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Nuclear factor of activated T cells 5 (NFAT5) has been implicated in the pathogenesis of various human diseases,
including cancer and arthritis. However, therapeutic agents inhibiting NFAT5 activity are currently unavailable.
To discover NFAT5 inhibitors, a library of N40,000 chemicals was screened for the suppression of nitric oxide, a
direct target regulated by NFAT5 activity, through high-throughput screening. We validated the anti-NFAT5 ac-
tivity of 198 primary hit compounds using an NFAT5-dependent reporter assay and identified the novel NFAT5
suppressor KRN2, 13-(2-fluoro)-benzylberberine, and its derivative KRN5. KRN2 inhibited NFAT5 upregulation
in macrophages stimulated with lipopolysaccharide and repressed the formation of NF-κB p65-DNA complexes
in the NFAT5 promoter region. Interestingly, KRN2 selectively suppressed the expression of pro-inflammatory
genes, including Nos2 and Il6, without hampering high-salt-induced NFAT5 and its target gene expressions.
Moreover, KRN2 and KRN5, the latter of which exhibits high oral bioavailability and metabolic stability, amelio-
rated experimentally induced arthritis in mice without serious adverse effects, decreasing pro-inflammatory cy-
tokine production. Particularly, orally administered KRN5 was stronger in suppressing arthritis than
methotrexate, a commonly used anti-rheumatic drug, displaying better potency and safety than its original com-
pound, berberine. Therefore, KRN2 and KRN5 can be potential therapeutic agents in the treatment of chronic
arthritis.
sion, Ko
acolo
n 305-
tology,
ne, The
blic of K
@catho

en acc
© 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
NFAT5 suppressor
κB inhibitor
Small molecules
High-throughput drug screening
Chronic arthritis
1. Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory
disease characterized by synovial hyperplasia, causing cartilage and
bone destruction (Firestein, 1996). The synovial tissues of RA patients
contain diverse innate and adaptive immune cells activated by self or
non-self antigens (Firestein, 2003). In particular, synovial macrophages
are activated by the stimulation of a variety of inflammatory mediators
secreted from surrounding inflammatory cells or via cell-to-cell contact.
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Activated macrophages, in turn, release matrix metalloproteinases and
pro-inflammatory cytokines and chemokines, such as interleukin-1
(IL-1), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), granulo-
cyte/macrophage colony-stimulating factor (GM-CSF), and monocyte
chemoattractant protein (MCP-1), thereby contributing to chronic in-
flammation (Firestein, 2003; Kinne et al., 2000). Moreover, the number
of synovialmacrophages, but not the number of lymphocytes, correlates
with the progression of RA (Mulherin et al., 1996). In sum, previous
studies suggest that macrophages are the major cell type responsible
for RA pathology.

Nuclear factor of activated T cells 5 (NFAT5), also known as tonicity-
responsive enhancer-binding protein (TonEBP), is a transcription factor
whose DNA binding domain shares structural homology with NF-κB and
other members of the NFAT family (Lopez-Rodriguez et al., 1999). In re-
sponse to osmotic stress, NFAT5 is activated via p38 mitogen-activated
protein kinase (MAPK) signaling to protect cells from hypertonic stimula-
tion (Ko et al., 2002). Therefore, NFAT5 has important roles in different
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://core.ac.uk/display/84474148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2017.03.039&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ebiom.2017.03.039
mailto:wan725@catholic.ac.kr
Journal logo
http://dx.doi.org/10.1016/j.ebiom.2017.03.039
http://creativecommons.org/licenses/by-nc-nd/4.0/
Unlabelled image
http://www.sciencedirect.com/science/journal/03064603
www.ebiomedicine.com


262 E.-J. Han et al. / EBioMedicine 18 (2017) 261–273
tissues normally exposed to hypertonicity, such as kidney, skin, and eye
(Miyakawa et al., 1999; Go et al., 2004; Neuhofer, 2010; Sawazaki et al.,
2014). It has also been implicated in several physiologic and pathologic
conditions, including cancer cell proliferation and invasion (Kuper et al.,
2014; Jauliac et al., 2002). Recently, evidence has emerged that NFAT5 is
activated by isotonic stimuli. For example, NFAT5 induces the expression
of toll-like receptor (TLR)-mediated inflammatory genes in macrophages
in a tonicity-independent manner (Buxadé et al., 2012; Kim et al., 2013).
High salt and TLR ligation activate distinct sets of downstream target
genes in aNFAT5-dependentmanner (Kimet al., 2014).While ROS are es-
sential for this, their source differs depending on the context: mitochon-
dria for high salt and xanthine oxidase for TLR (Kim et al., 2014).
Moreover, the two pathways are mutually suppressive (Kim et al.,
2013). Therefore, to apply anti-NFAT5 therapies to chronic inflammatory
diseases, it may be necessary to selectively inhibit its inflammatory effects
without affecting its osmotic effects since the latter are involved in cellular
homeostasis and cytoprotection (Miyakawa et al., 1999).

In a previous study, we firstly uncovered the crucial role of NFAT5
in the development of autoimmune disease by demonstrating that
NFAT5-deficient mice showed a marked reduction of antibody-
induced arthritis (Yoon et al., 2011). Moreover, we have demonstrated
that NFAT5 is highly expressed in the synovia of RA patients and
regulates synoviocyte proliferation and angiogenesis (the so-called
pannus formation), the pathologic hallmark of RA (Yoon et al.,
2011). We also identified a significant decrease in the incidence of
TLR-induced chronic arthritis in NFAT5 haplo-insufficient mice as
compared to their wild-type littermates (Kim et al., 2014). Taken to-
gether, our previous results strongly suggest that NFAT5 is crucial in
RA pathogenesis and should be further studied for the development
of RA treatment. Despite the pivotal role of NFAT5 in the pathogene-
sis of cancer and arthritis (Kuper et al., 2014; Jauliac et al., 2002;
Yoon et al., 2011; Kim et al., 2014), specific drugs that inhibit
NFAT5 activity, especially those selectively targeting the inflammatory
effects of NFAT5, are currently unavailable.

Conventional disease-modifying anti-rheumatic drugs (DMARDs)
must be discontinued within the second year in two-thirds of RA pa-
tients due to drug toxicity or therapy-independent relapse (Smolen
and Aletaha, 2015; van der Kooij et al., 2007). Thus, new therapeutic
agents with different modes of action are required for optimal treat-
ment of RA. In the present study,we attempted to identify NFAT5 inhib-
itors with this in mind. Using high-throughput screening (HTS), N
40,000 compounds were screened with a cell-based inhibition assay
for the induction of nitric oxide (NO), a target of NFAT5. We validated
the anti-NFAT5 activity of the primary hit compounds using an
NFAT5-specific reporter and identified novel NFAT5 suppressors,
KRN2 and its derivative KRN5, the latter of which exhibits high oral
bioavailability and metabolic stability. KRN2 reduced the expression of
inflammatory NFAT5-target genes, including Nos2, Il6, Tnf, and Csf2, in
TLR4-stimulated RAW 264.7 macrophages. We also found that the
suppressive effect of KRN2 on NFAT5 expressionwasmediated through
inhibition of NF-κB p65 binding to the promoter region of the Nfat5
gene. Interestingly, high salt-induced NFAT5 and its target genes,
including Ar, Bgt and Smit, were unaffected by KRN2. Finally, using in
vivo models of chronic arthritis, we showed that KRN2 and KRN5 ame-
liorated arthritis severity, decreasing proinflammatory cytokine pro-
duction. Therefore, KRN2 and KRN5 demonstrate potential of NFAT5
inhibitors as possible therapeutic agents to treat chronic inflammatory
arthritis, including RA.
2. Materials and Methods

2.1. Synthesis of KRN2 and KRN5 From Berberine

Detailed methods are described in the Supplemental methods
section.
2.2. High-throughput Screening (HTS)

RAW 264.7 (murine macrophage/monocyte) cells were grown in
modified DMEM, and nitrate wasmeasured using Griess reagent as pre-
viously reported (Kim et al., 2013, 2014). Briefly, cells were seeded in
96-well plates at a density of 2.5 × 104 cells/well and left overnight.
Compound (1 μM) and LPS (100 ng/ml) were added to the cells,
which were then incubated at 37 °C, 5% CO2 and 95% humidity for
21 h. Equal volumes of supernatant and Griess reagent (Sigma) were
mixed and incubated at room temperature for 15 min. Absorbance
was measured at 540 nm with an Envision Multilabel Reader
(PerkinElmer). Since there are no reported NFAT5 inhibitors, 1,4-PBIT
(S,S′-1,4-phenylene-bis[1,2-ethanediyl]bis-isothiourea) (Cayman), an
iNOS enzyme inhibitor, was used as a reference inHTS setup and perfor-
mance using Biomek FX and ORCA robot systems (Beckman Coulter).

2.3. Isolation and Cell Culture of Murine Macrophages and Splenocytes

Murine peritoneal macrophages were obtained from C57BL/6 mice
peritoneally injectedwith 3% thioglycollate for 3 days. The cells were in-
cubated in RPMI 1640mediumwith 10% fetal bovine serum (FBS, Gibco
BRL) at 37 °C in a 5% CO2 atmosphere. To isolate splenocytes, lipopoly-
saccharide (LPS) was peritoneally injected into C57BL/6 mice for 24 h
and their spleens were then dissected. After red blood cell (RBC) lysis,
isolated splenocytes were incubated in RPMI 1640 supplemented with
10% FBS. RAW 264.7 macrophages were obtained from American Type
Culture Collection (ATCC) and were maintained in RPMI 1640 medium
supplemented with 10% FBS.

2.4. Cloning of NFAT5 Expression Reporter

To construct an NFAT5 expression reporter system, mouse genomic
DNA, encompassing base-pair positions −3000 to +1 relative to the
start codon of Nfat5, was cloned by PCR using primers (5′-
catatgcatacaataaggca-3′ and 5′-tcgactcgcagctcgacccagcc-3′) containing
restriction enzyme sites of NdeI and SalI. The 3 kb Nfat5 promoter re-
gion, which includes two NF-κB consensus sequences, was transferred
into the pEGFP-N1 vector (Clontech). Then the cytomegalovirus pro-
moter was removed using AseI and SalI restriction enzymes (BioLabs).
The recombinant reporter gene construct was verified by sequencing
(Cosmo Genetech). To analyze the transcriptional activity of NFAT5,
the Nfat5 consensus sequence with tandem repeats (3 copies of
TGGAAAATTACCG) was inserted into the pEGFP-N1 vector (Clontech)
and the pDsRed-Express-N1 vector (Clontech) as described previously
(Kim et al., 2013, 2014). To construct the cells that are highly expressed
with NFAT5 reporter genes, RAW 264.7 macrophages were seeded to
40–50% confluence in 12-well plates and then transduced with a GFP-
NFAT5 promoter reporter using Lipofectamine 2000 (Invitrogen).
After 2–3 days, cells were reseeded and then selected with 50 μg/ml
geneticin (Invitrogen) for 3 weeks, as previously described (Kim et al.,
2013, 2014).

2.5. Flow Cytometry Analysis

Green fluorescence protein (GFP) expression levels were detected
using a FACS Canto II system (BD Biosciences). GFP intensity was ana-
lyzed using FlowJo software (Tree Star). Data are shown as percentage
change in mean fluorescence intensity (% ΔMFI), which was calculated
by the following formula: (MFI of treated sample − MFI of untreated
sample) × 100 / MFI of untreated sample.

2.6. Quantitative Real-time PCR

Total RNA was isolated with an RNeasy Mini kit according to the
manufacturer's protocol (Qiagen). Isolated RNA was reverse-tran-
scribed to cDNA using reverse transcriptase (Takara, Shiga, Japan).
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Real-time quantitative PCR was performed with a CFX96™ machine
(Bio-Rad) using SYBR Green PCRMasterMix (Bio-Rad) and the following
primers:

Nfat5 (forward: 5′-cagagctgcagtatgtg-3′ and reverse: 5′-
cctctgctttggatttcg-3′),

Il6 (forward: 5′-ttccatccagttgccttcttg-3′ and reverse: 5′-
aggtctgttgggagtggtatc-3′),

Csf2 (forward: 5′-cctgggcattgtggtct-3′ and reverse: 5′-
gaaatccgcataggtggta-3′),

Tnf (forward: 5′-atagctcccagaaaagcaag-3′ and reverse: 5′-
caccccgaagttcagtagac-3′),

Mcp1 (forward: 5′-tctctt cctccaccacctg-3′ and reverse: 5′-
ggaaaaatggatccacacct-3′),

Smit (forward: 5′-ccgggcgctctatgacctggg-3′ and reverse: 5′-
caaacagagaggcaccaatcg-3′),

Bgt1 (forward: 5′-ctgggagagacgggttttgggtattacatc-3′ and reverse: 5′-
ggaccccaggtcgtggat-3′), and

Ar (forward: 5′-agtgcgcattgctgagaactt-3′ and reverse: 5′-
gtagctgagtagagtggccatgtc-3′).

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as
an internal control. Gene expression levels were calculated using the
comparative 2−ΔΔCt algorithm.

2.7. Fractionation and Western Blot Analysis

RAW 264.7 cells were lysed in RIPA lysis buffer for 15 min at 4 °C.
Protein concentrations in the lysates weremeasured using the Bradford
protein assay (Bio-Rad). Electrophoresis was performed using SDS-
PAGE, and the blot was transferred to a nitrocellulose membrane (Bio-
Rad). The membrane was incubated with the following antibodies:
anti-iNOS (1:1000; Santa Cruz Biotechnology), anti-NFAT5 (1:1000;
gifted fromKHM inUlsan National Institute of Science and Technology),
and anti-β-actin (1:10,000; Abcam). Membranes were visualized with
an enhanced chemi-luminescent technique (ECL, Amersham Biosci-
ences). To detect nuclear translocation of NFAT5 and p65, cells were
harvested and then incubated in cytoplasmic lysis buffer for 15 min on
ice (Kim et al., 2013, 2014). After centrifugation, the supernatant was
used as the cytoplasmic fraction. The residual pellet was resuspended
in nuclear lysis buffer and centrifuged for 20 min at 12,000 rpm as pre-
viously described (Kim et al., 2013, 2014). Each fractionated lysate was
analyzed bywestern blot using antibodies toNFAT5, p65 (Abcam), NMP
p84 (Abcam), and α-tubulin (Sigma).

2.8. Enzyme-linked Immunosorbent Assay (ELISA)

Cytokine (IL-6, TNF-α, and GM-CSF) levels in the culture superna-
tants and in plasma obtained from mice were assessed using ELISA
kits according to the manufacturer's instructions (R&D).

2.9. Electrophoretic Mobility Shift Assay (EMSA)

To simulate the interaction of NF-κB p65 to its binding sites in the
upstream site (base pairs −3000 to +1) of Nfat5 exon 1 in a solid
phase, double stranded oligonucleotides encompassing the NF-κB p65
binding site (5′-AGAAAGGGGATTTCCTATAC-3′ for Nfat5 promoter 1
and 5′-ATGAAGGGACTTCCCTTGGG-3′ for Nfat5 promoter 2) and their
mutant DNA oligonucleotides (5′-AGAAATTTTATTTCCTATAC-3′ as the
mutant DNA for Nfat5 promoter 1 and 5′-ATGAATTTACTTCCCTTGGG-
3′ as the mutant DNA for Nfat5 promoter 2) were used as DNA probes.
The DNA probes (40 fM) and recombinant p65 (400 ng) were added
in 20 μl of 1× binding buffer supplementedwith 50 ngof poly dl/dCpro-
vided by Pierce Biotechnology (Rockford) and incubated at 25 °C for
20 min. The protein-DNA complex was separated by 10% polyacryl-
amide gel using 0.5XTBE running buffer for 2 h and electro-transferred
to the PVDF membrane for detection using an EMSA kit (Pierce
Biotechnology).
2.10. Chromatin Immunoprecipitation Assay (ChIP Assay)

ChIP assay was performed according to the manufacturer's protocol
(Millipore). Briefly, RAW 264.7 macrophages were fixed with 1% form-
aldehyde for 10min at 37 °C. Nuclear fractionswere isolated using frac-
tionation buffers, and then chromatin was sheared with a sonicator
(Misonic 3000). A small aliquot was stored as input DNA. Chromatin-
containing lysates were incubated with anti-p65 (p65/NF-κB) antibody
(Abcam) and then DNA–protein immunocomplexes were precipitated.
DNA samples were extracted with phenol/chloroform and precipitated
with ethanol. To analyze the p65/NF-κB binding capacity of the Nfat5
promoter, immunoprecipitated DNA samples were amplified by PCR
using primer pairs for the Nfat5 promoter (5′-tttggaggatccctcttcac-3′
and 5′-acaagtcaagaagggccaag-3′) as described previously. Primers for
the Nfat5 exon region (5′-gcgagatgatgtcacttcag-3′ and 5′-
gtggaagtttgactgtggac-3′) were used as negative controls (Kim et al.,
2013, 2014).
2.11. Collagen Induced Arthritis (CIA) and Adjuvant Induced Arthritis (AIA)
Mouse Models

To induce adjuvant induced arthritis (AIA) in mice, 2 mg of com-
plete Freund's adjuvant (CFA: Chondrex) was injected intradermally
to 8-week-old C57BL/6 mice. KRN2 (3 mg/kg) was given to AIA mice
via daily peritoneal injection, and swelling in the ankle and footpad
was measured for 2 weeks. To induce Collagen induced arthritis
(CIA) in mice, 8-week-old DBA/1J mice were immunized with bovine
type II collagen (CII, Chondrex) emulsified in CFA on day 0. On day
14, a booster injection of CII in incomplete Freund's adjuvant (IFA,
Chondrex) was given in the left footpad. After one week, KRN2
(3 mg/kg) was injected daily into the CIA mice. Other CII-immunized
mice received KRN5 orally (15 mg/kg and 60 mg/kg) on alternate
days. During the development of arthritis, clinical severity was
scored daily as previously described (Kim et al., 2002). Paws and
ankles were harvested on day 40, and the degrees of inflammation,
synovial proliferation, and bone destruction were evaluated using a
standard scoring protocol as previously described (Kim et al., 2002;
Kong et al., 2010).
2.12. Assay for IgG Antibodies to CII

Serum was harvested from each group of mice. Anti-CII IgG
levels were measured using a commercially available ELISA kit
(Chondrex).
2.13. Hematoxylin and Eosin Staining and Immunohistochemical Staining

Joint tissues of AIA and CIA mice were fixed in saline for 1 day and
then decalcified in 5% formic acid for 2 weeks. Decalcified joints were
embedded in a paraffin block. Paraffin-embedded tissue blocks were
sectioned at 5 μm and then stained with hematoxylin and eosin accord-
ing to the manufacturer's protocol (Sigma). For immunohistochemical
analysis ofmacrophages, 5 μmtissue sectionswere deparaffinized in xy-
lene and rehydrated in a graded series of ethanol. After blocking with
10% goat serum for 1 h at room temperature, sections were incubated
with an anti-F4/80 macrophage marker antibody (1/50, Santa Cruz Bio-
technology) overnight at 4 °C. The sections were then incubated with
biotinylated goat anti-rabbit IgG (Santa Cruz Biotechnology). After
washing, the sections were incubated with peroxidase-conjugated
streptavidin (Vector Laboratories) for 30 min at room temperature,
followed by incubation with 3′3-diaminobenzidine tetrahydrochloride
(DAB, Vector Laboratories). The sections were counterstained with
hematoxylin.
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2.14. Statistical Analysis

Data are shown as mean ± standard deviation (SD). Comparisons
between groups were performed by paired or unpaired Mann-Whitney
U test. P values b 0.05 were considered to be statistically significant.

2.15. Study Approval

This study was performed with the approval of the institutional re-
view board (CUMC09U034).

3. Results

3.1. Discovery of Novel SmallMolecules InhibitingNFAT5Activity UsingHTS

Other investigators, like ourselves, have demonstrated that NFAT5 is
essential for the expression of NO and its synthetic enzyme, the induc-
ible form of nitric oxide synthase (iNOS), in TLR-stimulated macro-
phages (Buxadé et al., 2012; Kim et al., 2013, 2014). Therefore, using
HTS, we screened N40,000 compounds by assaying for suppression of
NO production induced by lipopolysaccharides (LPS) in RAW 264.7
cells. From a number of NFAT5 targets, NO was particularly selected
for HTS since NO cannot only be easily determined using a Griess reac-
tion, and thus adequate for drug screening, but also is one of the most
over-susceptible targets to NFAT5 activity (Buxadé et al., 2012; Kim et
al., 2013, 2014). As a result, we identified 204 small molecules that
showed N30% inhibition of NO at 1 μM concentrations (Fig. 1a). We
next tested NFAT5 inhibitory activity on the selected molecules in the
presence of LPS using a cell-based reporter system where NFAT5 con-
sensus sequences (3 copies of TGGAAAATTACCG) fused to a green fluo-
rescent protein (GFP) reporter were stably transfected into RAW 264.7
macrophages (Fig. 1b) (Kim et al., 2013). Five small molecules (as indi-
cated by the red bar in Fig. 1b) out of 198 primary hits (6 hits were ex-
cluded because of out of stock) were identified as showing marked
suppression of NFAT5-dependent reporter activity (Fig. 1b). Finally,
we selected the molecule, KRN2 that showed the strongest inhibition
of NFAT5 activity with an acceptable toxicity profile (Supplementary
Table 1).

As shown in Fig. 1c, KRN2 is 13-(2-fluorobenzyl)-berberine, a non-
naturally-occurring quaternary iminium protoberberine.
Protoberberines are isoquinoline alkaloids found inmany plant families
(Grycova et al., 2007). Some of them have been used as traditional
phytomedicines because they have a variety of biological and pharma-
cological activities including inhibition of DNA synthesis, protein syn-
thesis, oxidative phosphorylation and membrane permeability
(Grycova et al., 2007; Tillhon et al., 2012). Berberine (BBR), a traditional
medicine used in the treatment of gastroenteritis and secretory diar-
rhea, is known to have potent anti-inflammatory activity as it reduces
intracellular superoxide levels in macrophages triggered by TLR (Yan
et al., 2012; Sarna et al., 2010; Cheng et al., 2015). The 13-fluorobenzyl
derivative KRN2 showedmuch stronger inhibition of NFAT5-dependent
reporter activity in RAW 264.7 macrophages than did BBR; the half
maximal inhibitory concentration (IC50) value was 0.1 μM for KRN2
and 4 μM for BBR (Fig. 1d). In parallel, 0.5 μMof KRN2 significantly sup-
pressed the LPS-stimulated increase in NFAT5 protein expression in
RAW 264.7 macrophages (Fig. 1e). To summarize, through HTS of N
40,000 compounds, we discovered a novel synthetic protoberberine,
KRN2, which shows significant inhibition of NFAT5.

NFAT5 can be activated by isotonic inflammatory stimuli, such as
TLR activation, as well as by hypertonic stress (Buxadé et al., 2012;
Kim et al., 2013). Cells discriminate between TLR ligation and osmotic
stimuli via ROS, directing NFAT5 activity toward proinflammatory or
hypertonic responses in a context-dependent manner (Kim et al.,
2013, 2014). Thus, we explored whether KRN2 inhibits high salt-in-
duced NFAT5 expression. As seen in Fig. 1f, we confirmed that LPS-in-
duced NFAT5 mRNA and protein expression was nearly completely
blocked by KRN2. Similarly, KRN2 inhibited the translocation of NFAT5
into the nucleus of RAW 264.7 cells stimulated with LPS (Fig. 1g). How-
ever, KRN2 did not repress the high salt-induced increase in NFAT5
mRNA and protein in RAW 264.7macrophage, while SB253580, a selec-
tive p38MAP kinase (MAPK) inhibitor (Cuenda et al., 1995), completely
blocked it (Fig. 1h). These results indicate that KRN2 selectively inhibits
LPS-induced (‘inflammatory’) NFAT5 expression but not high-salt in-
duced (‘osmotic’) NFAT5 expression, suggesting that KRN2 may be ef-
fective under LPS-stimulated conditions without altering cellular
homeostasis in response to hypertonicity.

The discovery that KRN2 down-regulates LPS-induced NFAT5mRNA
levels suggests that a decrease in NFAT5 reporter activity ismediated by
transcriptional inhibition of KRN2. We recently demonstrated that TLR-
induced NFAT5 activation required XO-derived ROS and p38 kinase in
RAW 264.7 macrophages (Kim et al., 2013, 2014). To further character-
ize how KRN2 inhibits LPS-induced NFAT5 mRNA transcription, we ex-
amined if KRN2 suppression of NFAT5 activity is mediated secondarily
via the ROS-p38 MAPK pathway. The result showed that neither ROS
nor p38 MAPK activity was affected by KRN2 (Supplementary Fig. 1a,
b and c), indicating that ROS and p38 MAPK, upstream regulators of
NFAT5, are not involved in the KRN2 inhibition of NFAT5 mRNA tran-
scription. Moreover, KRN2 at a concentration of 1 μM only slightly
inhibited NFAT1-dependent reporter activity in HEK293 cells stimulat-
ed with PMA (1 μg/ml) (Supplementary Fig. 2a). CREB- and ELK-depen-
dent reporter (luciferase) activities also were not suppressed by KRN2
(Supplementary Fig. 2b, c and d). Collectively, these results suggest
that KRN2 selectively regulates LPS-induced NFAT5mRNA transcription
without greatly influencing the aforementioned transcription factors in-
volved in NFAT5 transcription upon TLR4 ligation.

3.2. KRN2 Inhibits Transcriptional Activation of the Inflammatory Nfat5
Gene by Blocking NF-κB Binding to the Nfat5 Promoter

NFAT5 has two NF-κB consensus binding sites upstream of Nfat5
exon 1, and TLR4-induced NFAT5 expression is modulated by the NF-
κB pathway in LPS-stimulated macrophages (Buxadé et al., 2012).
Since BBR directly interacts with specific DNA sequences (Xu et al.,
2012; Mazzini et al., 2003), it is possible that KRN2, a BBR analogue,
may interrupt the interaction of the Nfat5 promoter with NF-κB. To ad-
dress this issue, we monitored the effect of KRN2 on NF-κB binding ac-
tivity upstream of Nfat5 exon 1. We first constructed a GFP reporter
vector that includes the upstream site (base pairs −3000 to +1) of
Nfat5 exon 1, which contains the NF-κB consensus sequences (Fig. 2a,
upper panel). Using flow cytometry, we demonstrated that KRN2 spe-
cifically repressed LPS-induced NFAT5 promoter activity, whereas it
failed to reduce high salt-induced NFAT5 activity in the same cells
(Fig. 2a, lower panel), which is consistent with the selective inhibition
of TLR4-activated NFAT5, but not hypertonicity-induced NFAT5, by
KRN2 (Fig. 1f and h). During the activation of the NF-κB pathway, IκB
is phosphorylated and degraded, and then the p65 subunit of NF-κB is
phosphorylated and translocated from cytosol to nucleus (Lawrence,
2009). We found that KRN2 neither influenced the phosphorylation
and translocation of p65 nor blocked the degradation of IκB (Supple-
mentary Fig. 1d), which suggests that KRN2 directly suppresses the
NF-κB binding to its putative binding sites in the Nfat5 promoter, rather
than indirectly affecting IκB phosphorylation or NF-κB translocation. To
clarify this, the interaction betweenNF-κB andNF-κB consensus binding
sites in the promoter region of Nfat5was analyzed by chromatin immu-
noprecipitation (ChIP) assay using an anti-NF-κB p65 antibody. As re-
ported previously (Buxadé et al., 2012), LPS treatment markedly
increased NF-κB p65 binding to the Nfat5 promoter in RAW 264.7 mac-
rophages (Fig. 2b). However, treatment with KRN2 nearly completely
eliminated the recruitment of NF-κB p65 to the Nfat5 promoter region
following LPS stimulation (Fig. 2b), demonstrating the direct inhibitory
effect of KRN2 on the interaction between NF-κB p65 and its DNA bind-
ing sites.



Fig. 1. Discovery of novel small molecules to inhibit NFAT5 activity using HTS. (a) Distribution map indicates small molecules with the inhibitory activity on NO production in LPS-
stimulated RAW 264.7 cells using HTS and 204 small molecules with N30% of inhibition rate were identified as primary hits out of 40,000 compounds. (b) RAW 264.7 cells were
transduced stably with NFAT5 consensus sequences fused to GFP reporter construct. The NFAT5-dependent GFP expression was measured in transduced cells stimulated with LPS (1
μg/ml) for 20 h by flow cytometry analysis (left panel). Through this analysis, 5 compounds (as indicated in red bar) with marked suppression of NFAT-dependent reporter activity
were identified out of 198 hits compounds (right panel). (c) Chemical structure of KRN2. (d) KRN2 inhibition of NFAT5-dependent reporter activity. RAW 264.7 cells transfected with
NFAT5-GFP reporter system were stimulated with LPS (1 μg/ml) for 20 h in the presence of KRN2 or BBR in a dose-dependent manner. The NFAT5-dependent GFP expression was
measured by flow cytometry analysis. A representative histogram is shown on the upper panel. The bar graph shows the mean ± SD of three independent experiments. *P b 0.01, **P
b 0.001 and versus LPS-stimulated cells. (e) KRN2 suppression of NFAT5 protein expression. NFAT5 protein expression was determined by western blot analysis in the same condition
as described in (d). The bar graph shows NFAT5 protein band intensity normalized by β-actin as a loading control using ImageJ software (upper panel). Data are the representative of
three independent experiments with similar results. (f) KRN2 suppression of NFAT5 mRNA expression. RAW 264.7 cells were pre-incubated with KRN2 (0.8 μM) or SB253580 (30 μM)
for 1 h and then stimulated with LPS (1 μg/ml) for 12 h (upper panel) or 24 h (lower panel). The levels of NFAT5 mRNA (upper) and protein (lower) were determined by real-time
PCR and western blot analysis. Data are the mean ± SD of three independent experiments. *P b 0.05 and **P b 0.01 versus LPS-stimulated cells. (g) KRN2 inhibition of NFAT5
translocation to nucleus. RAW 264.7 cells were stimulated with LPS (1 μg/ml) for 12 h in the absence or presence of KRN2 (0.8 μM) and then fractionated into cytosolic (C) and
nuclear extracts (N). Translocation of NFAT5 protein was determined by western blot analysis in each fraction. The bar graph represents the nuclear NFAT5 levels normalized by the
cytosolic NFAT5 levels using ImageJ software. Data are the representative of three independent experiments with similar results. (h) No effect of KRN2 on high salt-induced NFAT5
expression. RAW 264.7 cells were pre-incubated with KRN2 (1 μM) or SB203580 (5 μM) for 1 h and then stimulated with NaCl (45 mM) for 12 h. The expression levels of NFAT5
mRNA (upper) and protein (lower) were measured by real-time PCR and western blot assay. Data are expressed as the mean ± SD of three independent experiments. *P b 0.001
versus NaCl-stimulated cells.
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Fig. 2. KRN2 selectively represses transcriptional activation of inflammatory NFAT5 by blocking the NF-κB binding to Nfat5 promoter. (a) RAW 264.7 cells transfected with GFP reporter
system containing two NF-κB binding sites in the upstream of Nfat5 genewere pre-incubatedwith KRN2 (1 μM) for 1 h and then stimulatedwith LPS (1 μg/ml) or NaCl (45mM) for 20 h.
GFP expression levelwasmeasuredbyflow cytometry. Data are the representative of three independent experimentswith similar results. (b) RAW264.7 cellswere pre-treatedwith KRN2
(1 μM) for 1 h and then stimulated with LPS (1 μg/ml) for 12 h. ChIP assay for the NF-κB binding site within the putative Nfat5 promoter region was performed with anti-p65/NF-κB
antibody. Exon14 was used as a negative control. Data are the representative of three independent experiments with similar results. (c) Electrophoretic mobility shift assay (EMSA)
using recombinant NF-κB p65 and biotinylated DNA probes corresponding to NF-κB binding site in Nfat5 promoter region. Biotinylated 20 mer-DNA oligonucleotides (40 fM of 5′-
AGAAAGGGGATTTCCTATAC-biotin-3′ for NF-κB binding site 1 [Nfat5 promoter 1] and 40 fM of 5′-ATGAAGGGACTTCCCTT-GGG-biotin-3′ for NF-κB binding site 2 [Nfat5 promoter 2])
were tested as DNA probes whether they recognize recombinant NF-κB p65 (400 ng). NF-κB consensus sequence (5′-AGTTGAGGGGACTTTCCCAGG-3′) was used as a positive control.
The bar graph in the lower panel shows levels of DNA binding activity determined by ImageJ software. Data are representative of three independent experiments with similar results.
(d) Sequence specificity in interaction of NF-κB with its DNA binding sites. Four GGGG or three GGG in DNA probes encompassing NF-κB binding site 1 were mutated to TTTT or TTT,
respectively, and EMSA was done with the original DNA probe (40 fM) and two mutant probes (40 fM, 5′-AGAAATTTTATTTCCTATAC-3′ for NF-κB binding site 1 [Nfat5 mutant
promoter 1] and ATGAATTTACTTCCCTTGGG for NF-κB binding site 2 [Nfat5 mutant promoter 2]). A representative of three independent experiments is shown. (e) KRN2 inhibition of
the NF-κB p65 binding to its DNA binding site. Nfat5 promoter 1 probe (40 fM) was pre-incubated with KRN2 (5, 20, 50 μM) or MG132 (20 μM) for 20 min before addition of
recombinant p65 (400 ng). The bar graph in the lower panel represents levels of DNA binding activity determined by ImageJ software. Data are mean ± SD of three independent
experiments. *P b 0.05, **P b 0.01, and ***P b 0.001 versus p65 only without KRN2. (f) Hypothetical scheme illustrating action mechanism of KRN2 for the suppression of pro-
inflammatory response and chronic arthritis.
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Wenext sought to investigatewhether KRN2 directly interfereswith
NF-κB binding sites in the Nfat5 promoter. To this end, we assessed the
binding activity of NF-κB p65 to 20-base pair DNA probes encompassing
the putative NF-κB binding sites versus theirmutant DNA (20-mer) using
an electrophoretic mobility shift assay (EMSA). As expected, the NF-κB
p65 could bind to the DNA probes harboring putative NF-κB binding
sites (GGGGATTTCC and GGGACTTCCC), and its binding activity was
much stronger with the probes for the upstream NF-κB binding site
(Nfat5 promoter 1) than those for the downstream NF-κB binding site
(Nfat5 promoter 2) (Fig. 2c). By contrast, substitution of Nfat5 promoter
1 with TTTTATTTCC and TTTACTTCCC resulted in the complete absence
of the NF-κB binding activity (Fig. 2d), indicating that GGGG and GGG se-
quences are required for the interaction of NF-κB p65withNfat5 promot-
er 1 and promoter 2, respectively. We next tested whether KRN2
competes with recombinant p65 in binding with the Nfat5 promoter 1.
As seen in Fig. 2e, KRN2 dose-dependently inhibited the NF-κB p65 bind-
ing to Nfat5 promoter 1, whereas MG132, which shows inhibitory action
on NF-κB by preventing degradation of IκB (Ortiz-Lazareno et al., 2008),
did not affect it. Together, these observations indicate that KRN2 directly
blocks the interaction between NF-κB p65 and its DNA binding sequence
in the upstream site (base pairs−3000 to +1) of Nfat5 exon 1.

Collectively, our data indicate that KRN2 selectively inhibits LPS-, but
not high salt-, induced NFAT5 mRNA and protein expression at least
partially through blocking the interaction of NF-κB with its binding
site in the regulatory region of the Nfat5 gene (Fig. 2f).
3.3. KRN2 Suppresses the Expression of Pro-inflammatory Genes Governed
by NFAT5

Previous reports have demonstrated that genes induced by TLR4
stimulation, including Nos2, Tnf, Csf2 and Mcp1, are NFAT5-dependent
(Buxadé et al., 2012; Kim et al., 2013, 2014). We also have reported
that TLR4-stimualted IL-6 production is dependent on NFAT5 activation
in RAW 264.7 macrophages (Kim et al., 2013, 2014). Accordingly, we
examined the ability of KRN2 to prevent the production of pro-inflam-
matory cytokines governed by NFAT5. As shown in Fig. 3a and b, the
mRNA and protein expression levels of NFAT5 target genes in RAW
264.7 macrophages, including IL-6, TNF-α, and GM-CSF, significantly
decreased in the presence of KRN2. Furthermore, KRN2 dose-depen-
dently lowered the expression level of iNOS, another NFAT5-target
gene, and NO production by LPS-stimulated RAW 264.7 cells
(Fig. 3c). As described above, it is well known that NFAT5 is strongly
induced under hypertonic conditions and regulates the tonicity-in-
ducible genes Ar, Bgt, and Smit Miyakawa et al., 1999. Thus, we tested
whether the expression levels of ‘osmotic’ (high-salt induced)
NFAT5-target genes are suppressed by KRN2. As expected, KRN2
had no effect on the mRNA expression levels of Ar and Bgt in RAW
264.7 macrophages stimulated with high salt (Fig. 3d), which is in
agreement with our data that showed no change in high salt-induced
NFAT5 expression and reporter activity in the presence of KRN2
(Fig. 2c and d).

Image of Fig. 2


Fig. 3. KRN2 suppresses the expression of pro-inflammatory genes governed by inflammatoryNFAT5. RAW264.7 cellswere pre-incubatedwith KRN2 (0.8 μM) for 1 h and then stimulated
with LPS (1 μg/ml) for 12 h for detecting mRNA expression levels or for 20 h for detecting protein expression levels. (a) The mRNA levels of Il6, Tnf, and Csf2were measured by real-time
PCR. Data are expressed as the mean ± SD. *P b 0.05, **P b 0.01 and ***P b 0.001 versus only LPS-stimulated cells. (b) The concentration of pro-inflammatory cytokines (IL-6, TNF-α, and
GM-CSF) in the culture supernatants were measured by ELISA. Data are expressed as themean± SD. *P b 0.01 and **P b 0.001 versus only LPS-stimulated cells. (c) RAW 264.7 cells were
pre-incubatedwith KRN2 for 1 h in a dose-dependent manner and then stimulatedwith LPS (1 μg/ml) for 24 h. The expression of iNOS protein was detected by western blot analysis (left
panel). The nitrite concentration in the culture supernatants was measured by Griess assay (right panel). Values are the mean ± SD of three independent experiments in triplicate. *P b

0.001 versus only LPS-stimulated cells. (d) RAW264.7 cells were stimulatedwith NaCl (45mM) for 12 h in the absence or presence of KRN2 (0.8 μM). ThemRNA levels of Ar and Bgtwere
measured by real-time PCR. Data are the mean ± SD of three independent experiments in duplicates.
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Based on the data in RAW 264.7 macrophages, we next investi-
gated whether KRN2 is similarly effective in suppressing NFAT5
and its pro-inflammatory targets in primary macrophages. Peritone-
al macrophages were isolated from mice challenged by injection
with 3% thioglycollate and then stimulated with LPS in the presence
or absence of KRN2. Consistent with the data in RAW 264.7 cells,
KRN2 mitigated the LPS-stimulated increase in expression levels of
NFAT5 protein and mRNA in murine peritoneal macrophages
(Fig. 4a and b). Moreover, as shown in Fig. 4b, the expression levels
of Il6 and Tnf, target genes of inflammatory NFAT5, were also
decreased by KRN2 under the same conditions. In contrast, KRN2
neither mitigated the high salt-induced increase in osmotic Nfat5
mRNA expression nor blocked the mRNA expressions of Ar and
Smit, NFAT5-dependent tonicity-inducible genes (Fig. 4c). Further-
more, KRN2-induced decreases in iNOS, IL-6, and TNF-α expressions
were also reproducible in total splenocytes of mice stimulated with
LPS (Fig. 4d and e). Collectively, these results show that KRN2
blocked the expressions of NFAT5 and its pro-inflammatory target
genes in primarymacrophages and thusmay be effective in suppressing
chronic inflammatory diseases in vivo.

Image of Fig. 3


Fig. 4.KRN2 inhibits the expression of NFAT5 and its target genes in primary macrophages. (a) Murine peritoneal macrophages were incubatedwith LPS (1 μg/ml) for 24 h in the absence
or presence of KRN2 (0.8 μM). NFAT5 expression levels were determined bywestern blot analysis. Data are the representative of three independent experiments. (b–c)Murine peritoneal
macrophages were stimulated with LPS (10 and 100 ng/ml) (b) or NaCl (45mM) (c) for 6 h in the absence or presence of KRN2 (0.8 μM). ThemRNA expression levels of Nfat5, Il6, Tnf, Ar
and Smitwere assessed by real-time PCR. Data are the mean± SD of three independent experiments in duplicates. *P b 0.05 and †P b 0.05 versus LPS alone. (d) Murine splenocytes were
incubated with LPS (1 μg/ml) for 24 h in the absence or presence of KRN2 (0.8 μM). The expression levels of NFAT5 and iNOS were determined by western blot analysis. Data are the
representative of three independent experiments with similar results. (e) Murine splenocytes were incubated in the same condition as described in (d). The concentration of IL-6 and
TNF-α in the culture supernatants were measured by ELISA. Data shows the mean ± SD of three independent experiments. *P b 0.05, **P b 0.005 versus only LPS-stimulated cells.

268 E.-J. Han et al. / EBioMedicine 18 (2017) 261–273
3.4. KRN2 Inhibits Experimentally Induced Arthritis in Mice

TLR-activatedmacrophages are crucial in the pathogenesis of chron-
ic arthritis (Huang et al., 2007). To explore the possibility that KRN2 can
be used as a therapeutic agent in chronic arthritis, we asked whether
KRN2 suppresses the development of adjuvant-induced arthritis (AIA)
in mice, a model of chronic arthritis dependent on TLR2 and TLR4
(Billiau and Matthys, 2001). To this end, KRN2 (3 mg/kg) was injected
peritoneally intomice every day for 2 weeks. We found that paw swell-
ing, which was assessed by measuring the diameter of arthritic ankles
and footpads, was significantly lower in KRN2-injectedmice than in ve-
hicle-treated mice (Fig. 5a). Moreover, compared to vehicle-treated
mice, KRN2-treated mice exhibited lesser degrees of inflammatory cell
infiltration, synovial hyperplasia, and joint destruction, as assayed
with hematoxylin and eosin (H&E) staining (Fig. 5b). The number of
anti-F4/80+ cells infiltrated, indicating macrophages, also declined in
the joints ofmice treatedwith KRN2 (Fig. 5c). Together, these results in-
dicate that KRN2 is effective in suppressingAIA inwhich innate immune
cells play a predominant role (Billiau and Matthys, 2001).

We further analyzed the therapeutic efficacy of KRN2 in mice with
collagen-induced arthritis (CIA), a classical animal model of RA in
which adaptive immune cells, including T and B lymphocytes, play a
dominant role (Brand et al., 2003). When KRN2 (3mg/kg) was injected
peritoneally every day for 3 weeks beginning on day 21, arthritis sever-
ity significantly decreased as assessed by visual inspection (Fig. 5d).
Moreover, KRN2-injectedmicedeveloped a limited degree of inflamma-
tory cell infiltration, synovial hyperplasia, and joint destruction as com-
pared with mice treated with vehicle only (Fig. 5e and f). As assessed
with immunohistochemical staining of the joints, the number of anti-
F4/80+ macrophages was significantly lower in mice treated with
KRN2 than in vehicle-treated mice (Fig. 5g). In parallel, serum levels
of anti-type II collagen antibody, IL-6, and TNF-α significantly decreased
in mice treated with KRN2, as expected (Fig. 5h and i). Together, these
results indicate that KRN2 is effective in suppressing CIA as well as AIA
in mice, decreasing the production of pro-inflammatory cytokines and
autoantibodies as well as macrophage infiltration.
3.5. KRN5, an Oxo Derivative of KRN2, as an Anti-NFAT5 Drug Candidate

To be easily used in a clinical setting, drugs need to be orally bioavail-
able. In contrast to intraperitoneally injected KRN2, oral administration
of KRN2 (3 mg/kg) every other day for 3 weeks beginning on day 21
failed to suppress CIA development in mice (data not shown). This
was primarily due to the lack of absorption of orally administered
KRN2 or lowmicrosomal stability (Fig. 6a, left panel and Supplementary
Table 2b). In fact, KRN2 was not detectable in plasma after oral admin-
istration (Fig. 6a, left panel). To overcome this limitation, we tried to
modify the chemical structure of KRN2 and found that oxidation of
KRN2 to KRN5, which resulted in removal of iminium positive charges,
enhanced its oral bioavailability. As seen in Fig. 6a (right panel), plasma
concentration following oral administration remarkably increased with
the introduction of the 8-oxo group, and microsomal stability also im-
proved (Supplementary Fig. 3). The plasma half-life of KRN5 was esti-
mated at N8 h when KRN5 was administered orally (Fig. 6a, right
panel), and the bioavailability (F%) after oral and intravenous adminis-
tration was 15% in rats (Supplementary Table 2b). The IC50 value of
KRN5 was 0.75 μM as determined by NFAT5-dependent reporter assay
in LPS-stimulated RAW 264.7 cells (Fig. 6b), suggesting that the in
vitro NFAT5 inhibitory capacity can be maintained after chemical mod-
ification of KRN2 to KRN5. Moreover, KRN5 is less toxic than BBR as de-
termined by a cytotoxicity assay, hERG K+ channel assay, cytochrome
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Fig. 5. KRN2 inhibits experimentally induced arthritis in mice. (a) KRN2 (3 mg/kg) was injected peritoneally into AIA-induced C57BL/6 mice every day for 2 weeks and then the disease
severity was assessed by ankle and foot pad thickness index calculated at the indicated time points. Values are the mean ± SD of 6 mice per group. *P b 0.05, **P b 0.01 and ***P b 0.001
versus mice group with vehicle (PBS). (b) Hematoxylin and eosin staining of ankle joint sections obtained frommice treated with vehicle (left) or KRN2 (right). Bar indicates 500 μm. (c)
Immunohistochemical staining of joint sections frommice treatedwith vehicle (left) or KRN2 (right) using anti-F4/80 antibody. (d) Disease severity of CIA-induced DBA/1J mice injected
with KRN2 (3mg/kg) or vehicle (PBS) every day for 3 weeks from day 21 (n= 6, respectively). Values are themean± SD. *P b 0.05 versusmice groupwith vehicle. (e) Hematoxylin and
eosin staining of ankle joint sections obtained from mice injected with KRN2 or vehicle. Bar indicates 500 μm. (f) Mean histological scores of synovial proliferation, inflammatory cell
infiltration, and joint destruction in mice injected KRN2 versus vehicle (n = 5, respectively). Values are the mean ± SD. *P b 0.0001 versus vehicle mice. (g) Degrees of macrophage
infiltration obtained from ankle joint sections in mice injected KRN2 versus vehicle (n = 5, respectively), as determined by immunohistochemical staining using anti-F4/80 antibody.
Values are the mean ± SD. *P b 0.001 versus vehicle mice. (h–i) Sera from CIA induced mice injected with KRN2 or vehicle (PBS) (n = 5, respectively) were collected on day 40. Anti-
bovine CII IgG level (h) and the concentrations of IL-6 and TNF-α (i) were measured by ELISA. Values are the mean ± SD. *P b 0.005, **P b 0.001 versus mice group with vehicle.
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inhibition assay, and liver microsomal metabolic stability test (Supple-
mentary Table 1), which makes it a potential drug candidate.

KRN5 at a concentration of 1 μM inhibited the expressions of NFAT5,
IL-6, MCP-1, and GM-CSF, which are NFAT5 target molecules (Buxadé et
al., 2012; Kim et al., 2013, 2014), in RAW264.7macrophages stimulated
with LPS (Fig. 6c and d), which suggests that the therapeutic efficacy of
KRN5 is comparable to that of its starting compound KRN2. To confirm
this in vivo, we tested the effect of oral KRN5 on arthritis severity in

Image of Fig. 5


Fig. 6. Pharmacokinetic profiles of KRN5, an oxo derivative of KRN2, and its effects as an anti-NFAT5 drug candidate. (a) Comparison of pharmacokinetic (PK) profiles of KRN2 (left) and
KRN5 (right) in rat according to Intravenous (I.V.) or Per os (P.O.) administration. Figure in the box shows the structure of KRN5 (right panel). (b) KRN5 was dose-dependently added to
RAW 264.7 cells transfected with NFAT5-GFP reporter system for 1 h. GFP expression was measured by flow cytometry. Values are the mean ± SD for % ΔMFI. *P b 0.005, **P b 0.001. (c)
RAW 264.7 cells were stimulated with LPS (1 μg/ml) for 24 h in the presence of KRN5 as indicated doses. NFAT5 protein was detected by western blot analysis. (d) RAW 264.7 cells were
stimulated with LPS (1 μg/ml) for 24 h in the presence of KRN5 (1 μM). Level of cytokines (GM-CSF, MCP-1, and IL-6) in the culture supernatants were measured by ELISA. (e) Disease
severity of CIA-induced mice (n = 5, respectively) orally administrated with KRN5 (15 and 60 mg/kg) or vehicle for 44 and 47 days. Methotrexate (15 mg/kg) was used as a positive
control. Values are the mean ± SD. *P b 0.05, **P b 0.01, ***P b 0.005 versus mice group with vehicle. Each graph shows two independent experiments. (f) Sera from CIA-induced mice
injected with KRN5 or vehicle were collected on day 44. Anti-bovine CII IgG level was measured by ELISA. Values are the mean ± SD. *P b 0.005 versus mice group with vehicle. (g–h)
Mouse splenocytes isolated from CIA-induced mice treated with vehicle or KRN5 (15 mg/kg and 60 mg/kg) were incubated with LPS (1 μg/ml) for 24 h and then the culture
supernatants were harvested. (g) IL-6 and TNF-α level in the supernatant were measured by ELISA. Data show the mean ± SD of three independent experiments. *P b 0.05, **P b

0.005 and ***P b 0.001 versus unstimulated cells. (h) NFAT5 protein level was determined by western blot analysis. Data are the representative of three independent experiments with
similar results.
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micewith CIA. As shown in Fig. 6e, oral feeding of KRN5 every other day
for 3 weeks from day 21 dose-dependently mitigated arthritis severity.
When compared tomethotrexate, a commonly used DMARD, the effica-
cy of oral KRN5 at 60 mg/kg wasmore potent in suppressing arthritis; a
supra-therapeutic dose (5 mg/kg) of methotrexate was administered
orally twice a week for the same experimental period. Of special interest,
no side effects were noted throughout the course of our experiments
(data not shown). The concentration of serum anti-type II collagen IgG
also significantly decreased in the sera of KRN5-treated mice (Fig. 6f). In
parallel, TNF-α and IL-6 production by LPS-stimulated splenocytes were

Image of Fig. 6
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significantly lower inKRN5-treated CIAmice than in vehicle-treatedmice
(Fig. 6g). NFAT5 expression in spleen cells stimulated by LPS was also re-
duced by KRN5 (Fig. 6h). Taken together, these results show that oral ad-
ministration of KRN5, a KRN2 derivative with enhanced bioavailability
and metabolic stability, significantly ameliorated arthritis in mice,
suppressing the production of pro-inflammatory cytokines and
autoantibodies.
4. Discussion

NFAT5 has been implicated in autoimmune responses and disease
states. A recently growing body of research indicates thatNFAT5 activity
is regulated by either osmotic or pro-inflammatory stress in a context-
dependent manner (Kim et al., 2013), suggesting a link between adap-
tation to hyperosmolarity and immune response. Lymphoid tissues
are hyperosmolar compared with blood (Go et al., 2004). Indeed,
NFAT5 has a critical role in regulating proliferation and inflammatory
responses of macrophages and T lymphocytes, key cellular components
of innate and adaptive immunity, respectively (Go et al., 2004; Buxadé
et al., 2012; Kim et al., 2013; Lopez-Rodriguez et al., 2001). Elevation
of sodium chloride to 40–80 mM, which is similar to the levels found
in the interstitium of animals on a high salt diet, promotes the differen-
tiation of CD4+ T cells into Th17 cells, important actors in autoimmune
diseases, and enhances production of pathogenic Th17 cytokines and
chemokines (Kleinewietfeld et al., 2013; Wu et al., 2013). Furthermore,
genetic haplo-insufficiency of NFAT5 expression results in surprisingly
dramatic suppression of arthritis severity (Yoon et al., 2011), which
makes NFAT5 an attractive therapeutic target of RA.

In the present study, we identified novel NFAT5 suppressors for use
in RA therapies. We screened N40,000 small molecules which suppress
NO induction and then validated anti-NFAT5 activity of the candidate
molecules using an NFAT5-specific reporter. As a result, we discovered
the novel NFAT5 inhibitor KRN2 and its derivative KRN5. KRN2 exhibit-
ed 40 times more anti-NFAT5 activity than BBR deprived of its 13-
fluorobenzyl group. KRN2 and KRN5 inhibited the expressions of
TLR4-stimulated (‘inflammatory’) NFAT5 and its target genes, including
Il6, Nos2, and Csf2, in RAW 264.7 macrophages. Interestingly, high salt-
stimulated (‘osmotic’) NFAT5 and tonicity-associated genes, including
Ar, Bgt and Smit, were unaffected by KRN2, suggesting that KRN2
selectively works under LPS-stimulated conditions, but will not disturb
cellular homeostasis and cytoprotection under hypertonic conditions.

To understand themode of action of KRN2,we investigated the tran-
scriptional regulatory mechanism of KRN2 on NFAT5. We found that
KRN2 nearly completely ameliorated the upregulation of NFAT5
mRNA and protein induced by LPS, demonstrating that KRN2-induced
decreases in NFAT5 protein expression and nuclear translocation of
NFAT5 are caused by its down-regulatory effect on NFAT5 mRNA tran-
scription. To further understand the inhibitory mechanism of KRN2,
we checked the activation of representative signaling molecules affect-
ing NFAT5 mRNA transcription, p38 MAPK and NF-κB. p38 MAPK is
phosphorylated in response to LPS stimulation (Han et al., 1993), and
it then activates various transcription factors (Zarubin and Han, 2005).
Especially, p38αhas been identified as an important upstreammolecule
of NFAT5 (Ko et al., 2002; Kim et al., 2014). NF-κB has long been impli-
cated in a pro-inflammatory signaling pathway (Ghosh and Hayden,
2008) and is recently identified as a critical regulator of NFAT5 in mac-
rophages subjected to LPS stimulation (Buxadé et al., 2012; Kim et al.,
2014). In this study, we found that p38MAPK and its isoformswere un-
affected by treatment with KRN2. The translocation and phosphoryla-
tion of NF-κB p65 upon LPS stimulation were not inhibited by KRN2
either. Furthermore, KRN2 had no effects on ROS expression and Elk-
1- and CREB-dependent reporter activity, all of which are associated
with NF-κB and p38 MAPK (Wen et al., 2010; Tian and Karin, 1999).
Thus, we exclude the possibility that KRN2's actions on NFAT5 are
indirect.
BBR is a traditional Chinese medicine used for the treatment of gas-
troenteritis without serious adverse effects and is known to have potent
anti-inflammatory activity (Grycova et al., 2007; Tillhon et al., 2012; Yan
et al., 2012; Sarna et al., 2010; Cheng et al., 2015). In this study, we
discovered novel BBR-based NFAT5 suppressors to inhibit NFAT5-
dependent reporter activity, NFAT5 mRNA and protein expressions,
and NFAT5 translocation to nucleus. There are many physicochemical
studies on BBR binding to double-stranded DNA (Xu et al., 2012;
Mazzini et al., 2003). For example, evidence has shown that BBR binds
the minor groove of the AT-rich region [d(AAGAATTCTT)]2 and that
this binding is related to its effect on Topoisomerase-I and -II (Mazzini
et al., 2003; Kim et al., 1998). Thus, KRN2, a BBR derivative, might inter-
act with NFAT5-binding consensus sequence (TGGAAAATTACCG)
through its BBR moiety, decreasing expression of NFAT5 target genes.
It has also been demonstrated that BBRdirectly binds to specificDNA se-
quences and forms a complex with DNA triplexes or G-quadruplexes
[d(TGGGGT)]4 (Xu et al., 2012).

In this study, we postulated that KRN2 could target two NF-κB con-
sensus binding sites, GGGGATTTCC and GGGACTTCCC, located in the
Nfat5 promoter site. We discovered BBR-based novel κB inhibitors to
suppress NFAT5 expression, which have completely different mode of
action from conventional NF-κB inhibitors, such as MG132 (Ortiz-
Lazareno et al., 2008), that suppress I-κB expression or activity. Using
a GFP reporter vector encompassing the upstream site (base pairs
−3000 to+1) of Nfat5 exon 1, we demonstrated that KRN2 selectively
blocked Nfat5 promoter activity induced by LPS, but not by high salt.
Moreover, a ChIP assay using an anti-NF-κB antibody demonstrated a
marked reduction of p65 binding to NF-κB consensus binding sites in
the Nfat5 promoter. EMSA also revealed that KRN2 decreased the for-
mation of NF-κB p65-DNA complexes in a dose-dependent manner.
Given that NFAT5 expression is nearly completely dependent on NF-
κB binding to its promoter (Buxadé et al., 2012), our data suggest that
KRN2 inhibits transcriptional activation of NFAT5 at least partially
through blocking NF-κB binding to the Nfat5 promoter. This notion is
bolstered by our transcriptome data showing that NF-κB target genes
significantly overlapped with the genes expressed differentially in
NFAT5-deficient RAW 264.7 macrophages, particularly in the presence
of LPS (Supplementary Fig. 4).

Interestingly, we found that high salt also increased the transloca-
tion of p65 as well the degradation of IκB in RAW 264.7 macrophages
(Supplementary Fig. 5), which is in parallel with a previous report
(Roth et al., 2010). These data indicates that the NF-κB pathway is acti-
vated by hypertonicity in these cells. Given the requirement of NF-κB
activity for NFAT5 transcription, it is unclearwhyKRN2 failed to hamper
high salt-induced NFAT5 upregulation and its target gene expression,
including Ar and Smit. A possible explanation would be the differential
activation of co-regulators depending on the kinds of stimuli. We have
demonstrated that ROS are essential for NFAT5 transcription, but their
source differs depending on the context: mitochondria for high salt
and xanthine oxidase for TLR (Kim et al., 2013, 2014). Moreover, the
two pathways are mutually exclusive and suppressive (Kim et al.,
2013), suggesting that a distinct set of signal regulators can be activated
for NFAT5 transcription according to high salt versus LPS. In this regard,
other transcriptional factors or co-regulators, in addition to NF-κB,
might also be targets of KRN2, since they can bind to theNfat5 promoter
region (−3000 to +1) and interact with each other to result in NFAT5
transcription (Buxadé et al., 2012). Further studies are required to
clarify this issue.

In arthritic joints, various inflammatory cells, includingmacrophages,
T cells, synoviocytes, and endothelial cells interact with each other via an
array of cytokines and/or cell-to-cell contact, leading to prolonged in-
flammation and destruction of cartilage and bone. As demonstrated in
NFAT5 haplo-insufficient mice (Yoon et al., 2011), the NFAT5 blockade
by KRN2 and KRN5 successfully repressed experimentally-induced
arthritis in mice with AIA and CIA where innate and adaptive immune
cells play major roles, respectively, which confirms that NFAT5 is crucial
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in RApathogenesis. Given that KRN2 andKRN5 inhibitedmacrophage ac-
tivation in both mouse and human systems through suppressing the ex-
pression of pro-inflammatory mediators, such inhibition of macrophage
activation may explain the therapeutic efficacy of KRN2 and KRN5 in
vivo. However, NFAT5 controls antigen-specific T cell proliferation,
Th17 cell activation, and Treg cell function (Go et al., 2004;
Kleinewietfeld et al., 2013; Wu et al., 2013; Li et al., 2014). NFAT5 is
also involved in synoviocyte proliferation and angiogenesis (Yoon et al.,
2011), both pathologic hallmarks of RA. We believe that the pharmaco-
logical effects of KRN2 and KRN5 are not limited to macrophages in
mice with AIA or CIA. Ultimately, the therapeutic effects may be demon-
strated to result from the overall action of these small molecules on
multiple types of cells, including macrophages, Th17 cells, Treg cells,
and synoviocytes.

In sum, 13-(2-fluoro)-benzylberberine, KRN2 inhibits NFAT5-
dependent reporter activity, NFAT5 mRNA and protein expression,
NFAT5 translocation to the nucleus, and NFAT5 promoter activity.
KRN2 exhibits 40 times more anti-NFAT5 activity (IC50 = 0.1 μM)
than BBR deprived of its 13-fluorobenzyl group. KRN2 inhibition of tran-
scriptional activation of NFAT5was at least partially due to the decrease
in the formation of NF-κB p65-DNA complexes in the Nfat5 promoter
region. This compound selectively suppresses the expression of pro-
inflammatory genes regulated by NFAT5 in TLR4-stimulated
macrophages without hampering ‘osmotic’ NFAT5 and its target gene
expressions. Moreover, KRN2 and its oral derivative KRN5 show sup-
pressive effects on the development of experimental arthritis in mice.
Given their high efficacy in arthritic mice, KRN2 and KRN5 should be
considered as potential therapeutic agents for treating chronic arthritis,
including RA. Particularly, KRN5, as an oral agent, seems to be promising
since it was stronger in suppressing arthritis thanmethotrexate, a com-
monly used anti-rheumatic drug, displaying better potency and safety
than its original compound BBR. In addition, our strategy of discovering
NFAT5 suppressors using HTS and an NFAT5-depdendent reporter
system can be applied to other chemical libraries to discover the ideal
anti-NFAT5 drugs with high specificity and less cytotoxicity than
KRN2andKRN5.We anticipate that the resultant anti-NFAT5 smallmol-
ecules will provide novel candidates in the treatment of other chronic
inflammatory diseases and certain types of cancer in which NFAT5
plays a key role.
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