Hindawi

Journal of Sensors

Volume 2017, Article ID 6747921, 14 pages
https://doi.org/10.1155/2017/6747921

Hindawi

Research Article

Estimation of Individual Muscular Forces of the Lower Limb
during Walking Using a Wearable Sensor System

Suin Kim, Kyongkwan Ro, and Joonbum Bae

Department of Mechanical Engineering, UNIST, Ulsan, Republic of Korea

Correspondence should be addressed to Joonbum Bae; jbbae@unist.ac.kr

Received 28 October 2016; Revised 24 February 2017; Accepted 26 March 2017; Published 22 May 2017
Academic Editor: Jaime Lloret

Copyright © 2017 Suin Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Although various kinds of methodologies have been suggested to estimate individual muscular forces, many of them require a costly
measurement system accompanied by complex preprocessing and postprocessing procedures. In this research, a simple wearable
sensor system was developed, combined with the inverse dynamics-based static optimization method. The suggested method can
be set up easily and can immediately convert motion information into muscular forces. The proposed sensor system consisted of
the four inertial measurement units (IMUs) and manually developed ground reaction force sensor to measure the joint angles and
ground reaction forces, respectively. To verify performance, the measured data was compared with that of the camera-based motion
capture system and a force plate. Based on the motion data, muscular efforts were estimated in the nine muscle groups in the lower
extremity using the inverse dynamics-based static optimization. The estimated muscular forces were qualitatively analyzed in the

perspective of gait functions and compared with the electromyography signal.

1. Introduction

Many studies have been conducted to estimate muscular
forces in living things, especially humans. To understand
the mechanism of the human body performing a motor
task quantitatively, it is essential to estimate muscular forces,
which has many potential applications: (1) fundamental
and quantitative analysis of human motion [1], (2) design
of systemic training and analysis of injury mechanisms in
the field of sports science [2], (3) diagnosis of abnormal
muscular functions and evaluation of the therapeutic effects
of rehabilitation [3], and (4) design and development of
prosthetic and orthotic [4] and human-robot interaction
systems such as an exoskeleton [5-7].

However, although various methodologies have been pro-
posed, estimation of muscular forces remains as a challenging
task. Among them, the most simple is to connect a force
transducer directly to a muscle [8]. However, it cannot be
applied to the human because it requires surgery to the
body. Surface electromyography (sSEMG) is the most widely
accepted noninvasive method to measure the activation level
of a muscle [9]. However, it requires complex and frequent
calibration processes due to the high noise/signal ratio,

differences among individuals, and surrounding conditions.
Additionally, only superficial muscles can be measured and it
is difficult to block interference from neighboring muscles.
Moreover, the true relationship between EMG signals and
muscular forces is not yet fully understood. Other researchers
have attempted to measure muscle hardness using ultrasound
waves and muscle volume using strain sensors, but these have
similar drawbacks to EMG [10, 11].

Recently, computational simulation programs, such as
OpenSim [12], were developed to analyze motor tasks. They
provide a model-based estimation method, which enables
to build a musculoskeletal model and analyze movements
and muscle functions conveniently. The fundamental algo-
rithm within the simulation is “computed muscle control”
(CMC), which aims to find the optimal muscle activation
according to given kinematic data of the body, such as
joint angles, velocities, and acceleration [13]. The algorithm
demands relatively high computational costs due to the
intrinsic calculation processes including both optimization
and forward dynamics.

The inverse dynamics-based static optimization is one
of model-based estimation methods, which requires little
computation cost, because it does not include a forward


https://doi.org/10.1155/2017/6747921

dynamic process. In addition, unlike the other model-based
estimation methods, it is possible to be implemented in real-
time, since the inverse dynamics-based static optimization
does not demand the full set of motion data in advance. The
inverse dynamics-based static optimization has been applied
to various motor tasks: walking [14-21], spinal compression
[22-27], finger [28], wrist [29], elbow [30, 31], arm, and
shoulder [32-34] movements.

More specifically, the first step in the inverse dynamics-
based static optimization is to capture the motions and
external forces applied to the body. In previous research, the
body movements were usually measured by a camera-based
motion capture system, and external forces were measured by
aforce plate. Because the measurement systems have inherent
limitations in terms of mobility, this is only available within
a laboratory environment and natural movement may be
restricted by use of a fixed force plate. In addition, it is not
easy to equip the experimental instruments because of spatial
and cost limitations.

To overcome the limitations, the camera-based motion
capture system has been replaced with the inertial mea-
surement units (IMUs). Recently, full body motion capture
systems using the IMUs have been developed [35-39], and
there are several commercialized products by Xsens [40],
Perception Neuron [41], Synertial [42], Meta Motion [43],
Technaid [44], and so on. Using the sensor system, it has
been tried to estimate biomechanical factors such as joint
moments of the lower limb [45-47]. However, the previous
researches have not focused on combining the mobile motion
capture system and a shoe-type ground reaction force sensor
to investigate individual muscular efforts.

Therefore, in this study, the muscular forces are inves-
tigated by integrating a simple wearable sensor system and
the inverse dynamics-based static optimization. The wearable
sensor consists of four IMUs and an insole-type ground
reaction force (GRF) sensor. Analogous to the proposed
sensor system, the wireless M3D gait analysis system was
developed by Tec Gihan and Human Dynamics Analy-
sis (HDA) was also developed by Insenco [46]. The two
systems are composed of a number of IMUs and force
transducers attached below the shoes. Even though a rigid
force transducer usually allows great accuracy of force
measurement and multiaxial application, the user’s natural
motion can be disturbed due to rigidity and weight of the
sensor. The foot plantar pressure sensor should be thin
and flexible and light-weight, less than 300g, for natural
gait of the user [48, 49]. The proposed GRF sensor was
made of silicone tubes covered with fabrics to be light and
soft.

Based on the motion information collected by the
wearable sensor system, the inverse dynamics-based static
optimization method was applied to estimate the individual
muscular forces of the lower limb during walking. In our pre-
vious work, a prototype of the sensor system was developed
and preliminary experimental results were acquired [50].
However, it was difficult to validate the estimated muscular
efforts due to uncertainties of the measurement system itself.
Therefore, in this study, joint angles and GRF measured by
the proposed system are compared with that of vision-based
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FIGURE 1: Configuration of the wearable sensor system.

motion capture system with a force plate and the estimated
muscular efforts were confirmed with the EMG signals.

This paper is organized as follows: detailed procedures for
the estimation of individual muscular forces are introduced
in the next section, according to the sequence of inverse
dynamics-based static optimization. In detail, the inverse
dynamic equations of the lower extremity are derived; the
required body segment parameters are specified to solve the
problems. The static optimization problem is defined based
on the musculoskeletal model with selected muscle groups. In
the next section, the configuration and functions of the wear-
able sensor system are described, followed by experimental
verification of its performance. In the Results and Discussion,
the experimental results are presented, including estimated
joint moments and individual muscular forces of the lower
limb during normal gait.

2. Materials and Methods

2.1. The Wearable Sensor System. The wearable sensor system
consists of a wearable structure, four IMUs, and a manually
developed insole-type GRF sensor (Figure 1). The objective
of the sensor system was to measure the rotational angles
of the hip, knee, and ankle joint and two-dimensional pelvic
acceleration and GRE not restraining the motion of the user.
For that purpose, the IMU was better than a conventional
rotary sensor, such as an encoder, which was required to
be aligned with the articular axis. Furthermore, the GRF
sensor was fabricated with silicone tubes attached on the
insole, which made it lighter and softer than typical force
transducers.

2.1.1. Inertial Measurement Unit (IMU). To measure joint
angles, the four commercially available 9 DOFs IMUs were
adopted, which provide Euler angles [51]. Since the Euler
angles were given with respect to the absolute coordinate
system (i.e., the earth), the reference frame was defined to
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FIGURE 2: Procedures for converting the Euler angles from the IMUs to the knee joint angle: (a) extracting the rotation matrices from each
IMU, (b) calculating the directional vector of each segment, (c) transforming the reference coordinate from the earth to the trunk, and (d)
projecting the vectors into the sagittal plane and calculating the joint angle.

measure joint angles by attaching an IMU on the trunk.
Therefore, the postures of each segment were calculated
as a unit vector with respect to the reference coordinate.
For example, the following provides the detailed steps for
calculating knee joint angle (Figure 2). The roll axes of the
two IMUs attached on the thigh and shank were aligned with
the longitudinal axes of each segment (Figure 2(a)), setting
the approaching vectors along the longitudinal axis of each
IMU:

vi=[10,0)], )

where the superscript indicates the reference coordinate
where the vector is expressed and the subscript indicates
the approaching vector under consideration out of the thigh,
shank, and foot. Consequently, a rotational matrix of the IMU
was given as follows:

cycf cysPsa — syca cysPea + sysa
R = | sycf sysPsoa+cyca sysPeca—cysa |,  (2)
-sf3 cPBsa

cPea

where ¢ and s are cosine and sine and «, 3, and y are roll, pitch,
and yaw angles, respectively. Then, the longitudinal direction
of the segment was expressed with respect to the earth by
multiplying (2) to (1) (Figure 2(b)):
cyep
vi=|sycB |, (3)
where the superscript e and the subscript s refer to the earth
and the segment.

Next, the approaching vectors of the segments can be
expressed with respect to the reference coordinate of the IMU
on the trunk by multiplying the inverse of (2) on the trunk
(Figure 2(c)):

tr

s

(cBicBac (i = 12) + sBisBs) (4)
= (_Cﬁlsﬁzs"‘l +cfy (C (Yl - Yz) sPisay —coys (Yl - Yz))) >
(=cBycaysB, + ¢y (eyic (v = 1) Py + seus (y1 = 12)))



where the subscript “1” refers to the angles of the IMU on the
target segment and “2” represents the reference frame on the
trunk.

Finally, the direction vectors of the thigh and shank were
projected onto the sagittal plane, so that angle of the segments
with respect to the body reference frame was calculated using
simple trigonometrical functions (Figure 2(d)):

0, = —sgn (a) arccos(ﬁ) (i=123), ()

where 0 is the angle of the segment with respect to the
coordinate of the IMU on the trunk and a and c are the
first and third components of (4), respectively. The knee joint
angle 0, was calculated as 0, — 0,.

An important issue was to align the IMU carefully along
the longitudinal direction of the segment; xz plane of each
IMU (in Figure 2) was set to be parallel to the sagittal plane
of the corresponding segment. To align each IMU, the subject
was asked to stand still, and the IMUs were attached on the
each segment maintaining the condition that the direction
of gravity measured by the IMU was on xz plane. If the
condition was satisfied, the xz plane and the sagittal plane
could be considered parallel. The IMUs were attached to the
wearable structure which was made of straps and rubber
bands. The wearable structure hold the IMUs tightly in place
to ensure that alignment of IMUs was unchanged during
experiments. The initial angles were set to zero before the start
of an experiment, by asking the subject to stand and make the
leg be straightened. All the same procedures were applied to
calculate the joint angles at the hip and ankle.

2.1.2. Ground Reaction Force (GRF) Sensor. The proposed
GRF sensor was a modified version of Smart Shoes whose
performance was validated in the previous studies [52, 53].
Figure 3 describes its configuration and the weight of the
entire insole sensor was 125 g. The GRF sensor only measured
force along the vertical axis from the ground by measuring
pressure changes within the air bladders. The tangential GRF
was assumed to be negligible, because the magnitude of the
vertical force is about 20 times more than both the lateral
shear force and progressional shear force during walking
[54, 55]. From the force distribution of the four air bladders,
the center of pressure (COP) of the GRF was also calculated
with respect to the position of the ankle joint.

It was necessary to determine the relationship between
the pressure changes within the air bladder and external
force applied to it. For the calibration process, while the air
bladder was pressurized, the corresponding external force
was measured using a force transducer while simultaneously
measuring the air pressure within the air bladder. Before the
calibration process, to remove hysteresis effect caused by the
viscoelastic properties of the silicone tubes, dynamic com-
pensator was applied to compensate dynamic effect of the air
bladders. The performance of the dynamic compensator was
verified in the previous research [56, 57]. After the dynamic
compensator was applied, the calibration procedures were
conducted. The collected results were fitted with a line, as
shown in Figure 4, to make a linear model, the slope of
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FIGURE 3: Manually developed GRF sensor with four air bladders:
(a) entire view, (b) pressure sensor module, and (c) air bladders
attached to the insole.

which was associated with the amount of air inside and the
geometry of the bladder. The coefficient of determination, R?,
was also calculated, which indicated how the acquired data fit
a linear model. On the assumption that the slope remained
unchanged, it was necessary to initialize the signal to zero for
accurate measurements.

2.2. Inverse Dynamics-Based Static Optimization. Individual
muscular forces of the lower limb were estimated by applying
inverse dynamics-based static optimization through a series
of procedures (Table 1). The lower extremity was modeled as a
two-dimensional musculoskeletal system in the sagittal plane
that includes three segments (thigh, shank, and foot), three
joints (hip, knee, and ankle), and nine muscle groups. The
model includes information on body segment parameters
to solve the inverse dynamics problem and moment arms
and the physiological cross-sectional area of each muscle
for defining the static optimization problem. Based on the
musculoskeletal model, a set of motion data were measured,
the motion data were substituted into the inverse dynamic
equations to estimate joint moments, and the individual mus-
cular forces were estimated by solving the static optimization
based on the joint moments.

2.2.1. Inverse Dynamics. The lower extremity was described
as a mechanical system in dynamic equilibrium under the
actions of gravity, inertia, ground reactions, and muscular
forces, which generate appropriate moments at the joints.
Figure 5 shows a free body diagram of the lower extremity in
the sagittal plane, considering only flexion/extension motion
of the three joints, because most of the movements and
forces in the lower limb during walking occur in the plane
[58]. The two-dimensional model involves five degrees of
freedom, including three joint angles and the planar motion
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FIGURE 4: Results of the calibration process with the resulting slope and R* value.
of the pelvis. Using Lagrange mechanics, the inverse dynamic + (lt2 (m ft ms) +d mt) 6, — d 1m0, cos (0, + 0,)
equations were derived with respect to the absolute angle of )
the three segments: +d ¢l;m 05 cos (6, - 6;) + (lt (mf + ms) + dtmt)
M, = —Fggprsin 03 + ]f93 + gsin 0, - X, cos 0 + (lt (mf + ms) + dtmt) Ypsin6y,
(6)

+dgm (-1,67 sin (6, — 65) + 1,6 sin (6, + 6,)
+ 1,67 cos (6, — 6,) + 1,6, cos (6, + ;) + d ;6
+ %, cosB; + ¥, sin 03) ,

My = M, + 1 .Foppsin®, - .6, — g (lsmf + dsms)
-sin0, -1, (lsmf + dsms) 67 sin (0, +6,)
—d gm0 sin (6, + 65) + (Lm, + d,m,) 1,6,
-cos (6, +6,) - (lfmf + dfms) 0, + dflsmfé3
- cos (6, +6;) + (lsmf + dsms) X, cos0, - (lsmf
+ dsms) Vpsin6,,

My = My — LFgppsind, + ,0, + g (lt (mf + ms)
+ dtmt) sin6; +1, (lsmf + dsms) 67 sin (6, +6,)

+d gl;m ;6] sin (6, - 6;) - L 1,m 6, cos (6, +6,)

where the capital subscripts indicate the relevant joint, hip,
knee, and ankle and the small letters represent the segment:
pelvis, thigh, shank, and foot. M is the joint moment
generated by the muscles, d is the center of mass positions
from the proximal joints, 0,, 0,, and 0, are the absolute angles
of the thigh, shank, and foot, x and y are the center of mass
position of each segment, Fpp is the ground reaction, and r
is the application point of the ground reaction from the ankle.

Except for the measured motion data, there exist some
required parameters to solve the dynamic equations such
as segment length, mass, center of mass position, and mass
moment of inertia. However, they are not directly measur-
able, except for the segment length; thus the other parameters
should be estimated using the formulas found in cadaveric
experiments [59]:

m = P - (body mass),
c = R - (segment length), (7)

I=m-K- (segment length)’,

where m, ¢, and I are the mass, the center of mass position,
and the mass moment of inertia. The coefficients, P, R, and
K, of each segment are listed in Table 2 [60, 61].
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TABLE 1: Detailed procedures of inverse dynamics-based static optimization.

Procedures Musculoskeletal model

Diagram

Measurement of movements (i) Joint-segment model

Joint
kinematics

Ground

reaction
force
I
Joint
moments
Tnverse dynamics (i) Body segment pa.ram?ters (mass, length center
of mass moment of inertia)
Individual
(i) Muscle groups E)l;lcsgsle
Static optimization (i) Moment arms
(iii) Physiological cross sectional area (PCSA)
TaBLE 2: Coefficients for the body segment parameters.
P R, R, Keg K, K,
Foot 0.0145 0.500 0.500 0.475 0.690 0.690
Leg 0.0465 0.433 0.567 0.302 0.528 0.643
Thigh 0.1000 0.433 0.567 0.323 0.540 0.653

The subscript means the origin point where the resultant parameter is referring to; d refers to the distal joint, p refers to the proximal joint, and CG refers to

the center of gravity [60, 61].

2.2.2. Musculoskeletal Model and Static Optimization. Indi-
vidual muscular forces were determined by the static
optimization based on the moment equilibrium equations
between net joint moment produced by the muscles and
the joint moments calculated from the inverse dynamics.
Because the number of muscles is usually larger than that of
equilibrium equations, an optimization process is required.
The detailed discussion on applying the static optimization
is described in this section, including selecting the muscles
of interest, calculating moments” arms of each muscle, and
choosing an optimization criterion. The optimization prob-
lem was solved by a sequential quadratic programming (SQP)
algorithm.

As shown in Figure 6, the musculoskeletal model
included all of the muscle groups which are functionally

independent: (1) the iliacus (IL) for the hip flexor, (2)
the hamstrings (HA) for the hip extensor and knee flexor
simultaneously, (3) the rectus femoris (RF) for the hip
flexor and knee extensor, (4) the gastrocnemius (GA) for
the knee flexor and plantar flexor, (5) the biceps femoris
short head (BF) for the knee flexor, (6) the vastus (VA)
for the knee extensor, (7) the tibialis anterior (TA) for the
dorsiflexor, (8) the soleus (SO) for the plantar flexor, and (9)
the gluteus maximus (GL) for the hip extensor. The muscles
have significant force capabilities and moment arms, such
that their contributions to the joint torque are also more
significant than the excluded muscles [62, 63].

Even though a muscle exerts only a tensile force, it
produces torsional force with respect to the joint due to its
attachment to the bones. This means that how the muscle
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FIGURE 5: Two-dimensional free body diagram of the lower limb
(M;: joint moment (i = H: hip, K: knee, and A: ankle), «9] absolute
angle of the joints (j = 1: thigh, 2: shank, and 3: foot), (x;., y;.): center
of mass position of each segment (k = t: thigh, s: shank, and f: foot),

Fre: ground reaction, and r: center of pressure of Fgpp).

generates torque about a joint depends on both muscle
tendon force and the musculoskeletal geometry. Moment
arms of the muscle groups were calculated using the vector
operations based on the coordinate data of the muscle origin
and insertion with respect to a corresponding reference frame
[64, 65]. For example, Figure 7 illustrates the vector operation
to calculate the moment arm of the hamstring, where v} and
v are the origin and insertion coordinates with respect to
reference coordinate, tr is trunk, and s is shank, respectively,
given in [65]. Using the same strategy, moment arms of the
muscles arms were expressed as a function of joint angles.

To solve the individual muscular forces without reducing
the number of muscle groups, an optimization process is
required. It is important to adopt the proper optimization
criteria, and various types have been suggested to simulate the
actual body functions for recruiting the muscles: minimizing
(1) muscle force [18], (2) joint moment [14], (3) ligament
force, (4) joint contact force, (5) instantaneous muscle power
[20], and (6) muscle stress [15]. Among them, the criterion
of maximum endurance is the most widely accepted recently,

IL
GL
RF
HA VA
BF
GA
SO — TA

FIGURE 6: Muscle groups in the sagittal plane (IL: iliacus, HA:
hamstrings, RF: rectus femoris, GA: gastrocnemius, BF biceps
femoris short head, VA: vastus, TA: tibialis anterior, SO: soleus, and
GL: gluteus maximus).

T (0 1e) T (05 L) vi°

tr _ tr
YHA = Vi

1v," x VHA

oo X
HAT 2 ||VHA"H

/\t

FIGURE 7: Vector operation for calculating moment arm of the
hamstring; the subscript identifies the vector (o, i: origin and
insertion), the superscript indicates which reference frame the
vector is referring to (tr: trunk, ¢: thigh, and s: shank), 0: is rotational
angle, [ is segment length, and T is homogeneous transformation
matrix as a function of 6 and I.



because it was demonstrated to be the most biologically
meaningful. The cost function to be minimized is as follows:

e ()

where f; is the muscular force and A; is the physiological
cross-sectional area (PCSA) of the muscle. The PCSA is
defined as the total area of the cross-section perpendicular
with respect to the muscle fiber [66], and it is also calculated
as the volume of the muscle divided by the optimal fiber
length [67]. An appropriate value of the power #nin (8) cannot
be determined exactly due to differences in individuals and
muscles. In addition, to specify the value, it is necessary to
measure the muscular forces accurately, which would not be
available. Accordingly, the average value in literature reports,
n = 3, has been adopted as the most appropriate value [16].

The optimization problem was specified to minimize the
cost function in (8) satisfying the following constraints:

0< fi < (fi)max> 9
AX = B, (10)

where f; is the exerted muscular force and ( f;),,,, is the maxi-
mum isometric force. The first constraint in (9) represents the
force capability of each muscle, and the maximum isometric
force (f;)mayx is determined by multiplying the PCSA and
the specific tension, 61 N/cm?, of the muscle fiber, which is
the maximum stress the fiber can endure. The values of the
PCSA in the [67] were used. The other constraint in (10)
is moment equilibrium between the joint moment from the
inverse dynamics and the resulting moment exerted by the
muscles. The detailed representation of (10) is specified in
Appendix.

3. Results and Discussion

3.1. Verification of the Wearable Sensor System. To verify the
proposed wearable sensor system, joint angles and ground
reactions were measured during normal walking by the
proposed sensor system and camera-based motion capture
system (Motion Analysis Corp.) with a force plate (Kistler)
simultaneously [68, 69]. A subject (male, 178 cm, 70 kg) with
no musculoskeletal disease walked at a speed of 3km/h. As
shown in Figure 8, the joint angles were successfully mea-
sured by the proposed sensor system. In addition, preparation
time was less than a minute for attachment of the IMUs and
initialization of joint angles, which was much faster than the
camera-based motion capture system. Ground reactions and
its center of pressure were also successfully measured by the
proposed sensor system (Figure 9).

3.2. Experimental Results during Walking. Based on the
motion data shown in Figures 8 and 9, the joint moments
were estimated by solving the inverse dynamics, and the
solution of the optimization problem produced instanta-
neous values of muscular forces in the nine muscle groups
at each instant. To interpret the estimated muscular efforts,
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FIGURE 8: Joint angles during normal gait.

the experimental results were organized according to the four
important functions of a gait cycle (Figure 10); each phase of
gait cycle was identified by the ground reaction patterns in
Figure 9.

Heel rocker occurs during the phase of initial contact
and the loading response phase, which is required to bear
the large flexion torque of the hip joint due to a significant
vertical vector (60% body weight) that is anterior to the hip
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FIGURE 9: Ground reactions and center of pressure position with
respect to the ankle position during normal gait.

joint. Thus, in the estimated result, a large extension torque
was generated by the hip extensors (HA and GL). Similarly,
flexion torque at the knee joint is necessary to endure the
vertical ground reaction force. Due to the two-jointed muscle,
HA, alarge flexion torque was also produced at the knee joint,
and it was released by the knee extensor, VA. In the case of the
ankle joint, the dorsiflexor TA was excited to endure ground
reactions placed behind the ankle. In accordance with the
actions of muscles, the shank made its advance (Figure 10(a)).

Ankle rocker occurs during the midstance to continue
progression of the body (Figure 10(b)). As the limb rolls
forward over the supporting foot, the directions of the joint
torques were identically downwards. All of the muscles placed
on the posterior side of the limb, such as the GL, HA, BE, GA,
and SO, were involved in the motion. The SO muscle, assisted
by the GA, was excited to maintain stance stability of the limb.
Due to the secured stability gained by the action of the SO and
GA muscle, further demand on the quadriceps, including the
VA and RF muscle, was minimized.

Forefoot rocker takes place during the terminal stance
(Figure 10(c)). The heel rolled over the anchor of the forefoot
with the ankle virtually locked by the SO and GA, continuing
advancement of the shank. Maximal plantar flexion torque
was required because the vertical ground reactions, combined
with falling body weight, were applied at the toe. The heel rise
posture demanded strong SO and GA action, approximately
three times more than in midstance. As the knee began to flex
by the end of the terminal stance, the BF muscle was involved
in this phase. While the hip was fully extended, the body rolls
forward over the forefoot rocker, and the IL and RF muscles
were activated as hip flexors to restrain the rate and extent of
hip extension.

The limb accomplishes foot clearance in the phase of the
initial swing and the midswing (Figure 10(d)). As the shank
became vertical, the ankle joint supported the downward
force of the foot weight. Thus, the TA muscle was activated at
that instant. Because momentum produced by the hip flexion
was compensated for the pull of gravity on the shank, joint
torque at the knee reached a balance. Additionally, hip flexion
of the swing phase was generated by the passive gravitational
force of the limb, such that the intervention of the hip and
knee muscles was not significant.

The experimental results of individual muscular forces
during a normal stride are presented in Figure 1l(a). To
validate the experimental result, the estimated muscular
forces were compared with the another experimental result
(Figure 11(b)); muscular forces were estimated by using a
model-based estimation algorithm, a camera-based motion
capture system and a force plate were used to measure
motion information, and EMG signals were also recorded
for validation [63]. The estimated muscular forces show
similar patterns and magnitudes, and the results in this
study coincide with EMG patterns also. Because it is very
difficult to measure true muscular forces of a human, it is not
easy to validate the estimated muscular forces quantitatively.
However, the activation pattern of muscles during normal
walking was evidenced by well-documented experimental
results with EMG signals [14-16, 19, 20, 54, 70]. Comparing
the estimated muscular forces with the electromyography
patterns in the previous studies, it was possible to check
feasibility of the estimated results.

4. Conclusions

Since it is very difficult to measure muscular force directly,
model-based estimation method has been researched actively
for an alternative. Although there exists the commercialized
software package such as OpenSim, the software consists of
a complex musculoskeletal model with higher computation
costs and technical barrier. Additionally, motions of the
human are usually measured camera-based measurement
system with a force plate which require time-consuming
preparation for attaching reflective markers, data processing
procedures, and high cost for space and equipment. There-
fore, this study suggests a cost-effective estimation method
by integrating the simple sensor system and the algorithm.
The proposed sensor system was cost-effective in the aspect of
space, equipment expense, preparation, and postprocessing



10 Journal of Sensors

0 50 100
Force/max. force (%) Force/max. force (%)
(a) Heel rocker (0%) (b) Ankle rocker (40%)
—
O =
ke
N
%

w
(=]
°

<

)
Ke)
—
b2
13

0 0 50 100
Force/max. force (%) Force/max. force (%)
(c) Forefoot rocker (60%) (d) Floor clearance (85%)

FIGURE 10: Visualized experimental results at the four important gait functions. The posture of the segments was based on the measured joint
angles, the green arrows represent directions and relative magnitudes of joint torques estimated by the inverse dynamics, and intensity of the
red color represents the usage of each muscle determined by the static optimization.



Journal of Sensors

1

1000
500 /\/ 1 i
S
0
500 / \K 29
=4
M «
0
<
1000 | o
N
0
% 100 2
S 50 /NN ©
£ 0
1000 | ]
=
500 | 15
0 /-\ I
500
/\/\ <
S
0
2000 F ~_ o
1000 | =
®
0
500 F 1
&)
=
O 1 1 1 n
0 20 40 60 80 100

% gait cycle
@)

(1) IL

=
<
T
o N
T o e
'l T ‘ T -
23
3 ' ~
A 2
e A
SOONI
<
QO
S
23
m
o
——
%m——----—-—--—..—-—
=
<c
=
i A
o]
7]
®
3
QO
-/\ @
0 20 40 60 80 100

% gait cycle
(b)

F1GUrE 11: Comparison of the estimated muscular forces: (a) proposed method (b) model-based estimation with camera-based motion capture

system and a force plate.

procedures, and the algorithm involved a simple muscu-
loskeletal model with lower computation cost. By comparing
with the camera-based motion capture system with a force
plate, the performance of the proposed sensor system was
verified experimentally, and the estimated muscular forces
were interpreted with respect to the four important gait
functions and were compared with the previous research with
EMG signals. As a result, it was found that activation patterns
of the muscles were estimated successfully by the proposed
method.

Note that there are subject-specific parameters such as
muscle origin and insertion positions and physiological
cross-sectional areas, which can not be measured directly.

Because parameter values from the cadaveric experiment
were adopted instead, a certain level of modeling uncer-
tainties would affect the estimated results. In addition, the
estimated muscular efforts would be feasible under the
condition that the human body recruits and activates muscles
in the optimal way. It is impossible for the proposed model to
detect abnormal muscle functions such as activation patterns
of disabled muscles. These are inherent limitation of the
inverse dynamics-based static optimization. In this work,
the objective was estimating action of the muscular system
to realize the movement measured by the wearable sensor
system rather than finding true value of muscular forces.
However, it would be possible to suggest a special model to
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estimate muscular forces of the patients with musculoskeletal
disorder such as stroke survivors with additional parameters
or constraints.

Appendix

The equality constraint in static optimization was specified as
follows:

[ i ]
SHa
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L far

0 o 1 (A)
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0 TREL  TREH

~TGaa ~TGAk 0

A= 0 —TBF 0 )
0 Tva 0
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where X refers to a vector of muscular forces, r means the
moment arm of the muscle with respect to the corresponding
joint in the subscript, a, k, and & mean the ankle, knee, and
hip joints, respectively, and M is the joint moment calculated
by the inverse dynamics.
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