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Abstract: Exposure to highly toxic pesticides could potentially cause cancer and disrupt the
development of vital systems. Monitoring activities were performed to assess the level of
contamination; however, these were costly, laborious, and short-term leading to insufficient
monitoring data. However, the performance of the existing Soil and Water Assessment Tool (SWAT
model) can be restricted by its two-phase partitioning approach, which is inadequate when it comes
to simulating pesticides with limited dataset. This study developed a modified SWAT pesticide model
to address these challenges. The modified model considered the three-phase partitioning model that
classifies the pesticide into three forms: dissolved, particle-bound, and dissolved organic carbon
(DOC)-associated pesticide. The addition of DOC-associated pesticide particles increases the scope
of the pesticide model by also considering the adherence of pesticides to the organic carbon in the
soil. The modified SWAT and original SWAT pesticide model was applied to the Pagsanjan-Lumban
(PL) basin, a highly agricultural region. Malathion was chosen as the target pesticide since it is
commonly used in the basin. The pesticide models simulated the fate and transport of malathion
in the PL basin and showed the temporal pattern of selected subbasins. The sensitivity analyses
revealed that application efficiency and settling velocity were the most sensitive parameters for the
original and modified SWAT model, respectively. Degradation of particulate-phase malathion were
also significant to both models. The rate of determination (R2) and Nash-Sutcliffe efficiency (NSE)
values showed that the modified model (R2 = 0.52; NSE = 0.36) gave a slightly better performance
compared to the original (R2 = 0.39; NSE = 0.18). Results from this study will be able to aid the
government and private agriculture sectors to have an in-depth understanding in managing pesticide
usage in agricultural watersheds.

Keywords: soil and water assessment tool; pesticides; malathion; agricultural watershed; modified
SWAT model

1. Introduction

Agriculture has been substantial to the Philippine economy and has contributed 10.2% to 13.2% of
the country’s GDP in the past decade [1]. To keep up with this demand, various kinds of pesticides were
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applied to different crops and vegetables to help increase food supplies and provide greater revenue for
farmers. However, exposure to pesticides could potentially cause cancer and disrupt the development
of vital systems (endocrine, reproductive, and immune systems) [2–4]. Pesticide contamination in
soil and water also has negative effects on the diversity of the flora and fauna of local areas thereby
disturbing the existing ecosystem [5–7]. Various kinds of pesticides are used in agriculture depending
on the target pests. Hence, many kinds of chemicals exist and find their way into the groundwater,
surface water, soils, and eventually drinking water [8–11]. Several attempts have been made to monitor
and map out their potential areas of contamination in the Philippines, especially in highly agricultural
areas [12–14].

Laguna de Bay is the second largest freshwater lake in Southeast Asia and the largest in the
Philippines. It is located east of Metro Manila, the Philippine capital, and is part of the Laguna de Bay
basin. The basin has one of the fastest economic growth among others and it is a major water resource
for agriculture, fisheries, and domestic use of the surrounding communities that has an estimated
population of six million people [15]. In the recent years, the lake has been threatened by waste
discharges of the industrial, urban, and residential areas from the west and by intensive agricultural
activities from the east [16]. The presence of pesticides and other micropollutants led to the increasing
levels of toxicity and fish-kill occurrences in the lake [17,18]. Many efforts have been made to improve
the water quality of the lake such as rehabilitation programs and cleanup operations within the vicinity
of the basin. Monitoring activities were also performed to assess the level of contamination. However,
these were short-term and limited to a few selections of pesticides [17–19]. Applying environmental
models to available monitoring datasets of pesticides can help broaden the understanding of the
behavior of these micropollutants in the environment. However, existing modeling studies of Laguna
de Bay basin lack watershed-scale analyses of pesticides used in its agricultural activities [14].

Processes driving pesticide fate and transport are on the whole well-known and are incorporated
in various pesticide models operating at plot or watershed spatial scales, such as the crop model
STICS (Simulateur mulTIdiscplinaire pour les Cultures Standard), MACRO (Water and solute
transport in macroporous soils), PEARL (Pesticide Emission Assessment at Regional and Local
scales), PRZM (Pesticide Root Zone Model), and SWAT (Soil and Water Assessment Tool) [20,21].
Several studies have already shown that the watershed-scale SWAT model was an efficient tool
to model pesticides fate and transport [22–25]. However, the SWAT model performance can be
restricted by its two-phase partitioning approach, which is inadequate when it comes to simulating
pesticides with limited dataset. In this study, we modified the SWAT model by incorporating the
three-phase partitioning model to improve the pesticide simulations, especially for watersheds with
scarce dataset that are often common in developing countries. The modified model considered the
three-phase partitioning model that classifies the pesticide into three forms: dissolved, particle-bound,
and dissolved organic carbon (DOC)-associated pesticide. This approach is a first for pesticides and it
differs from the original SWAT model that classified pesticides into two categories: pesticide sorbed
into solid phase and pesticide in solution. The addition of DOC-associated pesticide particles increases
the scope of the pesticide model by also considering the adherence of pesticides to the organic carbon
in the soil.

We aimed to: (1) conduct a watershed-scale analysis of the fate and transport of pesticides,
specifically malathion, and increase the accuracy of the simulated malathion loading using the modified
pesticide model; and (2) perform a case study by applying the original SWAT model and modified
pesticide model to a catchment with limited dataset, such as PL basin, and compare their performance.
Malathion is an organophosphate insecticide used in PL basin for crops and vegetables. It is preferred
by farmers due to its effectiveness against a wide range of pests and short half-life. The SWAT model
was used to construct the watershed model for one of the subbasins of the Laguna de Bay basin,
namely the Pagsanjan-Lumban (PL) basin. SWAT is a widely-used, physically-based hydrologic model
that can predict the impact of water management practices [26,27]. It can simulate the flowrate and
the transport of nutrients, pesticides, and sediments in watersheds. Implementing a watershed-scale
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analysis of the fate and transport of the malathion in the Laguna de Bay basin using watershed models
will give an insight on the dominant processes affecting pesticide loadings to the soil and water.
Results from this study will aid the government and private agriculture sectors to have an in-depth
understanding in managing pesticide usage in an agricultural watershed.

2. Materials and Methods

2.1. Study Area

PL basin is located at the southeastern part of Laguna de Bay basin in the Southern Tagalog
Region (CALABARZON) of the Philippines. It has a catchment area of 454.45 km2 (121◦24′ E~121◦37′

E, 14◦37′ N~14◦21′ N) that drains to Laguna de Bay. The watershed experiences two types of Philippine
climate: (1) Type II; and (2) Type III. The eastern part of the basin experiences Type II climate that
has no dry season with a very pronounced maximum rain period from December to February and
a minimum rainfall period from March to May [28]. On the other hand, the western part has a Type
III climate that has a short dry season, varying from 1 to 3 months, in December to February [28].
Areas close to Mt. Banahaw at the southernmost part of the basin have relatively uniform rainfall
distribution throughout the year [29]. However, the basin in general experiences a dry period from
November to April due to the rain shadow effect of the Sierra Madre mountain range while the wet
period occurs for the remaining months [29]. The average annual rainfall of the basin is 2996 mm,
which mostly fall during the monsoon period.

Figure 1 shows the Digital Elevation Model (DEM) of the PL basin. The areas near Mt. Banahaw
at the southern region have the highest elevation, ranging from 560 m to 2170 m, while the eastern
region near Sierra Madre ranges from 350 m to 560 m. The region near the outlet, including Lumban
delta, has the lowest elevation, which ranges from 0 m to 200 m. Negative values can also be observed
within the Lumban delta indicating that the elevations are below sea level and are often submerged
in water. The outlet of the basin was set at the Lumban Station before the river branched out to the
Lumban delta to exclude the possibility of water intrusion from the lake.
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The basin has two major tributaries that branch out after the Lumban Station (outlet) as shown
in Figure 1. Due to the presence of two reservoirs in the northern half of the basin, most of the
discharge during dry days comes from the Pagsanjan River situated at the southern half of the PL
basin. Pagsanjan River has a length of 54.1 km and a drainage area of 311.8 out of the 454.45 km2 of PL
basin, with a mean annual runoff of 53.1 m3·s−1 [29]. The runoff pathways in the north were modified
to collect the water in the reservoirs; hence, water only flows to the outlet during extreme rain events.

2.2. Monitoring Data

The locations of the monitoring stations for the flowrate, weather, and malathion are shown in
Figure 1. The daily flowrate data from May 2014 to October 2016 at Lumban Station and the weather
data (precipitation, temperature, humidity, and wind speed) at Cavinti Station from 2014 to 2016
were acquired from the Integrated National Watershed Research and Development Project (INWARD),
the weather data from 1979 to 2014, including the solar values, were generated from the Climate
Forecast System Reanalysis (CFSR) of the Global Weather Data for SWAT [30,31], and the malathion
concentrations were monitored at Lucban Station by Varca [16]. A total of 26 sampling events at Lucban
Station, with a frequency of at least two water samples a month, were carried out from December
2007 to November 2008 to measure the malathion concentrations. Each water sample was analyzed
to measure the total concentration of malathion, which was used as comparison for the pesticide
simulations in this study.

2.3. Hydrology Model

SWAT is a physically-based watershed model developed for the USDA Agricultural Research
Service (ARS) to simulate the impact of land management practices on water, sediment, nutrients, and
pesticide yields in large complex watersheds [32,33]. The model operates at a daily time step and uses
readily available inputs such as [34]: topography (DEM with a 90 m resolution from United States
Geological Survey (USGS)/National Aeronautics and Space Administration Shuttle Radar Topography
Mission), hydrography, weather data (INWARD and CFSR), landuse/land cover (USGS Global Land
Cover Characterization database), and soil type (Food and Agriculture Organization). The delineation
threshold of the PL basin was 2.5 km2, thus; it was divided into eight subbasins with 54 hydrological
response units (HRU). Each of these HRUs is a unique combination of soil type, landuse, and slope.
The threshold for soil, landuse, and slope was set to 0 to include non-agricultural areas in the basin
that are less than 1% of the subbasin areas.

Table 1 summarizes the calibration and validation periods of the flowrate simulation.
The calibration period was from September 2014 to May 2015 while the validation was from May
2014 to July 2014 and June 2016 to September 2016. The available flowrate dataset started from May
2014 until September 2016. We first compared the observed flowrate to the precipitation and noticed
that the peaks of the flowrate did not match the precipitation for a period. This period was removed
after concluding that the sensor was faulty at that time. The SWAT—Calibration and Uncertainty
Program (SWAT-CUP) was then used to calibrate and validate the SWAT flowrate parameters shown
in Table 2. Simulated flowrates in 2007 and 2008 were then applied to simulate malathion fate based
on the available malathion dataset (December 2007 to November 2008).

Table 1. Summary of the calibration and validation periods.

Process Period

Spinup Time (2 years) January 2005–December 2006
Pesticide Calibration December 2007–November 2008

Flow Calibration September 2014–May 2015
Flow Validation May 2014–July 2014 and June 2016–September 2016
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Table 2. Soil and Water Assessment Tool (SWAT) flowrate parameters for calibration and sensitivity analysis.

Parameter Description Module Method MIN MAX

CN2 Initial SCS runoff curve number for moisture condition II MGT Relative −0.1 0.1
BIOMIX Biological mixing coefficiency MGT Replace 0 1

ALPHA_BF Baseflow alpha factor (days) GW Replace 0.01 1
GW_DELAY Groundwater delay time (days) GW Replace 0 500

GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) GW Replace 0 50
REVAPMN Threshold depth of water in the shallow aquifer for revap or percolation to the deep aquifer to occur (mm H2O) GW Replace 0 750
RCHRG_DP Deep aquifer percolation fraction GW Replace 0.01 0.99
GW_REVAP Groundwater “revap” coefficient GW Replace 0.02 0.2

ESCO Soil evaporation compensation factor HRU Replace 0.7 1
EPCO Plant uptake compensation factor HRU Replace 0.7 1

SLSUBBSN Average slope length (m) HRU Replace 10 150
LAT_TTIME Lateral flow travel time (days) HRU Replace 0 180

OV_N Manning’s “n” value for overland flow HRU Replace 0.01 0.5
CANMX Maximum canopy storage (mm H2O) HRU Replace 0 100
CH_K2 Effective hydraulic conductivity in main channel alluvium (mm/h) RTE Replace 0.025 76
CH_N2 Manning’s “n” value for the main channel RTE Replace 0.025 0.15
SOL_BD Moist bulk density (Mg/m3 or g/cm3) SOL Relative −0.1 0.1

SOL_CBN Organic carbon content (% soil content) SOL Relative −0.1 0.1
SOL_K Saturated hydraulic conductivity (mm/h) SOL Relative −0.1 0.1

SOL_AWC Available water capacity of the soil layer (mm H2O/mm soil) SOL Relative −0.1 0.1
CH_K1 Effective hydraulic conductivity in tributary channel alluvium (mm/h) SUB Replace 0.025 76
CH_N1 Manning’s “n” value for the tributary channel SUB Replace 0.025 0.15

SURLAG Surface runoff lag coefficient (h) BSN Replace 0.05 10
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2.4. Pesticide Modeling

The malathion loadings were then calibrated using the original SWAT and modified SWAT
pesticide models. Both models need the management operation schedule to simulate the application of
pesticide in the basin. In this study, malathion was applied to HRUs with “Tomato” (TOMA) as land
cover. This is based on a previous study that summarized the pesticide usage of the farmers in the PL
basin, which affects two HRUs from Subbasins 7 and 8 (shown in Figure 1) [35]. TOMA was assumed
as a collective representative of the vegetable crops in the PL basin that used malathion during the
pesticide application period. Two planting seasons were implemented for TOMA. The first season
starts in January while the second season starts in June. Malathion was then applied for 12 times for
3 months after planting at a rate of 0.57 kg/ha for every application (first season: January to March;
second season: June to August). Based on this schedule, the pesticide models were then run to simulate
malathion loading in the HRUs with TOMA as land cover. The models are further discussed in the
next subsections.

2.4.1. Original SWAT Pesticide Model

The pesticide module in the SWAT model was applied to calibrate the malathion loadings in the
PL basin. Figure 2 shows that the SWAT pesticide model used the two-phase partitioning approach
that classify the pesticides as: pesticide sorbed into solid phase and pesticide in solution or liquid
phase. Table 3 shows the pesticide parameters that describe the reaction and transport processes of
malathion starting from the application (foliar, soil surface, and subsurface). These processes include
degradation, infiltration, leaching, surface runoff, volatilization, and wash off mechanisms.
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Figure 2. Original SWAT model applies the two-phase partitioning approach: pesticide in liquid phase
and pesticide sorbed to the solid phase. Modified pesticide model assumes the three-phase partitioning
model: dissolved pesticide, particle-bound pesticide, and DOC-associated pesticide.

Table 3. Pesticide parameters for calibration and sensitivity analysis of the original SWAT model.

Parameter Description Module Method MIN MAX

SKOC Soil adsorption coefficient normalized for soil organic carbon (L·kg−1) PEST Replace 1 5000

HLIFE_S Degradation half-life of the chemical on the soil (day−1) PEST Replace 0 100

HLIFE_F Degradation half-life of the chemical on the foliage (day−1) PEST Replace 0 100

WSOL Solubility of the chemical in water PEST Replace 0 1000

WOF Wash off fraction PEST Replace 0 1

AP_EF Application efficiency PEST Replace 0 1

PST_DEP Depth of pesticide incorporation in the soil (mm) MGT Replace 0 500

PERCOP Pesticide percolation coefficient BSN Replace 0 1

CHPST_KOC Pesticide partition coefficient between water and sediment in
reach (m3·g−1) SWQ Replace 0 0.1

CHPST_REA Pesticide reaction coefficient in reach (day−1) SWQ Replace 0 0.1

CHPST_VOL Pesticide volatilization coefficient in reach (m·day−1) SWQ Replace 0 10



Water 2017, 9, 451 7 of 18

Table 3. Cont.

Parameter Description Module Method MIN MAX

CHPST_STL Settling velocity for pesticide sorbed to sediment (m·day−1) SWQ Replace 0 10

SEDPST_REA Pesticide reaction coefficient in reach bed sediment (day−1) SWQ Replace 0 0.1

CHPST_RSP Resuspension velocity for pesticide sorbed to sediment (m·day−1) SWQ Replace 0 1

SEDPST_ACT Depth of active sediment layer for pesticide (m) SWQ Replace 0 1

CHPST_MIX Mixing velocity (diffusion/dispersion) for pesticide in reach (m·day−1) SWQ Replace 0 0.1

SEDPST_BRY Pesticide burial velocity in reach bed sediment (m·day−1) SWQ Replace 0 0.1

PSTENR Enrichment ratio for pesticide in the soil CHM Replace 0 5

2.4.2. Modified Pesticide Model

Figure 3 shows the schematic diagram of the fate and transport of the pesticides for the modified
SWAT pesticide model. The modified model applied in this study was based on the watershed-scale
model from a previous study of the same authors about modeling the fate and transport of polycyclic
aromatic hydrocarbons (PAH) and linking the PAH model with SWAT [36]. This study further
developed the model to include the pesticide application based on the original SWAT model and
other equations related to the fate and transport of pesticides. The approach of the original 2-phase
partitioning SWAT model on the fate and transport of pesticides was modified by considering the
three-phase partitioning model shown in Figure 2. Figure 4 shows the diagram of using MATLAB as
platform for the modified approach. Table 4 shows the parameters of the modified pesticide model.
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Figure 3. Fate and transport diagram of pesticides in the environment with the modified SWAT model.
The three-phased partitioning model approach that we applied for the pesticide was also based on
a previous study of the same authors about modeling the fate and transport of polycyclic aromatic
hydrocarbons (PAH) and linking the PAH model with SWAT.
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Table 4. Pesticide parameters for calibration and sensitivity analysis of the modified model.

Parameter Description Unit

foc Organic carbon fraction in soil -
ρsoil Soil density kg·m−3

poro Porosity
fDOC Fraction of the dissolve organic carbon -

x1 Enrichment ratio coefficient 1 -
x2 Enrichment ratio coefficient 2 -
vs Settling velocity of suspended particles in the channel m·s−1

En Diffusion coefficient -
Cp,1 Wash off coefficient for particle-bound pesticide -
Cfd,1 Wash off coefficient for dissolved pesticide -
Cp,2 Wash off exponent for particle-bound pesticide -
Cfd,2 Wash off exponent for dissolved pesticide -

α Decay coefficient in water due to solar intensity -
CDOC,1 Wash off coefficient for DOC-associated pesticide -
CDOC,2 Wash off exponent for DOC-associated pesticide -

µk,p Degradation rate constant for the particle-bound pesticide on the soil surface s−1

θk,p Temperature adjustment factor for particle-bound pesticide -
µk,fd Degradation rate constant for the dissolved pesticide on the soil surface s−1

θk,fd Temperature adjustment factor for dissolved pesticide -
µk,DOC Degradation rate constant for the DOC-associated pesticide on the soil surface s−1

θk,DOC Temperature adjustment factor for DOC-associated pesticide -

Accumulation of Pesticide

Pesticides are usually distributed to the foliage and soil surface during application. In this case,
separate equations were applied to calculate the amount of pesticides on the foliage and the soil
surface [37]. This approach is similar to the original SWAT model. The amount of pesticides on foliage
(pstf, kg of pesticide ha−1) and on the soil surface (pstsurf, kg of pesticide ha−1) were determined by the
equations below [37]:

pstf = gc × pst′ (1)

pstsurf = (1 − gc) × pst′ (2)

where gc is the fraction of the ground surface covered by plants (-) and pst′ is the efficient amount of
pesticide applied (kg of pesticide ha−1). These terms were determined by the following equations [37]:

gc = (1.99532 − erfc × [1.333 × LAI − 2])/2.1 (3)

pst′ = apef × pst (4)

where erfc is the complementary error function (-), LAI is the leaf area index (-), apef is the pesticide
application efficiency (-), and pst is the original amount of pesticide applied (kg of pesticide ha−1).

Pesticide on the foliage was assumed to be affected by wash off due to rain events and degradation.
The amount of pesticides washed off by precipitation from the plants (pstf,wsh, kg of pesticide ha−1)
were determined using the equation below [37]:

pstf,wsh = frwsh × pstf (5)

where frwsh is the wash off fraction for the pesticide on the foliage (-). Degradation of pesticide on the
foliage was then calculated using the following equation [37]:

pstf,t = pstf,0 × exp[-kp,f × t] (6)
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where pstf,t is the amount of pesticide on the foliage at time t (kg of pesticide ha−1), pstf,0 is the initial
amount of pesticide on the foliage (kg of pesticide ha−1), kp,f is the degradation rate constant of the
pesticide (day−1), and t is time (day).

Pesticides on Soil

The original SWAT model assumed that the pesticide is either sorbed to the solid phase or
dissolved in solution [37]. The three-phase partitioning model was used to estimate the different forms
of pesticide in the soil. This method classifies the pesticide into three classes: dissolved pesticide,
pesticide adsorbed on dissolved organic carbon ([DOC]), and pesticide adsorbed on particles. The total
pesticide and dissolved pesticide concentrations in the bulk saturated soil are defined by the following
equations [38]:

Cbs
t = Cbs

p + Cbs
d (7)

Cbs
d = Cbs

fd + Cbs
D◦C (8)

where Cbs
t is the total pesticide concentration in the bulk soil (kg·L−1 bulk soil), Cbs

p is the concentration
of particle-bound pesticide (kg·L−1 bulk soil), Cbs

d is the dissolved pesticide concentrations in the bulk
saturated soil (kg·L−1 bulk soil), Cbs

fd is the dissolved pesticide, and Cbs
DOC is the DOC-associated

pesticide. Combining Equations (7) and (8) yields the following equation:

Cbs
t = Cbs

p + Cbs
fd + Cbs

D◦C (9)

The terms Cbs
p and Cbs

D◦C can also be determined by multiplying Cbs
fd by the coefficients shown

in Equations (10)–(12) below [38]:
Cbs

p = rsw × Ksw × Cbs
fd (10)

Cbs
D◦C = [DOC] × KDOC × Cbs

fd (11)

[DOC] = fDOC × OM (12)

where rsw is the soil-to-water ratio (kg·L−1), Ksw is the soil-water distribution coefficient [L·kg−1],
KDOC is the dissolved organic carbon-water partition coefficient (L·kg−1), fDOC is the fraction of DOC,
and OM is the concentration of the organic matter (kg·L−1). OM was calculated by dividing the mass
of the soil carbon in the soil organic matter with the water yield, which were both simulated by the
original SWAT model [36]. Cbs

p, Cbs
fd, and Cbs

D◦C from Equation (9) can also be determined by using
the pesticide in bulk soil fractions [36,38]:

Cbs
p = fp ×Wcp × exp(-µp) × εpstsed (13)

Cbs
fd = fdfd ×Wcf × exp(-µf) (14)

Cbs
D◦C = fdD◦C ×WcDOC × exp(-µDOC) (15)

where fp (-), Wcp (kg·L−1 bulk soil), and µp (s−1) are the fraction, wash off load, and rate constant of
particle-bound pesticide, εpstsed is the enrichment ratio (-), fdfd (-), Wcf (kg·L−1 bulk soil), and µf (s−1)
are the fraction, wash off load, and rate constant of dissolved pesticide, and fdDOC (-), Wcf (kg·L−1 bulk
soil), and µDOC (s−1) are the fraction, wash off load, and rate constant of DOC-bound pesticide. The
enrichment ratio was calculated using this equation [37] :

εpstsed = x1 × (sed/WY)x
2 (16)

where x1 and x2 are the enrichment ratio coefficients, sed is the sediment yield (metric tons), and
WY is the water yield (mm H2O). Surface runoff of the suspended particles to the channel was also
considered in the wash off loads and wash off fractions of the pesticide. The suspended particles
affected by the wash off mechanism are described in the following equations [36]:
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Wcp = Cp1 × qC
p2 × Cbs

t (17)

Wcf = Cf1 × qC
f2 × Cbs

t (18)

WcDOC = CDOC1 × qC
DOC2 × Cbs

t (19)

where Wcp, Wcf, and WcDOC are the wash off loads of the particle-bound, dissolved, and DOC-associated
PAHs exported to the river via runoff (kg·L−1 bulk soil); Cp1, Cf1, and CDOC1 are the wash off coefficients
for the particle-bound, dissolved, and DOC-associated PAHs (-); q is the runoff rate per unit area; and
Cp2, Cf2, and CDOC2 are the wash off exponents for the particle-bound, dissolved, and DOC-associated
PAHs (-), respectively.

The degradation term, previously shown in Equations (13)–(15), is a temperature-dependent rate
constant expressed as the first-order reaction. The rate constant for the three phases was defined as:

µ = µi × θ(T − 2◦) (20)

where µi is the initial rate constant for the pesticide [s−1], θ is the temperature adjustment factor
for pesticide (-), and T is the temperature (◦C). µ and θ were then calibrated for the particle-bound,
dissolved, and DOC-associated pesticide.

Pesticide loadings on the soil and into the water were computed by [38]:

Cp = (Cbs
p − Cbs,out

p)/ρ (21)

Cwfinal = Cbs
d + Cbs,out

p (22)

where Cp and Cw are the pesticide loading on soil [pesticide per solid mass] and in water [pesticide per
fluid mass], respectively, and Cwfinal is the final pesticide loading in water.

Pesticides in Water

The pesticides in the channels are then subjected to the following mechanisms and processes due to
water movement and reactivity of the pesticide with other components present in the water: advection,
dispersion, photodegradation, and settling processes upon entering the channel [36]. The concentration
of the pesticide in the waterbody was determined after considering these processes. This is expressed
by the modified advection-dispersion equation:

(∂C/∂t) + u × (∂C/∂x) = DL × (∂2C/∂x2) − C × [f × (vs/h) + aI] (23)

where C is the concentration of pesticide in water (g·m−3), t is time (day), x is distance (m), u is
the velocity of the water (m·s−1), DL is the dispersion coefficient (m2·d−1), f is the fraction of the
particulate pesticide in water (-), vs is the settling velocity (m·s−1), h is the depth of the channel
(m), a is the photodegradation coefficient (m2·MJ−1·d−1), and I is the solar intensity (MJ·m−2).
The photodegradation term in the equation was added to the advection-dispersion equation to fit the
pesticide model.

2.5. Sensitivity Analyses

The sensitivity analyses for the flowrate and pesticide were simultaneously done with the
calibration. SWAT-CUP applies the Latin-Hypercube (LH) sampling method, which is based on
the Monte Carlo simulation, and set the Nash–Sutcliffe efficiency (NSE) as the objective function
(Section 2.6). This is a robust method that requires a large number of simulations and computational
resources [39]. LH sampling randomly assigns a value within the permitted range of each parameter to
complete a parameter set. The One-factor-At-a-Time (OAT) sensitivity test was then commenced after
the sampling. This method takes one parameter for each run and changes its value to determine how
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each parameter affects the results. Sensitive parameters were determined based on their probability
values or p-values. Parameters with less than 0.01 p-value were labeled as sensitive. The LH-OAT
method was applied to the SWAT hydrology and pesticide models in this study.

2.6. Evaluation Criteria

The coefficient of determination (R2), Nash–Sutcliffe Efficiency coefficient (NSE), root mean
square error (RMSE), and percent bias (PBIAS) were then calculated to evaluate the SWAT and the
modified model. These statistical indices can determine whether the model performance is satisfactory
or unsatisfactory [40]. R2 and NSE were calculated for the calibration and validation periods of
the flowrate (Table 1), while R2, NSE, RMSE and PBIAS were determined for pesticide. For a daily
time-step, the model is acceptable or satisfactory when the R2 and NSE values are greater than 0.5 and
when the RMSE and PBIAS values reach the optimal value of 0. A lower RMSE value is an indicator
that the model has less residual variance [41]. PBIAS shows if the model has under- or overestimated
the results compared to the observations, and lower absolute PBIAS values indicate more accurate
model simulations [42].

SWAT-CUP also has other criteria to quantify the strength and uncertainties of the calibration
analysis. Given the small dataset of this study, the P-factor and R-factor of the iteration were also noted.
P-factor represents percentage of the simulated data covered by the 95% uncertainty band (95PPU)
and it ranges from 0 to 1 [43]. A P-factor value greater than 0.5 is desirable since it entails that more
than 50% of the simulated data are acceptable. R-factor, on the other hand, estimates strength of the
calibration by dividing the average thickness of the 95PPU band with the standard deviation of the
measured data [43]. The range of the R-factor starts from 0 to infinity; high and low R-factor values
correspond to a thicker and thinner 95 PPU bands, respectively. A P-factor of 1.0 and an R-factor of 0
signifies a perfect simulation of the observed data.

3. Results and Discussion

3.1. Flowrate Calibration

Figure 5 shows the comparison of the observed and SWAT-simulated flowrate at Lumban Station.
The model did not implement the presence of reservoirs and paddy fields due to the lack of information;
hence, it was assumed that these factors would affect the flowrate calibration when it comes to water
storage. The calibration process yielded an R2 value of 0.42 and an NSE of 0.22 while the validation
period has 0.10 and−2.87, respectively. These values are less than the desired value of 0.5 [40], showing
that the SWAT model is slightly unfit and underperforming. The lack of information regarding
the management of the two reservoirs (storage, release, and distribution) may have significantly
degraded the performance of the model [44]. The SWAT model of the PL basin was limited to a small
dataset, which was a major disadvantage during the calibration (227 observed flowrate) and validation
(158 observed flowrate) of the flowrate. The intense rainfall events happened in the calibration period;
hence, the entire basin drains to the outlet, as mentioned in Section 2.1. This is in contrast with the
validation period that included the days with dry to mild rainfall, which only drains the southern
part of the basin. The 95PPU band of the flowrate calibration in Figure 5 has a P-factor value greater
than 0.5 and an R-factor value of less than 1. This result indicates that more than 50% of the simulated
flowrate is within the acceptable uncertainty [43]. The validation period, on the other hand, has a
P-factor of 0.18 and an R-factor of 0.72, indicating that only 18% of the simulated flowrate during this
period is within the uncertainty range.

Nine parameters were found to have a significant effect on the flowrate (Table 5). Surface runoff lag
coefficient (SURLAG) was the most sensitive parameter with a calibration value of 0.051 h. This value
is negligible compared to the default value in SWAT, which is four hours. As SURLAG decreases,
more water is stored in the basin, indicating that surface runoff does not go directly to the channel
in the PL basin and is instead stored elsewhere [45]. The presence of two reservoirs in the northern
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half of the basin, mentioned in Section 2.1, may have affected the SURLAG value. A huge percentage
of the runoff was immediately collected by the reservoirs instead of getting released across the basin.
The water can also be stored in the foliage and paddies that are present in the basin. This is supported
by the other sensitive parameters: Manning’s “n” value for the tributary channels (CH_N1), second
most sensitive; the initial SCS runoff curve number for moisture condition II (CN2), third; baseflow
alpha factor (ALPHA_BF), fourth; and effective hydraulic conductivity in tributary channel alluvium
(CH_K1), fifth.
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Figure 5. Observed and simulated flowrate (m3·s−1) at Lumban Station over the calibration
(September 2014–May 2015) and the validation (May 2014–July 2014 and June 2016–September
2016) periods, together with the 95% uncertainty band (95 PPU). The flowrate is plotted against
the precipitation (mm) for the whole period.

Table 5. SWAT parameters for calibration and sensitivity analysis of the original SWAT pesticide model.

Rank Parameter Fitted Value

1 SURLAG 0.051
2 CH_N1 0.12
3 CN2 −0.096
4 ALPHA_BF 0.46
5 CH_K1 48.4
6 RCHRG_DP 0.97
7 CH_K2 42.2
8 SLSUBBSN 75.8
9 OV_N 0.33

CN2 signifies the soil permeability of the basin [46]. Increasing CN2 values is associated with the
increase of imperviousness of the basin. This can be related to how urbanized the basin is. During
calibration, SWAT-CUP relatively changes the CN2 value at the HRU level since HRUs have varying
CN2 values. In general, CN2 in PL basin has a calibrated value of−0.096 or−9.6%, indicating a general
decrease in the CN2 values of each HRU. Hence, the basin is slightly more pervious compared to the
default values suggested by SWAT. This result was expected since PL basin is highly agricultural [29].
ALPHA_BF, on the other hand, is the baseflow recession constant, a direct index of groundwater flow
response and is a basin-wide parameter. It has a calibrated value of 0.46, suggesting an intermediate or
average response to the change in recharge, slightly leaning towards the slow response (slow response:
0.1–0.3; rapid response: 0.9–1.0). The result can indicate that it is possible for water to be stored in
the shallow aquifer that can also be associated to the CH_K1 value. CH_K1 controls the transmission
losses from the surface runoff in the tributary. It is determined by the type of bed materials present
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in the channel bed. The calibrated result of 48.4 mm·h−1 falls on the moderately high loss rate that
ranges from 25 mm·h−1 to 76 mm·h−1. This value characterizes the tributary bed material as sand
and gravel mixture with low silt-clay content, which makes it easier for the transmission losses of
to percolate into the shallow aquifer. Another sensitive parameter that has a similar description to
CH_K1 is the effective hydraulic conductivity in the main channel alluvium (CH_K2). The calibrated
value of CH_K2, 42.2 mm·h−1, falls within the same range as CH_K1, indicating that the main channel
has similar characteristics as the tributary channel. Having a lower CH_K2 value compared to CH_K1
signifies that the bed material of the main channel is a slightly more consolidated compared to the
tributary channels. The second most sensitive parameter also describes the tributary channel in the
basin, CH_N1. CH_N1 has a calibrated value of 0.12, which indicates the channel is well maintained
and full of weeds and brushes (excavated or dredged) or it is heavy timbered with lots of vegetation
as well (natural stream). The deep aquifer percolation fraction (RCHRG_DP) was also found to be
sensitive, with a calibrated value of 0.97. This result indicates that a huge fraction of percolation from
the root zone recharges the deep aquifer [47]. However, the value is extremely high compared to the
other studies with high RCHRG_DP values. Schuol et al. [48] estimated a range of 0.4 to 0.65 for the
West Africa subcontinent, while Me et al. [47] yielded a value of 0.87 for a New Zealand catchment
with mixed landuse. Though it can be assumed that the RCHRG_DP value for PL basin is also high,
it should also be noted that this parameter may have been affected by the discrepancies formulated
from the limited dataset (Section 2.2) and that the fraction (0.97) is too high for this basin. Lastly, the
average slope length (SLSUBBSN) and Manning’s value for overland flow (OV_N) have calibrated
values of 75.8 m and 0.33, respectively.

3.2. Pesticide Calibration with SWAT Pesticide Model

After the flow calibration and validation, SWAT-CUP was applied to calibrate and analyze the
sensitive parameters of the SWAT pesticide model. The calibration processes of the flowrate and
pesticide were done separately to incorporate the same calibrated values of the flowrate parameters
for the original SWAT model and the modified model. Figure 6 shows the observed and the
simulated results of the malathion concentrations at Lucban Station using the original SWAT model.
The calibration process yielded an R2 of 0.39, an NSE of 0.18, a PBIAS value of 59.2%, and an RMSE
of 3492.23 mg. Five parameters were found to be significant in the SWAT pesticide model (Table 6).
The most sensitive parameter was the application efficiency (AP_EF) of the malathion with a calibrated
value of 0.13. This indicates that only 13% of the applied malathion is deposited on the foliage and soil
surface while the rest are lost in the atmosphere, which can be due to the type of pesticide application
and management practices of the farmers in the basin. The pesticide partition coefficient between
water and sediment in the reach (CHPST_KOC) was the second most sensitive parameter with a fitted
value of 0.0012. A low value indicates that malathion is highly mobile in the water in its dissolved
form, thereby increasing its potential for long-distance transport [16,49]. This parameter is followed
by the degradation half-life of malathion on the soil surface (HLIFE_S), the reaction coefficient in the
channel (CHPST_REA), and the soil adsorption coefficient for soil organic carbon (SKOC) that have
calibrated values of 6.26 day−1, 0.037 day−1, and 3594.52 L·kg−1, respectively. The sensitivity analysis
determined that the pesticide application, degradation in the soil, and the sediment interaction and
reactivity of malathion in water were the important processes that influenced the fate and transport of
malathion in the basin.

Table 6. Sensitive parameters of the SWAT pesticide model.

Rank Parameters Fitted Value

1 AP_EF 0.13
2 CHPST_KOC 0.0012
3 HLIFE_S 6.26
4 CHPST_REA 0.037
5 SKOC 3594.52
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Figure 6. Observed and simulated malathion concentrations at Lucban Station over the calibration
(December 2007–November 2008) period together with the 95% uncertainty band (95 PPU).

3.3. Pesticides Calibration with Modified Pesticide Model

Table 7 revealed that the settling velocity (vs) was the most sensitive parameter, which suggest that
the interaction of malathion particles in the water greatly affects the malathion transport. Degradation
rate constant of the dissolved malathion particles (µk,fd) was the second most sensitive, which can be
attributed to how malathion readily dissolves in water compared to soil. This was followed by, in no
particular order, the wash off coefficient (Cfd,1) and exponent (Cfd,2), diffusion coefficient (En), porosity
(poro), soil density (ρsoil), organic carbon fraction in soil (foc), and temperature adjustment factor of
the particle-bound malathion (θk,p). Malathion parameters that are associated with the particulate
phase were sensitive for both models. However, the specific parameters are not exactly the same.
The modified model has a more detailed formalism since it applied the three-phase partitioning model.
This gave a visual understanding of the different forms of malathion that were greatly affected by
wash off, which is the dissolved malathion. In this case, it can be assumed that dissolved malathion
is more susceptible to wash off and most likely to end up in the channel compared to the other two
malathion phases, particle-bound and DOC-associated malathion. Aside from the malathion-specific
parameters, soil properties were also important such as the soil density, porosity, and organic carbon
fraction of the soil.

Table 7. Sensitive parameters of the modified pesticide model.

Rank Parameters Fitted Value

1 vs 0.0001
2 µk,fd 4.25 × 10−5

3 Cfd,1 1.14
4 Cfd,2 0.549
5 poro 0.50
6 foc 0.20
7 En 0.1006
8 θk,p 1.16 × 10−5

9 ρsoil 1.06

3.4. Comparison of Observed and Simulated Malathion Loading

Figure 7 shows the observed and simulated values of the monitoring dataset. The modified model
has 0.52, 0.36, 48.6%, and 3088.05 mg values for R2, NSE, PBIAS, and RMSE, respectively. Based on
these evaluation criteria, the modified model performed better compared to the SWAT model (statistics
mentioned in Section 3.2).
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Figure 7. (a) Logarithmic scale (-); and (b) normal scale (milligram) of the observed and simulated
malathion loadings at Lucban Station. This shows the comparison of the observed malathion data and
simulated loading by the original SWAT and modified SWAT model.

The observed data were compared to the simulated loading by SWAT and the modified model
in Figure 8. The figure includes the logarithmic (Figure 8a) and actual (Figure 8b) scale of the values,
which reveals the similarities and differences between the models. Both models were able to achieve
a small deviation between the observed and simulated low malathion loading. Comparing the two
simulations, the modified model captured more low values compared to SWAT. However, the models
were poorly able to simulate the high values as seen in the two plots (Figure 7), the results were
comparable for both models. Figure 7 shows the time series of the malathion loading simulated
by the SWAT and modified models compared to the SWAT-projected flowrate from January 2007 to
December 2008 at the Lucban Station. The malathion simulations peaked during the duration of the
pesticide application. However, the peaks of modified model showed more consistency compared to
the increasing peaks of the SWAT model. Both models have similar peak levels at the fourth peak, but
the SWAT model gave a more distinct pattern compared to the modified model.
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4. Conclusions

Insufficient data were one of the limitations of this study that imply high uncertainty in both
models. However, building a SWAT model for the flowrate calibration was made possible in this study.
Equations that are relevant to the fate and transport of pesticides were added to the modified model
prior to simulations. The objectives of this study were also met by simulating the malathion loading in
the PL basin using the SWAT and modified model. Hence, the following conclusions were derived:

1. The sensitivity analysis of the hydrology model revealed that the flowrate of the PL basin is
greatly influenced by the perviousness of the soil and the characteristics of the tributary channel
that stores and retains the water in the basin.

2. The modified pesticide model gave a slightly better performance compared to the original SWAT
model, considering the statistical analyses performed (R2, NSE, PBIAS, and RMSE).

3. Application efficiency was the most sensitive parameters for the original SWAT model,
suggesting a possible need to improve the pesticide application and management practices
of farmers in the basin, while settling velocity was the most sensitive for the modified
models. Parameters associated with particulate-phase malathion, especially the degradation of
particle-bound malathion, were also significant to both models.

4. The temporal patterns of the target subbasin simulated by the models showed that the modified
model has more consistent peaks during the duration of pesticide application compared to SWAT.

This study focused on the comparison of the outcomes of the modified model with the commonly
used SWAT hydrological model. The modified model and the original SWAT model were able to
identify similar sensitive parameters. However, further development of the model is needed to
incorporate pesticide application scenarios and interaction of soil and water media to the atmosphere.

Acknowledgments: This study was made possible by the support of the Korea Ministry of Environment (MOE)
as part of “The Chemical Accident Prevention Technology Development Project”. We would like to acknowledge
the Integrated Watershed Research and Development Project (INWARD) for providing the relevant information.

Author Contributions: Mayzonee Ligaray built the original SWAT model and wrote the paper; Sangsoo Baek
developed the modified model; Minjeong Kim processed the data gathered; Yongeun Park processed the partial
results of the SWAT model; Jin-Sung Ra and Jong Ahn Chun helped analyze the results; Laurie Boithias and
Olivier Ribolzi provided their insight and expertise in improving the methods applied to the data and revising
paper; Kangmin Chon made the plots and helped revised the paper; and Kyung Hwa Cho gathered the input data
and designed the research plan.

Conflicts of Interest: The authors declare no conflict of interest and the founding sponsors had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in
the decision to publish the results.

References

1. The World Bank. Agriculture, Value Added (% of GDP). In World Development Indicators, 17 November
2016 ed.; The World Bank Group: Washington, DC, USA, 2016.

2. Bassil, K.L.; Vakil, C.; Sanborn, M.; Cole, D.C.; Kaur, J.S.; Kerr, K.J. Cancer health effects of pesticides:
Systematic review. Can. Fam. Phys. 2007, 53, 1704–1711.

3. Colborn, T.; vom Saal, F.S.; Soto, A.M. Developmental effects of endocrine-disrupting chemicals in wildlife
and humans. Environ. Health Perspect. 1993, 101, 378–384. [CrossRef] [PubMed]

4. Bolognesi, C. Genotoxicity of pesticides: A review of human biomonitoring studies. Mutat. Res. 2003, 543,
251–272. [CrossRef]

5. Jacobsen, C.S.; Hjelmsø, M.H. Agricultural soils, pesticides and microbial diversity. Curr. Opin. Biotechnol.
2014, 27, 15–20. [CrossRef] [PubMed]

6. Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.;
Tscharntke, T.; Winqvist, C.; et al. Persistent negative effects of pesticides on biodiversity and biological
control potential on european farmland. Basic Appl. Ecol. 2010, 11, 97–105. [CrossRef]

http://dx.doi.org/10.1289/ehp.93101378
http://www.ncbi.nlm.nih.gov/pubmed/8080506
http://dx.doi.org/10.1016/S1383-5742(03)00015-2
http://dx.doi.org/10.1016/j.copbio.2013.09.003
http://www.ncbi.nlm.nih.gov/pubmed/24863892
http://dx.doi.org/10.1016/j.baae.2009.12.001


Water 2017, 9, 451 17 of 18

7. Schäfer, R.B.; Caquet, T.; Siimes, K.; Mueller, R.; Lagadic, L.; Liess, M. Effects of pesticides on community
structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe.
Sci. Total Environ. 2007, 382, 272–285. [CrossRef] [PubMed]

8. Wauchope, R. The pesticide content of surface water draining from agricultural fields—A review.
J. Environ. Qual. 1978, 7, 459–472. [CrossRef]

9. Ritter, W. Pesticide contamination of ground water in the United States—A review. J. Environ. Sci. Health
Part B 1990, 25, 1–29. [CrossRef]

10. Balinova, A.; Mondesky, M. Pesticide contamination of ground and surface water in Bulgarian Danube plain.
J. Environ. Sci. Health Part B 1999, 34, 33–46. [CrossRef] [PubMed]

11. Kumari, B.; Madan, V.; Kathpal, T. Status of insecticide contamination of soil and water in Haryana, India.
Environ. Monit. Assess. 2008, 136, 239–244. [CrossRef] [PubMed]

12. Snelder, D.J.; Masipiqueña, M.D.; de Snoo, G.R. Risk assessment of pesticide usage by smallholder farmers
in the Cagayan Valley (Philippines). Crop Prot. 2008, 27, 747–762. [CrossRef]

13. Lapong, E.R.; Ella, V.B.; Villano, M.G.; Bato, P.M. Effects of climatic factors and land use on runoff, sediment
load, and pesticide loading in upland microcatchments in Bukidnon, Philippines. Philipp. J. Agric. Biosys.
Eng. 2008, 6, 49–56.

14. Senoro, D.B.; Maravillas, S.L.; Ghafari, N.; Rivera, C.C.; Quiambao, E.C.; Lorenzo, M.C.M. Modeling of
the residue transport of lambda cyhalothrin, cypermethrin, malathion and endosulfan in three different
environmental compartments in the Philippines. Sustain. Environ. Res. 2016, 26, 168–176. [CrossRef]

15. Santos-Borja, A.; Nepomuceno, D. Laguna de bay: Experience and lessons learned brief. World Lake
Database 2006, 15, 225–258. Available online: http://wldb.ilec.or.jp/data/gef_reports/15_Laguna_de_Bay_
27February2006.pdf (accessed on 20 June 2017).

16. Varca, L.M. Pesticide residues in surface waters of Pagsanjan-Lumban catchment of Laguna de Bay,
Philippines. Agric. Water Manag. 2012, 106, 35–41. [CrossRef]

17. Bajet, C.M.; Kumar, A.; Calingacion, M.N.; Narvacan, T.C. Toxicological assessment of pesticides used in
the Pagsanjan-Lumban catchment to selected non-target aquatic organisms in Laguna Lake, Philippines.
Agric. Water Manag. 2012, 106, 42–49. [CrossRef]

18. Sanchez, P.B.; Oliver, D.P.; Castillo, H.C.; Kookana, R.S. Nutrient and sediment concentrations in the
Pagsanjan-Lumban catchment of Laguna de Bay, Philippines. Agric. Water Manag. 2012, 106, 17–26.
[CrossRef]

19. Hallare, A.V.; Kosmehl, T.; Schulze, T.; Hollert, H.; Köhler, H.R.; Triebskorn, R. Assessing contamination
levels of Laguna Lake sediments (Philippines) using a contact assay with zebrafish (Danio rerio) embryos.
Sci. Total Environ. 2005, 347, 254–271. [CrossRef] [PubMed]

20. Marín-Benito, J.M.; Pot, V.; Alletto, L.; Mamy, L.; Bedos, C.; Barriuso, E.; Benoit, P. Comparison of three
pesticide fate models with respect to the leaching of two herbicides under field conditions in an irrigated
maize cropping system. Sci. Total Environ. 2014, 499, 533–545. [CrossRef] [PubMed]

21. Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.;
et al. An overview of the crop model stics. Eur. J. Agron. 2003, 18, 309–332. [CrossRef]

22. Boithias, L.; Sauvage, S.; Srinivasan, R.; Leccia, O.; Sánchez-Pérez, J.-M. Application date as a controlling
factor of pesticide transfers to surface water during runoff events. CATENA 2014, 119, 97–103. [CrossRef]

23. Boithias, L.; Sauvage, S.; Taghavi, L.; Merlina, G.; Probst, J.-L.; Sánchez Pérez, J.M. Occurrence of metolachlor
and trifluralin losses in the save river agricultural catchment during floods. J. Hazard. Mater. 2011, 196,
210–219. [CrossRef] [PubMed]

24. Fohrer, N.; Dietrich, A.; Kolychalow, O.; Ulrich, U. Assessment of the environmental fate of the herbicides
flufenacet and metazachlor with the SWAT model. J. Environ. Qual. 2014, 43, 75–85. [CrossRef] [PubMed]

25. Holvoet, K.; Gevaert, V.; van Griensven, A.; Seuntjens, P.; Vanrolleghem, P.A. Modelling the effectiveness of
agricultural measures to reduce the amount of pesticides entering surface waters. Water Resour. Manag. 2007,
21, 2027–2035. [CrossRef]

26. Zettam, A.; Taleb, A.; Sauvage, S.; Boithias, L.; Belaidi, N.; Sánchez-Pérez, J. Modelling hydrology and
sediment transport in a semi-arid and anthropized catchment using the SWAT model: The case of the Tafna
river (northwest Algeria). Water 2017, 9, 216. [CrossRef]

27. Wu, Y.; Shi, X.; Li, C.; Zhao, S.; Pen, F.; Green, T. Simulation of hydrology and nutrient transport in the Hetao
Irrigation District, Inner Mongolia, China. Water 2017, 9, 169. [CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2007.04.040
http://www.ncbi.nlm.nih.gov/pubmed/17555800
http://dx.doi.org/10.2134/jeq1978.00472425000700040001x
http://dx.doi.org/10.1080/03601239009372674
http://dx.doi.org/10.1080/03601239909373182
http://www.ncbi.nlm.nih.gov/pubmed/10048204
http://dx.doi.org/10.1007/s10661-007-9679-1
http://www.ncbi.nlm.nih.gov/pubmed/17406996
http://dx.doi.org/10.1016/j.cropro.2007.10.011
http://dx.doi.org/10.1016/j.serj.2016.04.010
http://wldb.ilec.or.jp/data/gef_reports/15_Laguna_de_Bay_27February2006.pdf
http://wldb.ilec.or.jp/data/gef_reports/15_Laguna_de_Bay_27February2006.pdf
http://dx.doi.org/10.1016/j.agwat.2011.08.006
http://dx.doi.org/10.1016/j.agwat.2012.01.009
http://dx.doi.org/10.1016/j.agwat.2011.07.011
http://dx.doi.org/10.1016/j.scitotenv.2004.12.002
http://www.ncbi.nlm.nih.gov/pubmed/16084981
http://dx.doi.org/10.1016/j.scitotenv.2014.06.143
http://www.ncbi.nlm.nih.gov/pubmed/25130625
http://dx.doi.org/10.1016/S1161-0301(02)00110-7
http://dx.doi.org/10.1016/j.catena.2014.03.013
http://dx.doi.org/10.1016/j.jhazmat.2011.09.012
http://www.ncbi.nlm.nih.gov/pubmed/21945686
http://dx.doi.org/10.2134/jeq2011.0382
http://www.ncbi.nlm.nih.gov/pubmed/25602542
http://dx.doi.org/10.1007/s11269-007-9199-3
http://dx.doi.org/10.3390/w9030216
http://dx.doi.org/10.3390/w9030169


Water 2017, 9, 451 18 of 18

28. Kintanar, R.L. Climate of the Philippines; PAGASA: Quezon City, Philippines, 1984.
29. Cruz, R.V.O.; Pillas, M.; Castillo, H.C.; Hernandez, E.C. Pagsanjan-Lumban catchment, Philippines:

Summary of biophysical characteristics of the catchment, background to site selection and instrumentation.
Agric. Water Manag. 2012, 106, 3–7. [CrossRef]

30. Dile, Y.T.; Srinivasan, R. Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds:
An application in the Blue Nile River Basin. J. Am. Water Resour. Assoc. 2014, 50, 1226–1241. [CrossRef]

31. Fuka, D.R.; Walter, M.T.; MacAlister, C.; Degaetano, A.T.; Steenhuis, T.S.; Easton, Z.M. Using the climate
forecast system reanalysis as weather input data for watershed models. Hydrol. Proc. 2014, 28, 5613–5623.
[CrossRef]

32. Holvoet, K.; van Griensven, A.; Seuntjens, P.; Vanrolleghem, P.A. Sensitivity analysis for hydrology and
pesticide supply towards the river in SWAT. Phys. Chem. Earth Parts A/B/C 2005, 30, 518–526. [CrossRef]

33. Ligaray, M.; Kim, H.; Sthiannopkao, S.; Lee, S.; Cho, K.; Kim, J. Assessment on hydrologic response by
climate change in the Chao Phraya River Basin, Thailand. Water 2015, 7, 6892–6909. [CrossRef]

34. Luo, Y.; Zhang, M. Management-oriented sensitivity analysis for pesticide transport in watershed-scale
water quality modeling using SWAT. Environ. Pollut. 2009, 157, 3370–3378. [CrossRef] [PubMed]

35. Fabro, L.; Varca, L.M. Pesticide usage by farmers in Pagsanjan-Lumban catchment of Laguna de Bay,
Philippines. Agric. Water Manag. 2012, 106, 27–34. [CrossRef]

36. Ligaray, M.; Baek, S.S.; Kwon, H.-O.; Choi, S.-D.; Cho, K.H. Watershed-scale modeling on the fate and
transport of polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater. 2016, 320, 442–457. [CrossRef]
[PubMed]

37. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation
Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011.

38. Bergknut, M.; Meijer, S.; Halsall, C.; Ågren, A.; Laudon, H.; Köhler, S.; Jones, K.C.; Tysklind, M.; Wiberg, K.
Modelling the fate of hydrophobic organic contaminants in a boreal forest catchment: A cross disciplinary
approach to assessing diffuse pollution to surface waters. Environ. Pollut. 2010, 158, 2964–2969. [CrossRef]
[PubMed]

39. Van Griensven, A.; Meixner, T.; Grunwald, S.; Bishop, T.; Diluzio, M.; Srinivasan, R. A global sensitivity
analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23. [CrossRef]

40. Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance
measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785.

41. Roy, K.; Das, R.N.; Ambure, P.; Aher, R.B. Be aware of error measures. Further studies on validation of
predictive qsar models. Chem. Intell. Lab. Syst. 2016, 152, 18–33. [CrossRef]

42. Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model evaluation guidelines for
systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [CrossRef]

43. Abbaspour, K.C. SWAT Calibration and Uncertainty Programs—A User Manual; Eawag—Swiss Federal Institute
of Aquatic Science and Technology: Dübendorf, Switzerland, 2007; Volume 103.

44. Bouraoui, F.; Benabdallah, S.; Jrad, A.; Bidoglio, G. Application of the swat model on the Medjerda river
basin (Tunisia). Phys. Chem. Earth Parts A/B/C 2005, 30, 497–507. [CrossRef]

45. Li, Z.; Xu, Z.; Shao, Q.; Yang, J. Parameter estimation and uncertainty analysis of SWAT model in upper
reaches of the Heihe river basin. Hydrol. Proc. 2009, 23, 2744–2753. [CrossRef]

46. Neitsch, S.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and Water Assessment Tool Input/Output
File Documentation Version 2009; Texas Water Resources Institute: Forney, TX, USA, 2010; Volume 365.

47. Me, W.; Abell, J.M.; Hamilton, D.P. Effects of hydrologic conditions on SWAT model performance and
parameter sensitivity for a small, mixed land use catchment in New Zealand. Hydrol. Earth Syst. Sci. 2015,
19, 4127–4147. [CrossRef]

48. Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Estimation of freshwater availability in the West African
sub-continent using the SWAT hydrologic model. J. Hydrol. 2008, 352, 30–49. [CrossRef]

49. Newhart, K. Environmental Fate of Malathion; California Environmental Protection Agency: Sacramento, CA,
USA, 2006.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.agwat.2011.08.003
http://dx.doi.org/10.1111/jawr.12182
http://dx.doi.org/10.1002/hyp.10073
http://dx.doi.org/10.1016/j.pce.2005.07.006
http://dx.doi.org/10.3390/w7126665
http://dx.doi.org/10.1016/j.envpol.2009.06.024
http://www.ncbi.nlm.nih.gov/pubmed/19616876
http://dx.doi.org/10.1016/j.agwat.2011.08.011
http://dx.doi.org/10.1016/j.jhazmat.2016.08.063
http://www.ncbi.nlm.nih.gov/pubmed/27585277
http://dx.doi.org/10.1016/j.envpol.2010.05.027
http://www.ncbi.nlm.nih.gov/pubmed/20619517
http://dx.doi.org/10.1016/j.jhydrol.2005.09.008
http://dx.doi.org/10.1016/j.chemolab.2016.01.008
http://dx.doi.org/10.13031/2013.23153
http://dx.doi.org/10.1016/j.pce.2005.07.004
http://dx.doi.org/10.1002/hyp.7371
http://dx.doi.org/10.5194/hess-19-4127-2015
http://dx.doi.org/10.1016/j.jhydrol.2007.12.025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Monitoring Data 
	Hydrology Model 
	Pesticide Modeling 
	Original SWAT Pesticide Model 
	Modified Pesticide Model 

	Sensitivity Analyses 
	Evaluation Criteria 

	Results and Discussion 
	Flowrate Calibration 
	Pesticide Calibration with SWAT Pesticide Model 
	Pesticides Calibration with Modified Pesticide Model 
	Comparison of Observed and Simulated Malathion Loading 

	Conclusions 

