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INTRODUCTION 
 
Nociceptors are specialized nerve endings which detect potentially harmful stimuli and 

transmit them to the central nervous system. Cutaneous nociceptive primary afferents can be 

classified based on their axons as myelinated, fast-conducting Aδ nociceptors and 

unmyelinated slowly-conducting C nociceptors. Concerning phasic stimuli, the previous are 

responsible for the fast, sharp component of pain sensation, whereas the latter generate the 

second, slower, diffuse and blunt component. Based on their sensitivity, a considerable 

fraction of nociceptors are polymodal i.e. sensitive to noxious heat and mechanical stimuli as 

well as endogenous and exogenous chemical substances. 

1. CAPSAICIN-SENSITIVE NOCICEPTORS 

Capsaicin, the pungent compound of chilli pepper has played an outstanding role in the 

investigation of nociceptive primary afferents as a selective test agent. Capsaicin-sensitive 

sensory neurons in the skin are polymodal nociceptors which comprise the majority of C and 

Aδ nociceptors. Capsaicin selectively excites these fibres and at higher concentrations and 

upon longer exposure activation is followed by a persistent functional blockade. This process 

results in a decreased responsiveness of the neuron to all stimuli; however, selectivity ensures 

that other sensory modalities (touch, cold sensitivity, taste etc.) remain intact (Jancsó, 1960; 

Szolcsányi, 1977).  

Orthodromic or antidromic stimulation of capsaicin-sensitive nociceptors elicits 

vasodilatation and plasma protein extravasation in the innervated area. This phenomenon is 

denominated neurogenic inflammation (Jancsó et al., 1967; 1968) which is induced by 

neuropeptides released by exocytosis from the capsaicin-sensitive nerve endings, such as 

tachykinins (substance P, neurokinin A and B) and calcitonin gene-related peptide (CGRP) 

(Maggi, 1995). Capsaicin-sensitive nerves have therefore a dual function: their efferent 

function is the transmission of action potentials from the periphery to the central nervous 

system, whereas neuropeptides released from the peripheral nerve endings mediate a local 

effector function (Szolcsányi, 1996). Nerve endings also contain neuropeptides other than 

tachykinins and CGRP, e.g. somatostatin which is also liberated upon activation (Szolcsányi 

et al., 1998a,b). 
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2. THE CAPSAICIN VR1/TRPV1 RECEPTOR 

The VR1/TRPV1 receptor identified as capsaicin’s receptor was the first heat sensitive ion 

channel to be discovered (Caterina et al., 1997). Besides capsaicin, noxious heat stimuli (> 43 

°C), low pH, other exogenous irritants (e.g. resiniferatoxin) and endogenous mediators 

(anandamide, lipoxygenase products, N-oleoyl-dopamine) are capable of activating the 

receptor. It can be considered therefore an integrator molecule of different physical and 

chemical painful stimuli (Tominaga et al., 1998). When the receptor is activated, the opening 

of the channel pore leads to an influx of Na+ and Ca2+ ions which depolarize the nerve ending 

and eventually contribute to action potential formation, and Ca2+ ions also induce exocytosis 

of stored neuropeptides.  

3. ROLE OF THE TRPV1 RECEPTOR IN THE SENSITIZATION OF NOCICEPTORS 

Tissue injury or inflammation induces hyperalgesia, i.e. enhanced pain sensation which by 

definition implies that the stimulus intensity–pain sensation curve is shifted to the left and its 

maximum is increased. A major component of the development of thermal hyperalgesia is the 

sensitization of the peripheral endings of nociceptive afferents during which their threshold 

decreases and suprathreshold stimuli evoke larger responses. A possible mechanism of heat 

sensitization is that sensitivity of the TRPV1 receptor is increased due to phosphorylation. 

There are more and more available data concerning that mediators capable of sensitizing 

nociceptors to heat (bradykinin, prostaglandins, ATP, serotonin etc.) lead to enhanced heat 

responsiveness by activating signal transduction pathways involving protein kinases (protein 

kinase C – PKC, protein kinase A – PKA) which phosphorylate the TRPV1 receptor 

(Tominaga et al., 2001; Sugiura et al., 2002; Moriyama et al., 2005). Recent reports show that 

various lipoxygenase products are able to excite directly the TRPV1 receptor (Hwang et al., 

2000). The importance of TRPV1 receptor is further supported by the finding that no 

inflammatory thermal hyperalgesia was found in mice lacking the receptor (Caterina et al., 

2000; Davis et al., 2000). In conclusion, TRPV1 receptor-expressing neurons are potential 

peripheral targets for the development of new analgesic drugs.  

4. ANTI-INFLAMMATORY AND ANTINOCICEPTIVE EFFECT OF SOMATOSTATIN 

RELEASED FROM CAPSAICIN-SENSITIVE NERVE ENDINGS 

Tachykinins and CGRP released from capsaicin-sensitive fibres induce local inflammation in 

the innervation area, somatostatin, however, enters the circulation and exerts a systemic anti-
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inflammatory (Szolcsányi et al., 1998a,b) and antinociceptive effect (Helyes et al., 2000). 

Besides the afferent and local efferent functions, capsaicin-sensitive neurons have therefore a 

systemic, neurohormonal regulatory or “sensocrine” function (Thán et al., 2000).  

5. CANNABINOID RECEPTORS AND THEIR AGONISTS: NEW TARGETS OF 

ANALGESIA 

The first identified endogenous cannabinoid, anandamide binds mainly to cannabinoid CB1 

receptors which are found in large numbers in the central nervous system in areas of afferent 

nociceptive pathways and descending inhibitory pathways as well. This indicates that they 

play a role in the central modulation of pain perception (Pertwee, 2001). The presence of CB1 

receptors was also shown on primary afferents which can mediate a potential peripheral 

antinociceptive effect of cannabinoids. CB2 receptor expression was previously described on 

non-neuronal cells which could be responsible for the immunomodulatory effect of 

cannabinoids but there are data pointing to the existence of further, CB2-like receptors which 

also participate in the control of pain transmission (Calignano et al., 1998). 
 

AIMS 
 
Our experiments aimed at the in vivo investigation of potential new targets of analgesia 

located on TRPV1 receptor-expressing neurons using animal models of nociception and 

testing new compounds which act on these targets. Our goals were the following: 

I. Investigating the effect of endogenously occurring cannabinoids, anandamide and 

palmitoyl-ethanolamide on TRPV1 receptor stimulation-induced sensory neuropeptide 

release and on neuropathic mechanical hyperalgesia. 

II. Investigating the antinociceptive effects of the stable and potent heptapeptide 

somatostatin receptor agonist TT-232. 

III. Comparing wild-type and TRPV1 receptor gene deficient mice in acute and chronic 

nociceptive models in vivo. 

IV. Developing a reliable, new thermonociceptive test based on measurement of the heat 

threshold temperature. 
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I. INHIBITORY EFFECT OF ANANDAMIDE (ANA) AND PALMITOYL-

ETHANOLAMIDE (PEA) ON RESINIFERATOXIN-INDUCED SENSORY 

NEUROPEPTIDE RELEASE IN VIVO AND NEUROPATHIC HYPERALGESIA  
 
Anandamide (ANA) was shown to have antinociceptive activity via CB1 receptor stimulation 

in various in vivo animal models and it also effectively diminished inflammatory heat and 

mechanical hyperalgesia (Calignano et al., 1998; Jaggar et al., 1998; Richardson et al., 1998). 

Palmitoyl-ethanolamide (PEA), another endogenous cannabinoid thought to act on a 

peripheral CB2-like receptor, was also effective in different nociceptive tests (Calignano et al., 

1998, 2001; Jaggar et al., 1998). 

Anandamide is also able to activate TRPV1 receptors in vitro (Zygmunt et al., 1999; Smart et 

al., 2000), although the in vivo role and relevance of this effect is subject to a debate. The 

disagreement is based on the fact that CB1 and TRPV1 receptors are expressed by the same 

group of small neurons (Ahluwalia et al., 2000) and the concentration needed to excite 

TRPV1 receptors is orders of magnitude higher than the level which exerts an inhibitory 

effect on sensory neurons via CB1 receptors (Szolcsányi, 2000a,b). 

METHODS 

1. Measurement of resiniferatoxin-induced CGRP and somatostatin release in vivo: In 

anaesthetized rats resiniferatoxin was injected (RTX, 0.6 µg/kg i.v.) to evoke neuropeptide 

release which was measured from arterial blood samples collected 5 min after injection. 

Animals were pretreated with different doses of ANA or PEA (10 or 100 µg/kg i.v.) and CB1 

or CB2 receptor antagonists were applied (SR141716A or SR144528, 100 µg/kg i.v.) 10 min 

before the respective cannabinoid treatment. CGRP and somatostatin concentrations were 

determined from the plasma by sensitive radioimmunoassay (RIA) methods. 

2. Partial sciatic nerve ligation-induced (traumatic) neuropathic mechanical 

hyperalgesia (Seltzer-model): The mechanonociceptive threshold of rats was measured with 

the Randall-Selitto test. The animal’s hind paw was inserted between the cone-shaped pushers 

of the analgesimeter equipment which exerted a continuously increasing force on the limb. 

The force at which the animal withdrew its paw was considered as mechanonociceptive 

threshold. Under anaesthesia, 1/3-1/2 part of the sciatic nerve was ligated unilaterally. One 

week later the effect of ANA or PEA (100 µg/kg i.p.) on the developed hyperalgesia was 
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investigated. CB1 and/or CB2 receptor antagonist (SR141716A or SR144528, 3 mg/kg i.p.) 

was administered 30 min prior to ANA or PEA treatment. 

RESULTS 

1. Effect of ANA and PEA on plasma CGRP and somatostatin concentrations: RTX (0.1-

3 µg/kg i.v.) dose-dependently increased plasma CGRP and somatostatin levels. Basal 

concentrations of neuropeptides were influenced neither by ANA, nor by PEA, however, 

RTX-induced CGRP and somatostatin release was dose-dependently diminished by ANA 

which was inhibited by pretreatment with the CB1 receptor antagonist SR141617A (100 µg/kg 

i.v.). Likewise, PEA dose-dependently decreased sensory neuropeptide release evoked by 

RTX injection.  

2. Effect of ANA and PEA on neuropathic mechanical hyperalgesia following partial 

sciatic nerve lesion: Seven days following partial ligation of the sciatic nerve, 

mechanonociceptive threshold of the animals decreased by 29.7 ± 0.6%. ANA treatment (100 

µg/kg i.p.) completely abolished hyperalgesia. Pretreatment with the CB1 receptor antagonist 

SR141617A (3 mg/kg i.p.) by itself enhanced hyperalgesia by 37.1% and totally inhibited the 

antihyperalgesic action of subsequent ANA injection. PEA (100 µg/kg i.p.) diminished 

hyperalgesia by 79.4% and this effect was prevented by the CB2 receptor antagonist 

SR144528 (3 mg/kg i.p.). Similarly to the CB1 receptor antagonist, this compound also 

increased the threshold drop by 47.5%. Combination of the two antagonists, however, did not 

produce an additive effect on the aggravation of hyperalgesia.  

CONCLUSIONS 

Our results have demonstrated that both anandamide (ANA) and palmitoyl-ethanolamide 

(PEA) inhibited the sensory neuropeptide release in vivo induced by injection of the TRPV1 

receptor agonist RTX, via CB1 and CB2-like receptors, respectively, while they failed to 

influence basal plasma CGRP and somatostatin levels. The potential TRPV1 receptor-

activating effect of ANA is likely to be counteracted by that it binds and activates CB1 

receptors on the same nerve endings with higher affinity. 

Both cannabinoid agonists effectively decreased traumatic neuropathic mechanical 

hyperalgesia, likewise by activating CB1 and CB2-like receptors, respectively. One possible 

mechanism of this effect is that they inhibit sensory neuropeptide release from capsaicin-

sensitive primary afferents. Antagonists of the CB1 and CB2 receptors alone or in combination 
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aggravated mechanical hyperalgesia which indicates that endocannabinoids exert a tonic 

inhibitory effect in neuropathy which alleviates hyperalgesia.  

In conclusion, cannabinoid receptor agonists – especially selective CB2 receptor agonists 

lacking central effects – offer a new therapeutic possibility for the treatment of neuropathic 

pain. 
 

II. ANALGESIC EFFECT OF TT-232, A HEPTAPEPTIDE SOMATOSTATIN 

ANALOGUE, IN ACUTE PAIN MODELS OF THE RAT AND THE MOUSE AND IN 

STREPTOZOTOCIN-INDUCED DIABETIC MECHANICAL ALLODYNIA 
 
The systemic anti-inflammatory and antinociceptive effect of somatostatin released upon 

activation of capsaicin-sensitive nerves makes possible the development of novel, 

peripherally-acting anti-inflammatory and analgesic drugs. Native somatostatin is not suitable 

for this therapeutic use because due to its widespread physiological roles it affects several 

endocrine and gastrointestinal functions in the body and furthermore, its plasma half-life is 

very short (T1/2= 3 min). 

Among the five somatostatin receptor subtypes (sst1-5) sst1 and sst4 receptors mediate no 

endocrine effects, however, they are expressed by sensory neurons which makes them 

therefore potential selective targets. In our department investigation of stable somatostatin 

analogues lacking endocrine side effects has recently been started. The heptapeptide TT-232 

(D-Phe-Cys-Tyr-D-Trp-Lys-Cys-Thr-NH2) synthesized by the Peptide-Biochemistry 

Research Group of the Hungarian Academy of Sciences – which otherwise has a potent 

antiproliferative effect – did not influence growth hormone and gastrine secretion (Kéri et al., 

1996). TT-232 mainly binds to sst4 receptors (Helyes et al., 2005). It effectively decreased 

sensory neuropeptide release in vivo and potently inhibited neurogenic and non-neurogenic 

inflammation in various models (Helyes et al., 2001; Pintér et al., 2002). It diminished 

Complete Freund’s Adjuvant (CFA)-induced joint swelling and mechanical hyperalgesia 

(Helyes et al., 2004) and traumatic neuropathic hyperalgesia as well (Pintér et al., 2002).  

METHODS 

1. Formalin test: On rats, nocifensive reaction was evoked by intraplantar injection of 

formalin (2.5%, 50 µl i.pl.) which appears in two phases: the first phase lasting from 0-5 min 

and the second from 20-45 min after injection. Various doses of TT-232 (20-80 µg/kg) were 
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administered intraperitoneally (0.1 ml/100 g i.p.) 30 min before formalin injection and the 

effect of the drug was compared to a solvent-treated group. Quantitative evaluation of the 

spontaneous nocifensive behaviour was made by the following formula: (2x duration of paw 

lickings + 1x duration of paw liftings)/observation period (Composite Pain Score – CPS). 

2. Phenylquinone-induced abdominal constriction (“writhing”) test: Abdominal 

constrictions were induced by intraperitoneal phenylquinone injection (0.02%, 0.2 ml) which 

is considered a model of visceral nociception. TT-232 was administered subcutaneously 30 

min before (5-200 µg/kg s.c.). The number of abdominal constrictions was counted in a 20-

min period following phenylquinone injection and results were compared to a solvent-treated 

group. 

3. Measurement of the noxious heat threshold and resiniferatoxin-induced thermal 

hyperalgesia: The noxious heat threshold of rats was determined by an increasing-

temperature hot plate. The animal was placed on the metal plate with a built-in heating unit 

which was heated up afterwards at an even rate from room temperature until the rat showed 

nocifensive reaction and the corresponding plate temperature was regarded as heat threshold. 

After control measurements, animals were treated with TT-232 (10-200 µg/kg i.p.), 

measurements were repeated 30 min later and results were compared to the initial control 

thresholds. In another series of experiments, thermal hyperalgesia was evoked by intraplantar 

resiniferatoxin (RTX, 0.05 nmol i.pl.) and threshold determinations were repeated 5, 10, 15 

and 20 min after injection. Different doses of TT-232 (5-100 µg/kg i.p.) were administered 10 

min prior to RTX. On each occasion, half of the group was treated with the vehicle which 

allowed comparisons to an actual solvent control. 

4. Measurement of diabetic neuropathic mechanical allodynia: Experimental diabetes 

mellitus was generated by 50 mg/kg i.v. streptozotocin in rats. Two weeks later, blood 

glucose levels were measured from samples taken from the tail vein with an Accu-Check 

glucometer (Roche) and only animals with a level higher than 15 mmol/l were included in the 

further studies. Mechanonociceptive thresholds of freely moving rats were determined by a 

dynamic plantar aesthesiometer (Ugo Basile). This equipment has a blunt needle which is 

pushed to the plantar surface of the paw with a continuously increasing force at a preset rate 

until the animal withdraws its paw. At this point the needle falls to its initial position and 

mechanonociceptive threshold is read on the display. After diabetes was established, 

thresholds were measured weekly until mechanical allodynia developed. Animals were treated 
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then with various doses of TT-232 (2.5-100 µg/kg i.p.) and threshold measurements were 

repeated 30 min later. 

RESULTS 

 1. Effect of TT-232 on formalin-evoked nocifensive reactions: The first phase of formalin-

evoked nocifensive reaction was only inhibited significantly by the 80 µg/kg i.p. dose based 

on the evaluation of CPS. In the second phase TT-232 showed a bell-shaped dose-response 

curve, as the doses of 40 and 80 µg/kg i.p. had significant antinociceptive effect but 160 

µg/kg failed to decrease CPS. Diclofenac used as a reference drug only inhibited nocifensive 

behaviour in the second phase at a dose of 50 mg/kg i.p.  

2. Effect of TT-232 on phenylquinone-evoked abdominal constrictions: TT-232-

pretreatment (10-200 µg/kg s.c.) significantly diminished the number of writhing movements 

induced by i.p. phenylquinone injection, however, no dose-response relationship could be 

established. Doses of 20 and 200 µg/kg produced the maximum inhibition (70 and 75% 

percentage inhibition), while the effect of doses in between resulted in a bell-shaped dose-

response curve, similarly to that observed in the formalin test.  

3. Effect of TT-232 on the noxious heat threshold and on resiniferatoxin-induced 

thermal hyperalgesia: Control heat threshold of rats was 44.5 ± 0.2 °C. TT-232 significantly 

increased the heat threshold at a dose range of 20-200 µg/kg, a clear-cut dose-dependent 

relationship was not seen in this test either. The maximal increase (1.48 ± 0.4 °C) was 

produced by the 200 µg/kg i.p. dose. 

Intraplantar resiniferatoxin evoked a 7.39 ± 1.3 °C drop of heat threshold 5 min after 

injection. Pretreatment with TT-232 significantly decreased thermal hyperalgesia at doses 

between 10-50 µg/kg i.p., the effect of a higher, 100 µg/kg dose, however, was not 

significant. 

4. Effect of TT-232 on diabetic neuropathic mechanical allodynia: Mechanonociceptive 

threshold decreased by 28.6 ± 3.1% 5 weeks after streptozotocin treatment. TT-232 

significantly diminished mechanical allodynia at doses of 10, 20 and 100 µg/kg i.p., among 

which 20 µg/kg exerted the maximal, 54% inhibition. The mechanical threshold of naïve rats 

was not influenced by 20 µg/kg i.p. TT-232.  
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CONCLUSIONS 

Our results have demonstrated that the peripherally-acting somatostatin receptor agonist TT-

232 had a pronounced analgesic effect in nociceptive processes of various origins, in rats and 

mice as well. The effects of low doses of the compound were detectable in the conventionally 

used chemonociceptive tests, the novel thermonociceptive test and the diabetic 

polyneuropathy model. In the formalin test TT-232 proved to be approximately 1000 times 

more potent than diclofenac, while in the thermonociceptive tests – compared to our previous 

results (Almási et al., 2003) – it was 300 times more potent than morphine or diclofenac. The 

advantage of TT-232 is that due to its selective target of action it lacks the side effects which 

could appear as a consequence of somatostatin’s widespread actions. Unwanted effects are 

also reduced by the fact that it does not penetrate the blood-brain barrier. TT-232 is a 

promising candidate to be a novel analgesic drug with a broad profile which includes therapy-

resistant neuropathic conditions.  
 

III. INVESTIGATION OF THE ROLE OF TRPV1 RECEPTORS IN ACUTE AND 

CHRONIC NOCICEPTIVE PROCESSES USING GENE-DEFICIENT MICE 
 
The investigation of the roles of TRPV1 receptor-expressing polymodal nociceptors started 

with experiments on capsaicin’s selective excitatory and consequent blocking effects. 

Examining the desensitizing action of capsaicin, however, only provides information on the 

functions of the whole fibre but not the receptor itself.  

The use of the majority of receptor antagonists (capsazepine, ruthenium red, iodo-

resiniferatoxin – I-RTX) can be impaired by problems with selectivity (Docherty et al., 1997; 

Liu & Simon, 1997) and in vivo efficacy (Jakab et al., 2005) and furthermore I-RTX may 

potentially act as an agonist if it is converted into RTX in the body.  

Cloning the TRPV1 receptor opened the way to the generation and in vivo investigation of 

gene-deleted (knockout) mice (Davis et al., 2000; Caterina et al., 2000). Results showed that 

heat sensitivity of untreated knockout mice did not differ from the wild-type counterparts 

which was surprising given that capsaicin-desensitized animals had higher heat thresholds 

(Szolcsányi, 1985; Szolcsányi, 1987). However, inflammatory thermal hyperalgesia did not 

develop in the absence of the receptor which indicates that heat sensitization of nociceptors 

requires the TRPV1 receptor.  
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METHODS 

Animals: In these experiments TRPV1 receptor gene deficient (TRPV1-/-) and wild-type mice 

(TRPV1+/+) were used.  

1. Phorbolesther-induced acute chemonociception (PMA test): Intraplantar injection of the 

protein kinase C (PKC) activator phorbolesther, phorbol 12-myristate 13-acetate (PMA, 10 

µg/ml, 20 µl) was used to induce nocifensive behaviour which was observed during 45 min 

after injection. For quantitative evaluation of the test, the time spent licking and lifting of the 

paw was measured.  

2. Formalin test: Intraplantar injection of formalin (2.5%, 20 µl i.pl.) was used to induce 

nocifensive behaviour which appears in two phases: the first phase lasting from 0-5 min and 

the second from 20-45 min after injection. For quantitative evaluation of the test, the time 

spent licking and lifting of the paw was measured. 

3. Heat injury-induced thermal and mechanical hyperalgesia: Noxious heat threshold of 

mice was measured by an increasing-temperature hot plate and in another group of animals 

mechanonociceptive threshold was determined by a dynamic plantar aesthesiometer (Ugo 

Basile). After control measurements, under ether anaesthesia one of the hind paws was 

immersed into a 51 °C water bath for 15 sec and measurements were repeated afterwards.  

4. Inflammatory mechanical hyperalgesia evoked by intraplantar carrageenan: 

Mechanonociceptive thresholds of mice were determined by the dynamic plantar 

aesthesiometer. Intraplantar injection of carrageenan (3%, 100 µl) was applied to induce 

inflammation of one of the hind limbs. Thresholds were measured again 3 hours later.  

5. Streptozotocin-induced diabetic polyneuropathy: Experimental diabetes mellitus was 

induced by streptozotocin treatment (STZ, 250 mg/kg i.v.). 2 weeks later, blood glucose 

concentrations were measured from samples drawn from the tail vein with an Accu-Check 

glucometer (Roche) and further investigations were only performed on animals with blood 

glucose levels higher than 15 mmol/l. Mechanonociceptive thresholds of mice were 

determined by aesthesiometry. 

6. Cisplatin-induced toxic neuropathy: Mice were treated with cisplatin three times a week 

during 5 weeks (2 mg/kg i.p., cumulative dose 30 mg/kg). Mechanonociceptive thresholds 

were measured by aesthesiometry. 

7. Traumatic mononeuropathy induced by partial sciatic nerve lesion: Under anaesthesia 

1/3-1/2 part of the sciatic nerve of mice was ligated unilaterally. Mechanonociceptive 

thresholds were measured by the dynamic plantar aesthesiometer. 
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8. Measurement of plasma somatostatin concentrations in the chronic polyneuropathy 

models: Animals were fastened during a night to ascertain that gastrointestinal somatostatin 

release was minimal. Under anaesthesia arterial blood samples were collected and 

somatostatin concentrations extracted from the plasma were determined by a 

radioimmunoassay (RIA) developed in our department (Németh et al., 1996). The time of 

sampling was chosen to correspond to the period when maximal differences had been found 

between the behavioural thresholds of the two groups of mice.  

RESULTS 

1. PMA test: In wild-type mice (TRPV1+/+) PMA induced an acute nocifensive reaction (paw 

licking and lifting) which lasted from 5-45 min after injection. The total duration of paw 

lickings and liftings was 669.2 ± 170.8 sec. Mice lacking the TRPV1 receptor (TRPV1-/-) did 

not respond to PMA as the duration of the nocifensive reaction did not differ from that evoked 

by the solvent (16.8 ± 8 sec and 20.2 ± 10.3 sec). 

2. Formalin test: Intraplantar injection of formalin induced a two-phase nocifensive reaction 

The total duration of paw lickings and liftings of TRPV1+/+ and TRPV1-/- mice in the first 

phase (0-5 min) were 130.7 ± 12.6 sec and 99.7 ± 16.1 sec, in the second phase (20-45 min) 

268.7 ± 50.7 sec and 363.6.6 ± 37.8 sec, respectively. Statistical analysis revealed no 

significant difference between the two groups in either phase.  

3. Heat injury-induced thermal and mechanical hyperalgesia: Heat thresholds of 

untreated TRPV1+/+ and TRPV1-/-  mice were 44.3 ± 0.4 °C and 44.4 ± 0.3 °C, while their 

mechanonociceptive thresholds were 7.9 ± 0.3 g and 7.5 ± 0.3 g, respectively. There was no 

significant difference therefore between the control values of the two groups. The animals 

recovered from ether anaesthesia within a few minutes after heat injury and showed no signs 

of spontaneous pain. Decreases in the heat and mechanical thresholds were developed 10 and 

20 min following heat injury. Both types of hyperalgesia proved to be significantly reduced in 

TRPV1-/- mice at each measurement point. The maximal drops of heat threshold were 10.23 ± 

1.0 °C and 3.59 ± 0.6 °C, whereas the severest mechanical hyperalgesia values were 56.9 ± 

2.4% and 23.6 ± 7.9% in TRPV1+/+ and TRPV1-/- mice, respectively. 

4. Inflammatory mechanical hyperalgesia evoked by intraplantar carrageenan: The 

control mechanonociceptive thresholds were 7.85 ± 0.2 g in wild-type and 7.31 ± 0.3 g in 

TRPV1 receptor knockout mice. Carrageenan injection resulted in the inflammation of the 

treated limb with visible oedema and redness. 3 hours after treatment mechanical thresholds 

decreased: in TRPV1+/+ mice the threshold dropped to 5.35 ± 0.3 g (31.7 ± 4.1% 
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hyperalgesia), and in TRPV1-/- animals it decreased to 4.9 ± 0.3 g (31.8 ± 6.1% hyperalgesia). 

Therefore, no significant difference was found between the two groups.  

5. Mechanical hyperalgesia in streptozotocin-induced diabetic polyneuropathy: Control 

mechanonociceptive threshold of TRPV1+/+  mice was 6.7 ± 0.2 g, while in the TRPV1-/- 

group it was 6.9 ± 0.3 g. Two weeks following STZ treatment experimental diabetes mellitus 

was present in all mice. In mice lacking the TRPV1 receptor hyperalgesia developed already 

by the 3rd week after treatment and remained significantly more severe compared to wild-type 

mice throughout the whole experimental period lasting until the 7th week. The highest 

difference between the two groups were found on the 5th week (10.29 ± 2.6% hyperalgesia in 

the TRPV1+/+ group and 31.12 ± 2.7% in the TRPV1-/- group). 

6. Mechanical hyperalgesia in cisplatin-induced toxic neuropathy: Mechanonociceptive 

thresholds of cisplatin-treated mice did not change significantly in the first 3 weeks of 

administration (6.6 ± 0.2 g in both groups). In TRPV1-/- mice significant hyperalgesia started 

to develop from the 4th week while in wild-type mice only 4 weeks later. From the 8th week, 

however, there was no significant difference between the two groups. The maximal difference 

was measured on the 7th week (2.64 ± 4.0% hyperalgesia in the TRPV1+/+ group and 7.87 ± 

3.6% in the TRPV1-/- group). 

7. Mechanical hyperalgesia in traumatic neuropathy: One week after partial sciatic nerve 

lesion mechanical hyperalgesia developed on the operated limb which was maintained 

throughout the 5-week experimental period. The highest values were measured on the 2nd 

week when hyperalgesia was 45.13 ± 4.7% in TRPV1+/+ and 40.53 ± 4.0% in TRPV1-/- 

animals. No significant differences were found between wild-type and gene-deleted mice at 

any measurement points.  

8. Plasma somatostatin concentrations in the chronic polyneuropathy models: Plasma 

somatostatin concentrations of naïve mice were 8.5 ± 0.2 fmol/ml in the TRPV1+/+ group and 

7.44 ± 0.6 fmol/ml in TRPV1-/- mice. Blood sampling of neuropathic mice was performed 5 

weeks after STZ injection and 7 weeks following the beginning of cisplatin treatment, when 

maximal differences were observed between the mechanical hyperalgesia of the two groups. 

Plasma somatostatin levels of neuropathic TRPV1+/+ mice were significantly elevated 

compared to naïve mice, both in diabetic (10.08 ± 0.6 fmol/ml) and cisplatin-treated animals 

(10.46 ± 0.9 fmol/ml). On the contrary, no increase was found in TRPV1-/- mice, plasma 

somatostatin levels were 8.02 ± 0.6 fmol/ml and 7.63 ± 0.5 fmol/ml, respectively. 
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CONCLUSIONS 

With the investigation of TRPV1 receptor gene deficient mice we have demonstrated that this 

noxious stimulus-gated ion channel is essential in phorbolesther-induced acute 

chemonociception and in heat and mechanical hyperalgesia developed after mild heat injury. 

Neither formalin-induced nocifensive behaviour, nor mechanical hyperalgesia in carrageenan-

inflammation or traumatic mononeuropathy were influenced by the lack of TRPV1 receptor. 

In chronic diabetic and toxic polyneuropathy it had a protective role as mechanical 

hyperalgesia was less severe and developed later in its presence. There are several pieces of 

evidence concerning that somatostatin released from capsaicin-sensitive neurons has systemic 

anti-inflammatory and antinociceptive effect (Szolcsányi et al., 1998a,b; Helyes et al., 2000; 

Carlton et al., 2001a,b; 2003; Helyes et al., 2004). Our hypothesis was that in polyneuropathic 

conditions the somatostatin-mediated counter-regulatory mechanism is activated by TRPV1 

stimulation and its absence leads to the earlier onset and increase in the severity of 

hyperalgesia. This could be confirmed by the results of plasma somatostatin concentrations 

which showed that in wild-type mice somatostatin was increased in polyneuropathic 

compared to untreated controls, while in TRPV1-/- mice the concentration of the peptide 

remained unaltered. 

In conclusion, in certain models TRPV1 receptor promotes nociception but surprisingly, in 

chronic polyneuropathy models it mediates an opposite, antinociceptive effect, possibly by 

the release of somatostatin. In the models where no difference was found in the behaviour of 

TRPV-/- mice, the receptor is not likely to play a key role, but it is also possible that the two 

opposing effects extinguish each other. As two contrary functions of TRPV1 receptor were 

revealed in the investigated models, it is concluded that both antagonists and agonists may 

have therapeutic value depending on the pathomechanism of the given condition. 
 

IV. DEVELOPMENT OF A HEAT INJURY-INDUCED THERMAL HYPERALGESIA 

MODEL EMPLOYING A NOVEL INCREASING-TEMPERATURE WATER BATH 
 
Conventional tests of thermonociception are based on exposing the animal’s paw or tail to a 

heat stimulus of constant, suprathreshold intensity, e.g. by placing it on a hot metal surface 

(constant temperature hot plate) or stimulating it with a focused beam of light (Hargreaves’ 

plantar test), and the time until the appearance of a nocifensive reaction is determined (Le 

Bars et al., 2001). This latency is considered, not quite consequently, as noxious heat 
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threshold. The disadvantage of these methods is that upon repeated measurements latency 

may decrease or increase due to sensitization or habituation and it is not less important that 

only the effect of opioid analgesics can be reliably detected. A further drawback is that 

latency values are difficult to compare to heat thresholds routinely determined in 

electrophysiological experiments (e.g. patch clamp, single fibre recordings). 

Applying an increasing heat stimulus, the noxious heat threshold temperature of animals can 

be measured i.e. the lowest temperature which evokes a nocifensive reaction. Our research 

group has successfully implemented this measurement principle by developing an increasing-

temperature hot plate and a new hyperalgesia model (Almási et al., 2003) which was suitable 

to detect the antinociceptive and antihyperalgesic effect of low doses of morphine, diclofenac 

and paracetamol. Besides its excellent pharmacological sensitivity, threshold measurement 

also complies better with the international ethical guidelines (Zimmermann, 1983), as animals 

are exposed to the least and shortest possible painful stimuli. In the present experiments 

another newly developed equipment, the increasing-temperature water bath was used.  

METHODS 

1. Determination of the noxious heat threshold with the increasing-temperature water 

bath: The increasing-temperature water bath was developed in cooperation with Experimetria 

Ltd. (Budapest). The equipment consists of a water container with a built-in heating unit and a 

separate controlling unit for setting different heating rates and starting temperatures which 

also has a display showing the actual temperature of the water bath. Rats were lightly 

restrained and held in an upright position above the water bath allowing free movement of the 

hind limbs, then one of the hind paws was immersed into the water and the heating process 

was started afterwards. A starting temperature of 30 °C and a heating rate of 24 °C/min were 

employed at each measurement. At the moment when the animal withdrew its paw the heating 

was immediately stopped and the corresponding temperature was recorded as the noxious heat 

threshold of the examined paw. 

2. Induction of thermal hyperalgesia by mild heat injury and assessment of the 

antihyperalgesic effect of analgesics: Following control measurements, under ether 

anaesthesia one of the hind paws was immersed in a 51 °C hot water bath for 20 seconds. 

After recovering from anaesthesia, heat threshold determinations were repeated 10 and 20 

minutes after heat injury to confirm the development of hyperalgesia. Drugs were 

administered after the 20-minute measurement which was followed by repeated 

measurements at 10 minute intervals. In each measurement series, one half of the group was 
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injected with the solvent and drug effects were assessed compared to the solvent-treated 

group. 

RESULTS 

The noxious heat threshold of untreated rats was 43.1 ± 0.4 °C and was reproducible upon 

measurements at intervals of 10 minutes which means that no significant difference was 

found between thresholds of the same paw measured at different time points. Upon heat 

threshold measurements 10 and 20 min following heat injury, a 7−8 °C drop of the threshold 

was observed and this heat hyperalgesia was maintained at an even level for at least an hour. 

Morphine, non selective cyclooxygenase inhibitors diclofenac and ibuprofen or centrally- 

acting paracetamol administered after the 20-min measurement all dose-dependently reduced 

the heat injury-induced drop of heat threshold (minimal effective doses (MED): 0.3; 0.3; 10; 

30 mg/kg i.p.). The model was suitable for showing the effect of the peripherally-acting 

somatostatin receptor agonist TT-232 (MED: 0.1 mg/kg i.p). Intraplantar injection of 

morphine (10 µg), diclofenac (10 µg) and ibuprofen (100 µg) administered 20 minutes after 

heat injury all significantly decreased subsequent thermal hyperalgesia Lipoxygenase 

inhibitor nordihydroguaiaretic acid (NDGA, 10 mg/kg i.p.) failed to influence thermal 

hyperalgesia, bradikinin B2 receptor antagonist HOE140 (0.1 mg/kg i.p.), however, had a 

significant inhibitory effect, while the TRPV1 receptor antagonist JYL1421 (2 mg/kg i.p.) 

almost completely abolished the drop of heat threshold. 

CONCLUSIONS 

The increasing-temperature water bath was suitable for the reliable and reproducible 

measurement of the noxious heat threshold of conscious rats. Heat injury, as a naturally 

occurring noxious impact was used to induce hyperalgesia, in other words, a first degree burn 

was modelled which led to a pronounced drop of heat threshold. When examining drug 

effects, the common clinical practice was followed by administrating the compounds after the 

injury, contrary to typical experimental protocols where pretreatments are performed. The 

model proved to be remarkably sensitive to the antihyperalgesic effect of both morphine and 

cyclooxygenase inhibitors and besides the conventional analgesics, it was suitable to show the 

effect of a compound of a novel target of action, the somatostatin receptor agonist TT-232 

(see chapter II). Human doses calculated on the basis of the minimal effective doses obtained 

with our model are in the range of the recommended doses applied in the clinical practice. 

The model was also able to detect the effect of locally applied analgesics.  
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Investigating the pathomechanism of heat injury-induced thermal hyperalgesia we have 

concluded that prostaglandins definitely played an important role as cyclooxygenase 

inhibitors inhibited hyperalgesia at low doses and after local treatment as well. We have 

proven that bradikinin had a major part in the development of heat injury-induced drop of 

heat threshold and furthermore, activation and sensitization of the TRPV1 receptor was 

essential in this thermal hyperalgesia. The latter finding is also supported by our results 

gained with TRPV1 receptor gene-deleted mice (see chapter III). Lipoxygenase inhibition 

proved to be ineffective in our model which means that lipoxygenase products are either not 

formed in tissue injury following mild burns or their effect is minor so that its abolishment 

does not have an impact on hyperalgesia.  

In conclusion, the thermonociceptive test developed and validated in our laboratories is a 

reliable, easily performed and sensitive new method which is suitable for the investigation of 

peripherally and centrally-acting analgesics. At the same time, heat injury-induced drop of 

heat threshold is an excellent in vivo model for the examination of the pathomechanism of 

thermal hyperalgesia.  
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SUMMARY OF THE NEW FINDINGS PRESENTED IN THE THESIS 
 

1. Our results have proven that anandamide and palmitoyl-ethanolamide – naturally 

occurring CB1 and CB2 receptor agonists – decreased sensory neuropeptide release in 

vivo induced by the TRPV1 receptor agonist resiniferatoxin. We have shown that 

anandamide and palmitoyl-ethanolamide diminished partial sciatic nerve lesion-induced 

mechanical hyperalgesia as well, via CB1 and CB2 receptor activation. CB1 and/or CB2 

receptor antagonists enhanced mechanical hyperalgesia in vivo, therefore it is suggested that 

endogenous cannabinoids exert a tonic antinociceptive effect in traumatic mechanical 

hyperalgesia. 

2. We have demonstrated that the somatostatin receptor agonist TT-232 is a potent 

antinociceptive and antihyperalgesic compound in acute chemical and thermal nociceptive 

models and chronic diabetic polyneuropathy.  

3. Using gene-deleted mice it has been shown that in certain acute pain models the 

presence of TRPV1 receptor was indispensable while in others it had no exclusive role, 

however, in chronic polyneuropathy models the absence of the receptor surprisingly 

enhanced mechanical hyperalgesia. We have hypothesized that as a consequence of chronic 

stimulation of TRPV1 receptor counter-regulatory processes could be initiated mediated 

by systemic action of somatostatin released from TRPV1 receptor-expressing nerve 

endings. The TRPV1 receptor may mediate pronociceptive and antinociceptive effects 

depending on the pathophysiological process, therefore both agonists and antagonists may 

be drug candidates.  

4. We have elaborated a new thermonociceptive test, the heat injury-induced thermal 

hyperalgesia model based on a self-developed method measuring the noxious heat 

threshold, which proved to be a very reliable and sensitive method for detecting the 

antihyperalgesic action of compounds that act on different targets. Upon examination of 

the pathomechanism of thermal hyperalgesia we have concluded that the formation of 

cyclooxygenase products and bradikinin as well as the TRPV1 receptor played 

important role in the development of heat threshold drop.  
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