the 

noxious heat thresholds measuring on the tail was not statistically significantly in presence or failure 

of TRPA1 receptor. The average of the noxious heat thresholds of TRPV1
+/+

 and TRPA1
+/+

 wildtype 

animals (44.8 + 0.4°C és 45.0 + 0.2 °C, respectively) decreased 12-14°C  after 20 min the mustard oil 

application. This decrease maintaining at the end of the experiment was significantly lower in TRPV1 

gene-deleted mice compared to their wildtypes, but not in TRPA1 gene-deficient animals. 

3. Investigation of the effects of mustard oil-evoked mechanical hyperalgesia: 30 minutes after the 

mustard oil application a markedly drop of mechnonociceptive thresholds (45-55%) was observed. 

This decrease maintaining at the end of the experiment was significantly lower (around 25%) in 
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TRPV1 gene-deleted animals. The mechanical hyperalgesia was similar in TRPA1 gene deficient mice 

comparing their wildtypes. 

4. Investigation of mustard oil-evoked nocifensive behaviour: Measuring the latency of appearing 

of the nocifensive behaviour was 103 + 14 s in mustard oil not-containing solution on the tail of 

TRPV1
+/+

 animals, which was significantly higher, than the total time spent in 1% mustard oil 

containing solution (48 + 5 s). Total time of TRPV1
-/-

 animals dipping into 1% mustard oil was 

significantly higher (89 + 13 s). TRPA1
+/+

 animals  spent 63 + 8 s in mustard oil not-containing 

solution, while this was significantly lower (26 + 4 s) in 1% mustard oil. Time spent in mustard oil 

until nocifensive reaction was significantly higher (82 + 13 s) measuring on the tail of TRPA1 gene 

deleted animals. 

CONCLUSIONS 

With the help of adopting increasing temperature water bath for mice we had the opportunity to 

measure the noxious heat threshold of the murine tail. Using the restainer measurements were less 

time-consuming, and eliminated the differences resulting from the handling of the investigator. This 

modified increasing temperature water bath is suitable to be a novel reliable preclinical testing method 

and with the application of increasing temperature hot plate it is appropiate for comparing the heat 

thresholds of both the murine tail and paws, simultanously. With the help of these methods, we 

provided the first evidence that the tail heat thresholds of TRPV1 gene-deleted mice were significantly 

higher compared to their wildtypes, while there was no difference between the heat thresholds of the 

paws. These results suggest, that the murine tail may have a greater relevance in heat sensation 

compared to the paw and  body regions can be characterized with different receptor density.  

Our inflammatory hyperalgesia model has been considered as a well-established model, however 

mustard oil-induced hyperalgesia was similar both on the tail and the paw of TRPA1
-/-

 animals. These 

results suggest, that mustard oil can activate TRPA1 receptors in various processes, in our experiments 

they played a role only in mustard oil-induced nocifensive reaction. Mustard oil-evoked inflammatory 

(thermal and mechanical) hyperalgesia independently from the examined body regions was 

significantly smaller in TRPV1
-/-

 animals compared to their wildtypes. This may be due to other 

unidentified mechanisms may involve the development of its mechanisms as well as, that mustard oil 

can be also activate the TRPV1 receptor besides TRPA1. 

 

IV. THE PASSIVE TRANSFER-TRAUMA MODEL OF COMPLEX REGIONAL PAIN 

SYNDROME (CRPS) 

The mechanisms of the neurogenic inflammation play a crucial role in numerous inflammatory disease 

with severe persistent pain condition (e.g. rheumatoid arthritis, Levine et al 1986), as well as in the 

development of Complex Regional Pain Syndrom (CRPS), presumably. The disease usually occurs 
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after a minor limb injury, however neither its aetiology nor its pathophysiological processes are clear 

yet. Overreaction of the immune system againts antigens released from sensory nerves and complex 

neuro-immune interactions are suggested to be involved in its mechanisms (Blaes et al 2007).  

The symptoms can be healed spontanously, but they can be relapsed and developing a monthly or 

yearly longstanding severe pain condition in their higher proportion of the cases. The previously 

applied plasmapheresis treatments were successful, suggesting the possible role of autoantibodies 

mediated immun reactions (Goebel et al 2010, 2011, Kohr et al 2011, Marinus et al 2011). Diseases 

due to pathogenic autoantibodies can sometimes be transferred to rodents by intra-peritoneal injection 

of patients’ serum-IgG (‘passive transfer’).  

 

METHODS 

Experimental design and protocol: We investigated the IgG fractions purified from blood sera of 6 

CRPS patients and 6 healthy volunteers sent by Dr. Goebel, using in the experimental paradigm of the 

murine model elaborated by us. All the patients fulfilled the following diagnostic criteria (Harden et al 

2010): they had suffered from CRPS more than 1 year, but no other significant pains or medical 

disorders, their pain intensity was 5 or higher on a 11 point numeric rating scale (0-10), they had been 

seen at the study centre within the year before enrollment. Healthy volunteers were matched by age (+ 

10 years) and gender to the patients, and had no chronic pain problems, their first degree relatives were 

not suffering from autoimmune disorders.  

Mice (n=5-7 per group) were treated with the IgG fractions obtained from the 6 CRPS patients. IgG 

fractions obtained from healthy volunteers as well as saline-treated groups served for controls. The 

IgG concentrations from CRPS or healthy volunteers were same. Mice were treated intraperitoneally 

twice per day with serum IgG, or saline on days -1, 0, and 5, 6. ’Day 0’ was the day of the plantar skin 

and muscle incision injury adapted for use in mice (Banick et al 2006, Pogatzki-Zahn et al 2007). We 

examined mechanical sensitivity (pain threshold) with dynamic plantar aesthesiometry, the paw 

volume with plethysmometry, heat and cold sensitivity, the spontanous weight distribution with 

incapacitance tester, the spontaneous locomotor activity with open field test, motoric coordination 

with Rotarod, the temperature of the plantar surface with contact thermometer, as well as the changes 

of body weight during the 8 days of the experiment.  On day 8 the animals were sacrificed, their limbs 

were removed including the tibiotarsal joint and stored frozen at -80°C for later analysis of tissue 

neuropeptides and cytokines. 

1. Investigation of touch sensitivity: Pain and mechanical hyperalgesia are the most common 

positive sensory signs in CRPS. The touch sensitivity measurements were performed before the 

passive-transfer treatment and on experimental days 1, 2, 3, 7 and 8. 
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2. Paw swelling: The other characteristic clinical symptom of CRPS-affected limbs is swelling. The 

paw volumes measuring with plethysmometry were investigated before passive transfer experiments 

(baseline), and on days 1, 2 ,3 , 7 and 8 of the experimental period.  

3. Heat and cold sensitivity: Both heat and cold allodynia/hyperalgesia are common in CRPS 

affecting a third of patients. We measured the thermonociceptive threshold of the paw on days 1, 2, 3, 

7 and 8 with an increasing temperature hot plate. Cold sensitivity was determined by the withdrawal 

latency after immersing the affected paw in 0 
o
C icy water at baseline, and on days 3, 7 and 8.  

4. Spontaneous weight distribution: Spontaneous weight bearing on the hindlimbs was determined 

with the incapacitance tester and the measurements were performed on days 7 and 8. 

5. Spontaneous locomotor activity and motoric coordination:: The locomotor activity was assessed 

in a minimally anxiogenic open field test on days 0 and 6. Motoric function and coordination was 

investigated with RotaRod apparatus on days 0 and 6. The speed of the rotating wheel in the first 10 

seconds was constant, then increased from 4 to 40 rounds per minute. 

6. Determination of paw temperature and body weight monitoring:  The temperature of the 

plantar surface of the hindpaws was measured with contact thermometer on day 7. Body weight of the 

animals was detected every day at the same time. 

7. Determination of inflammatory neuropeptides and cytokines in tissue homogenates 

After all functional testing had been completed on day 8,  all animals were deeply anaesthetized , then 

sacrificed by cervical dislocation. The paws were excised, including the tibiotarsal joint, then the toes 

were removed and the samples were homogenized in sterile phosphate buffer. CGRP- and SP-like 

immunoreactivities were determined with the help of specific and sensitive radioimmunoassays, while 

tumor necrosis factor- alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1-beta (IL-1β) were 

simultaneously detected with Luminex® 100™ xMAP system according to protocol described in the 

user manual of the kit. 

RESULTS 

1. Mechanical hyperalgesia: The preoperative mechanonociceptive thresholds of the affected limbs 

were similar. The plantar skin-muscle incision decreased these thresholds by 45-50% in all three 

groups, one day after surgery. In the saline-treated control group the mechanical hyperalgesia 

recovered to 16 ± 2.2 % on day 3, and was thereafter maintained at that level. On day 7 hyperalgesia in 

the CRPS IgG-injected groups was significantly greater when compared to the healthy IgG-injected or 

saline treated groups. 

2. Paw oedema: The preoperative control paw volumes of saline, healthy IgG and CRPS IgG-treated 

mice were similar. Plantar incision induced a 20.56 ± 2.52 % oedema formation relative to the 

preoperative volume, in the saline-treated control group one day after the surgical procedure, which 

gradually decreased to 10.52 ± 1.83 % by day 7. The greatest increase (32.3 ± 1.8%) in paw volume in 
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the CRPS group was seen on day 2, this was 45 % relative increase compared to the healthy IgG-

treated group. 

3. Heat and cold hyperalgesia: Measuring the thermonociceptive thresholds there were only minor 

changes in response to injury without significant differences between groups. Therefore we decided 

testing cold hyperalgesia in the further experiments. The cold sensitivity developed from the beginning 

of the experiments till day 8 in all groups, but without any significant differences.  

4. Spontanous weight distribution: There was a mild reduction in weight bearing on the injured side 

in all groups with a peak on day 3, but no significant differences between the groups, testing was 

therefore discontinued. 

5. Spontanous locomotor activity and motoric coordination: The spontaneous locomotor activity as 

determined in the open field test by the number of fields crossed and number of rearings, as well as 

time spent with moving, spent in the central regions and spent with grooming on days 0 and 6 did not 

differ significantly in all groups. There was also no significant difference in rotarod performance 

measuring on day 0 between groups. 

6. Changes of paw temperature and body weight: There were no differences between CRPS-IgG, 

and saline or healthy-IgG groups in either the absolute paw temperatures of the injured limbs, or in the 

mean absolute temperature differences between the respective injured- and non-injured paws on days 

1, 5 and 7.  The weight did not change significantly during the 8 days of the experiment.  

7. Determination of inflammatory neuropeptides and cytokines in tissue homogenates: Incision 

significantly increased SP concentration in all groups, but this increase was significantly greater in 

CRPS IgG-injected mice as compared to healthy IgG treatments. In contrast, CGRP-immunoractivity 

did not change either in response to injury, or IgG treatments. IL-1β, IL-6 and TNF-α concentrations 

were no different between groups. 

 

CONCLUSIONS 

We were the first who described, that the most prominent clinical signs (persistent pain/hyperalgesia, 

oedema) of CRPS occuring after minor limb injury can be reproduced by passive transfer human IgG 

to mice. Although most patients improve quickly, those whose condition becomes chronic (about 15%, 

Birklein et al 2004, de MM et al 2009) have persistent pain, whereas their initial limb signs, such as 

limb swelling often improve. The characteristics of our model resemble this pattern. These results 

suggest a possible role for pathogenetic autoantibodies in patients with long-standing CRPS. However 

in cold hyperalgesia significantly differences were not detected between the groups, mechanical 

hyperalgesia was severe in the CRPS IgG-treated groups. It has been suggested that central 

sensitization processes may contribute to development of mechanical hyperalgesia. An additional 

important finding paralleling human disease (Weber et al 2001) is the significantly increased 

concentration of the inflammatory neuropeptide SP in the injured paws of CRPS-IgG-injected animals.  
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The major strength of our results is the first delivery of a good reproducible model in which both limb 

injury and variant human condition (specific IgG serum-autoantibodies) are necessary elements, as in 

the clinical disease. With the help of human serum-IgG from patients with longstanding CRPS we 

induced the most prominent clinical (pain, oedema) and laboratory features (SP identified as a relevant 

pathophysiological factor) of the human disease. Our results should be important to clinical research, 

because they suggest the value of considering autoantibody-removing therapies for longstanding 

CRPS.  The model is suitable to investigate the precise mechanisms of the disease, to identify the key 

mediators and target molecules, which may open new perspectives in pharmaceutical research.  

 

SUMMARY OF THE NOVEL FINDINGS 

1. Using exact measurement of threshold temperatures which elicit nocifensive reactions in rats both 

in the hot and cold range revealed that intraplantar injection of the TRPV1 receptor agonist capsaicin 

or RTX impairs noxious thermosensation in both ranges for several days albeit the recovery of the 

cold threshold is faster. These alterations indicate a functional desensitization of peripheral terminals 

of TRPV1-expressing sensory neurons responsible for noxious heat and cold responsiveness which 

could be differentiated from desensitization of then TRPV1 receptor by low doses of RTX or OLDA. 

Both types of desensitization have relevance for development of novel analgesics with a peripheral site 

of action. Nerve-ending desensitization is already exploited for analgesia in form of topically applied 

TRPV1 receptor agonists, but the employed experimental paradigms based on measurement of the 

noxious thermal thresholds may serve as novel in vivo preclinical screening methods.  

2. We have firstly provided comparing data about TRPV1 receptor antagonists using methods based 

on a novel approach of noxious heat threshold measurement and a traditional technique of latency 

measurements. Our results demonstrate that the heat threshold drop evoked by direct TRPV1 receptor 

activation, mild heat injury or surgical incision are appropriate thermal hyperalgesia models that 

display a remarkably high sensitivity to TRPV1 receptor antagonists. The increasing temperature 

water bath is suitable to be a novel reliable preclinical testing method. 

3. We provided evidence that the heat thresholds of TRPV1 gene-deleted mice were significantly 

higher compared to their wildtypes when measuring the tail, but not the paw. Despite of the literature 

TRPV1 receptors play a role in noxious heat sensation, at least on the murine tail. In TRPV1 gene-

deficient mice the mustard oil-induced inflammatory thermal hyperalgesia decreased significantly in 

both examined body regions, but the mechanical hyperalgesia diminished only on the paws. There 

were no differences in both investigated body regions by in case of failuring TRPA1 receptor. By 

investigation of the latency of appearing the acute nocifensive reaction both TRPV1 and TRPA1 gene-

deleted mice showed significantly later the nocifensive reaction compared to their wildtype 

counterparts. This is suggesting, that the TRPA1 agonist mustard oil is not selective to TRPA1, but it 
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can also activate TRPV1 receptor. This latter mechanism may mediate the inflammatory hyperalgesia 

and may have an involvement of nocifensive reaction. 

4. We were the first who described, that the most prominent clinical signs (persistent 

pain/hyperalgesia, oedema) of CRPS occuring after minor limb injury can be reproduced by passive 

transfer human IgG to mice. Our results should be important to clinical research, because they suggest 

the value of considering autoantibody-removing therapies for longstanding CRPS. The model is 

suitable to investigate the precise mechanisms of the disease, to identify the key mediators and target 

molecules, which may open new perspectives in pharmaceutical research. 
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