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INTRODUCTION

Two-dimensional (2D) materials have been intensively studied 
since graphene was discovered by Novoselov et al. (2004). 
The isolation of graphene from graphite demonstrated the 
possibility of isolating other stable monolayer or few-layer 
2D materials, such as hexagonal boron nitride, silicene, and 
transition metal dichalcogenides (TMDs). The representative 
atomic structures of some 2D materials are shown in Fig. 1 
(Tedstone et al., 2016). TMDs are generally denoted as MX2, 
where M is the transition metal (Mo, W, Ti, V, etc.) and X is a 
chalcogen (S, Se, Te, etc.); these atoms are layered as X-M-X 
units by van der Waals bonding (Tedstone et al., 2016). 
Theoretically, there are 88 combinations of TMDs, but it was 
discovered using density functional theory (DFT) that only 
44 stable monolayer or few-layer TMDs can exist stably (Ataca 
et al., 2012). The stability of few-layer TMDs is important 
because these materials have layer-dependent properties. It is 
known that the bulk may have an indirect bandgap (Eg=1.29 
eV) and the monolayer may have a direct bandgap (Eg=1.90 
eV) for MoS2 (Wang et al., 2012). The exceptional bandgap 
structures of monolayer or few-layer TMDs endow them 

with enhanced optical and electrical properties. Therefore, 
2D TMDs are expected to be useful for various applications, 
such as field effect transistors (FETs), optoelectronic devices, 
topological insulators, and electrocatalysts (Wang et al., 2015). 
In particular, 2D TMDs have attractive prospects as tunable 
high-performance channel materials for FETs (Mak et al., 
2013). 
To extend the potential of 2D TMDs, tuning of their proper
ties is essential; diverse methods to accomplish this have been 
proposed, such as inducing strain, intercalation, controlling 
the layer number, and doping. In this article, the doping 
methods and the resulting enhanced properties of 2D TMDs 
are reviewed. The synthesis methods and the dopant atoms 
greatly influence the morphologies and properties of these 
materials. Therefore, selecting both an appropriate synthesis 
method and an appropriate species of dopant are critical.

SYNTHESIS AND PROPERTIES OF DOPED 
TMDS

Chemical Vapor Transport
Chemical vapor transport (CVT) is one of the most widely 
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used methods for synthesizing 2D materials and doping 
TMDs. CVT was first popularized by Schäfer, and it involves 
reactions in several temperature zones. The precursors are 
volatilized and transported with the transport agents to the 
reaction zone. The reacted and decomposed precursors are 
deposited on the substrate in the growth zone in crystalline 
form (Binnewies et al., 2013). Optimizing the temperature 
of reaction zone and growth zone on the basis of the used 
materials is essential for successful synthesis. In addition, the 
transport agent, generally a halogen or halogen compounds 
that reacts with the precursors and forms gaseous compounds 

should be carefully selected. 
Suh et al. (2014) researched niobium (Nb) doping on molyb
denum disulfide (MoS2) as a p-type. The experimental setup 
is shown in Fig. 2A. In the closed ampoule, the elemental 
precursor powders, Mo, S, and Nb, are prepared at the reac
tion zone with a stoichiometric ratio of 1:2:0.005 when the 
target dopant concentration is 0.5%. The temperatures of 
the reaction zone and the growth zone are 1,050°C and 
935°C, respectively. In addition, iodine gas (I2) is used as the 
transport agent for this synthesis. Thus, Nb atoms are doped 
on MoS2 at the substitutional sites, as shown in Fig. 2B, and 
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Fig. 1. Crystal structures of layered materials. (A) Graphite, (B) hexagonal boron nitride, (C) molybdenum disulfide. Reprinted from Tedstone et al. (2016) 
(Chem. Mater. 28, 1965-1974) with permission of American Chemical Society.
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Fig. 2. Nb-doped MoS2 crystal. (A) Schematic of chemical vapor transport with a three-zone furnace setup. (B) Crystal structure in which Nb is doped in the 
substitutional sites of Mo. (C) I-V characteristics of van der Waals p-n junctions with Nb-doped MoS2 (60 nm) and undoped MoS2 (4 nm) which measured 
under variable gate voltages and drain-source voltages. Reprinted from Suh et al. (2014) (Nano Lett. 14, 6976-6982) with permission of American Chemical 
Society.
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it leads to a degenerating hole density of around 3×1019 cm−3. 
Additionally, van der Waals p-n homojunctions are fabricated 
with the Nb-doped and the undoped MoS2 flakes, which en
ables gate-tunable current rectification. The results are shown 
in Fig. 2C. The fabricated FET using Nb-doped and undoped 
MoS2 flakes exhibits enhanced current densities and tunable 
junction currents.
Lin et al. (2014) demonstrated the doping of rhenium (Re) 
and gold (Au) on monolayer MoS2 via CVT growth. The 
atomic structures of the doped MoS2 sheets were observed 
by scanning transmission electron microscopy (STEM). Fig. 
3A and F show Z-contrast annular dark-field (ADF) images 
of Re-doped MoS2 and Au-doped MoS2, respectively. The 
dopants appear in the image as brighter contrast spots because 
of its heavier atomic weight. In Fig. 3B-D and G-I, sequential 
ADF images show the migration of each dopants, respectively. 
The immobile Re dopants are doped at substitutional Mo 
sites, and the mobile Re dopants simply bond with sulfur (S) 
atoms. However, the Au dopants bond with S atoms and exists 
as adatoms, which have greater mobility under the electron 
beam. The predicted atomic structures of Re- and Au-doped 
MoS2 are illustrated in Fig. 3E and J, respectively. These atomic 
models were also confirmed by DFT.

In Situ Doping in Chemical Vapor Deposition
Chemical vapor deposition (CVD) is one of the most com
monly used methods to synthesize 2D materials (Park & 
Sudarshan, 2001). The volatile precursors react and 

decompose under low pressure and high temperature, and 
the products are deposited on the substrate. To prevent the 
creation of byproducts, the gas flow in the CVD reaction 
chamber should be well controlled.
Zhang et al. (2015) fabricated manganese (Mn)-doped MoS2 
by in situ doping using the CVD method. The pristine and 
Mn-doped MoS2 monolayer were grown by vaporization of 
the applied sources; a schematic of the CVD furnace setup is 
illustrated in Fig. 4A. Two milligrams of molybdenum oxide 
(MoO3) is heated to 725°C at the growth end of the furnace, 
and 700 mg of sulfur powder and 0.1 mg dimanganese 
decacarbonyl Mn2(CO)10 powder is vaporized in the upstream 
region of the furnace, and these two upstream regions are 
heated to 300°C and 70°C, respectively. The vaporized Mn 
and S are transferred to the growth end of the furnace with 
argon (Ar) gas. The doped Mn is readily distinguished by 
high-angle annular dark field scanning transmission electron 
microscopy (HAADF-STEM) at the domain boundary of 
MoS2 directly grown on a TEM grid via CVD, as shown in 
Fig. 4B and C. However, the success rate of the incorporation 
of Mn in MoS2 was significantly influenced by the species of 
the substrate, which included graphene and a traditional in
sulating substrate. Inert substrates such as graphene enabled 
incorporation of dopants in TMDs. However, traditional 
substrates, which have reactive surfaces, disrupted the 
incorporation of the dopants in MoS2 and induced defects. 
In addition, Fig. 4D and E demonstrate modifications of the 
bandgap structure through in situ doping via photolumines
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Fig. 3. (A) Annular dark-field (ADF) image of monolayer Re-doped MoS2 and (B-D) sequential ADF images of monolayer Re-doped MoS2. The hollow 
arrows indicate Re-S adatoms, and the closed arrows indicate doped Re at substitutional Mo sites. (F) ADF image of monolayer Au-doped MoS2 and (G-I) 
sequential ADF images of monolayer Au-doped MoS2 at the Au-S sites. (E) and (J) Atomic models of Re-doped and Au-doped MoS2, respectively. Reprinted 
from Lin et al. (2014) (Adv. Mater. 26, 2857-2861) with permission of Advanced Materials.
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cence (PL) spectra and saturation conductance investigations, 
respectively.
Gao et al. (2016) demonstrated the synthesis of Nb-doped 
tungsten disulfide (WS2) via in situ CVD method. The 
precursor, 200 mg of tungsten oxide (WO3) was vaporized at 
approximately 900°C at the end of the CVD furnace. Then, 
200 mg of sulfur for sulfurization and 1 mg of NbCl5 for 
Nb doping were placed upstream with a heating belt under 
100°C, as shown in Fig. 5A. The NbCl5 and the sulfur were 
provided simultaneously when the temperature of the CVD 
furnace reached 900°C. Then, Nb-doped MoS2 was grown on 
a sapphire substrate under 120 mTorr for 30 min with ultra-
high purity Ar gas. The doping of transition metals such as 
Nb at the substitutional sites was relatively stable as Fig. 5D 
shown. In addition, the doped TMDs retained the semicon
ducting properties of the pristine monolayer as well as other 
attractive characteristics, such as direct-bandgap PL. It was 
verified by both experiments and DFT calculations.

Aerosol-Assisted Chemical Vapor Deposition 
Aerosol-assisted chemical vapor deposition (AACVD) is a 

CVD method that is usually utilized for non-volatile pre
cursors (Hwang, 2016). The precursors are dissolved in sol
vent, and the aerosol form is generated by sonication; then, 
the created precursor mist is transported with a carrier gas to 
the reaction chamber. Finally, the adsorbed precursors react 
and deposit on the substrate relatively uniformly, and the 
byproducts are diffused.
Lewis et al. (2015) fabricated chromium (Cr)-doped MoS2 via 
AACVD. The precursor was prepared as a solution by mixing 
tetrakis(diethyldithiocarbamato)molybdenum(IV) (MoL4) 
and tris(diethyldithiocarbamato)chromium(III) (CrL3) and 
dissolving the mixture in 25 mL of tetrahydrofuran (THF). 
Ar gas was used to transport the precursor mist to a tube con
taining the glass substrate at 450°C or 500°C for 100 min. A 
simple schematic of AACVD is illustrated in Fig. 6. During 
the synthesis, Cr-doped MoS2, pristine MoS2, and a small 
amount of Cr-S were generated. Finally, the nanosheets of Cr-
doped MoS2 were produced by liquid-phase exfoliation. The 
Cr dopants were deposited uniformly throughout the MoS2, 
as shown in Fig. 6, in which the surface of the Cr-doped MoS2 
is observed via STEM energy dispersive X-ray spectroscopy 
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Fig. 4. (A) Schematic of chemical vapor deposition with a three-zone furnace for synthesizing pristine and Mn-doped MoS2 crystals. (B) Transmission 
electron microscopy (TEM) image of Mn-doped MoS2 directly grown on a suspended graphene TEM grid and (C) high-angle annular dark field scanning 
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conductance. Reprinted from Zhang et al. (2015) (Nano Lett. 15, 6586-6591) with permission of American Chemical Society.
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(EDS) mapping (Tedstone et al., 2015). 
Thin film rhenium disulfide (ReS2) and Mo1−xRexS2 alloys 
were also successfully synthesized via AACVD according to 
a study by Al-Dulaimi et al. (2016). The precursor was syn
thesized with [Re(μ-SiPr)3(SiPr)6] and [Mo(S2CNEt2)4] at 
certain molar ratios in 40 mL of THF at 475°C. The created 
precursor mist was transported by Ar gas to the furnace, and 
the decomposed precursors were deposited on the glass sub
strates.

Chemical Doping
Chemical doping is a method in which 2D materials are 
doped effectively by simply soaking them in dopant solution 
or by dropping dopant solution. It is possible to tune the pro
perties of the materials by chemical doping because of the 

charge transfer between the dopant solution and the mater
ials. 
Yang et al. (2014) reported chemical doping by soaking 
mechanically exfoliated TMDs in a solution. They fabricated 
chlorine (Cl)-doped WS2 and MoS2 back-gate FET as shown 
in Fig. 7A, by exfoliating a few-layers of TMDs with scotch 
tape and soaking them in undiluted 1,2-dichloroethane (DCE) 
for over 12 h at room temperature. The contact resistance of a 
metal-semiconductor junction was significantly reduced from 
500 kΩ·μm for undoped WS2 to 0.7 kΩ·μm for Cl-doped 
WS2, as shown in Fig. 7B. This was found to improve various 
properties of the FET, such as its drain current, on/off ratio, 
and mobility by Cl doping on TMDs.
Moreover, molecule-doped TMDs are being actively studied. 
Mouri et al. (2013) suggested the possibility of molecular 
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doping on monolayer MoS2 via chemical doping, and they 
verified the enhanced performance of the material using PL 
spectra. The molecular dopant solutions were prepared as 

0.02 μmol/mL of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquino
dimethane (F4TCNQ) and 7,7,8,8-tetracyanoquinodimetha
ne (TCNQ) for p-type chemical dopant solutions, whereas 
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nicotinamide adenine dinucleotide (NADH) was used in 
an n-type dopant solution. Then, 10 μL of dopant solution 
was dropped on the prepared exfoliated MoS2. The same 
doping sequence was repeated after the solutions evaporated 
completely. The PL intensity was drastically enhanced for 
p-type doped MoS2 with F4TCNQ and TCNQ. However, it 
decreased for n-type doped MoS2 with NADH.
Yu et al. (2016) reported the synthesis of superatom-doped 
MoS2 and WSe2 via a chemical doping method. The supera
tom, Co6Se8(PEt3)6, is an electron-rich octahedral dopant 
as shown in Fig. 8A. The fabricated FETs assembled with 
exfoliated TMDs and metal electrodes were immersed in 
dopant solutions, in which the superatoms were dissolved 
in toluene, for 10 min. And then, the FETs were rinsed with 
fresh toluene. As shown in Fig. 8B-D, the performance of FET 
channels containing superatom-doped MoS2 and WS2 was 
significantly enhanced because the superatoms effectively 
transferred electrons to the TMD films.
Furthermore, molecular doping with particular functional 
groups on the TMDs was studied by Sim et al. (2015). 
Mechanically exfoliated MoS2 was annealed in a tube furnace 
at 250°C for 1 h to create vacancies at the S sites of MoS2, 

as shown in Fig. 9A. Then, the vacancy-induced MoS2 was 
soaked in 1/40 (v/v) mercaptoethylamine (NH2-terminated 
thiol, MEA)/ethanol and 1H,1H,2H,2H-perfluorodecanethiol 
(CF3-terminated thiol, FDT)/THF solution for 72 h to dope 
the molecular dopants at the vacancy sites, as illustrated in 
Fig. 9B; the molecular structures of the dopants are shown 
in Fig. 9C. The electrical properties of MoS2 were tuned on 
the basis of the molecular dopants, which had particular 
functional groups, as shown in Fig. 9D and E.

Other Synthesis Methods
Additional methods of doping have been investigated. One-
pot synthesis of target materials are widely applied; this is 
because the reactions occur in one vessel and purification 
of the chemical compounds is readily achieved (Hayashi, 
2016). In addition, this method saves time and resources 
while providing increased chemical yield. Deng et al. (2015) 
obtained platinum (Pt)-doped MoS2 via a one-pot chemical 
synthesis. First, the precursors, 900 mg of (NH4)6Mo7O24·4H2O 
and 0.442 mL (0.19 mol·L−1) of H2PtCl6 (aq), were mixed and 
dissolved in 20 mL of deionized water. Then, the solution and 
10 mL of CS2 were transferred to a stainless-steel autoclave 
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and annealed at 400°C for 4 h. The product was then stirred 
with saturated NaOH (aq) at 60°C for 3 h. Finally, the 
product was washed several times with deionized water and 
ethanol and dried thoroughly at 100°C. The extended X-ray 
absorption fine structure and HAADF-STEM analysis showed 
that Pt was doped as a single atom at the substitutional 
Mo sites, as shown in Fig. 10A-D. The Pt-doped few-layer 
MoS2 that was synthesized by this one-pot method showed 
significantly enhanced hydrogen evolution reaction (HER) 
catalytic activity compared to pristine MoS2. This is because 
Pt doping increased the catalytic activity of in-plane MoS2, 
while pristine 2D MoS2 only shows catalytic activity at its edge 
sites. The Pt-doped MoS2 exhibited better HER activity than 
blank glassy carbon (GC), bulk MoS2, and few-layer MoS2. 
However, its performance was inferior to that of 40% Pt/C 
catalyst, as shown in Fig. 10E. Furthermore, MoS2 doped with 
other transition metals is also expected to show enhanced 

HER activity according to DFT calculations, as shown in Fig. 
10F.
Qin et al. (2014) reported the synthesis of nitrogen (N)-doped 
MoS2 nanosheets by the sol-gel method. The sol-gel method 
is a relatively simple and cost-efficient method to produce 
solid materials from small molecules on a large scale. The 
dispersed monomers in the sol are transformed to a gel phase 
by coating, gelling, or precipitation. Mixed 0.5 g molybdenum 
chloride (MoCl5) and thiourea ((NH2)2CS) in a particular 
molar ratio were dissolved in ethanol under stirring, and 
the dried solution was transformed to a brown gel powder. 
This powder was heated in a quartz tube for 3 h at different 
temperatures under Ar gas flow. This research is remarkable 
because it provides a new method to dope non-metal dopants 
on TMDs, and the performance of the N-doped MoS2 was 
excellent.
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scanning TEM images of uniformly doped Pt on MoS2 with a honeycomb arrangement. The brighter contrast points are Pt doped in the substitutional sites 
of Mo. The magnified red dashed square in (C) is illustrated in (D). The inset of (D) is simulated configuration of Pt–doped MoS2 and each green, yellow and 
blue balls represent Mo, S and Pt, respectively. (E) Hydrogen evolution reaction (HER) polarization curve of Pt-doped MoS2, as the red line, compared with 
blank glassy carbon (GC) electrode, bulk MoS2, few-layer (FL) MoS2 without doping, and the traditional catalyst 40% Pt/C. The potentials are calibrated 
with a reversible hydrogen electrode (RHE). (F) Density functional theory calculations of transition metal-doped MoS2 with a particular configuration that 
is coordinated with 4 S bonds (left) and 6 S bonds (right). The relationship between current (log(i0)) and adsorption free energy (ΔGH°), which shows the 
possibility of other dopants for HER catalysts. Reproduced from Deng et al. (2015) (Energy Environ. Sci. 8, 1594-1601) with permission of The Royal Society 
of Chemistry.
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CONCLUSIONS

Various synthesis methods for doping on 2D TMDs have 
been investigated, including CVT, in situ doping via CVD, 
AACVD, and chemical doping. Also, in addition to transition 
metals such as Nb, Re, Mn, and Au, non-transition metals 
such as N and Cl have been doped on 2D TMDs through 
diverse doping methods. Furthermore, molecular doping 
on 2D TMDs has been extensively studied using molecular 
dopant solutions such as MEA, FDT, and a superatom. 
Molecular doping via chemical doping is convenient, 
efficient and greatly enhances the performance of 2D TMDs. 
Through doping on 2D TMDs, properties such as band 
structure, catalytic activity, morphology, and electronic and 
optic properties are significantly improved; however, it is 
highly influenced by the species and concentration of the 
dopants and by the synthesis method. Therefore, selecting 
the proper synthesis methods and dopants are important for 
improving the performance of 2D TMDs. To characterize 
and evaluate the performance of doped TMDs, the doping 
sites are generally observed using TEM images and X-ray 
photoelectron spectroscopy; the uniformity of the doping is 
identified by EDS. The improvements in the performance of 
doped TMDs is analyzed through PL spectra and fabricated 
FET devices by examining their contact resistance, transfer 
characteristics, carrier density, etc. By doping 2D TMDs, their 
applications as optical devices, electrical devices, and catalysts 
can be expanded significantly. 
In addition to doping, other chemical and physical tuning 

methods of 2D TMDs are being actively studied. Studies of 
the strong excitonic effects and spin- and valley-dependent 
properties of 2D TMDs have recently begun. Additionally, 
further research may extend the field of 2D TMDs from 2D 
binary TMDs into ternary phase TMDs, such as molybdenum 
tungsten disulfide (MoWS2) and Molybdenum sulfide 
selenide (MoSSe) and so on. These ternary phase TMD alloys 
have recently received attention because they have superior 
intermiscibility and good thermodynamic stability. Also, 
these ternary phase TMDs are expected to greatly expand the 
possible applications of TMDs because the band gaps of 2D 
ternary phase TMDs can be simply engineered by controlling 
the compositions of the materials. Therefore, it is predicted 
that they will be applied in next-generation optoelectronic, 
ferromagnetic, semiconducting, and spintronic devices.
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