
FPGA design of the fast decoder for burst errors correction

E A Mytsko1, A N Malchukov1, I V Zoev1, S E Ryzhova1, V L Kim1

1Tomsk Polytechnic University, 30, Lenina Ave., Tomsk, 634050, Russia

E-mail: evgenvt@tpu.ru

Abstract. The paper is about FPGA design of the fast single stage decoder for correcting burst
errors during data transmission. The decoder allows correcting burst errors with 3 bits for a 15
bit codeword and a 7 bit check unit. The description of a generator polynomial search
algorithm for building error-correcting codes was represented. The module structure of the
decoder was designed for FPGA implementation. There are modules, such as remainder,
check_pattern, decoder2, implemented by asynchronous combinational circuits without
memory elements, and they process each codeword shift in parallel. Proposed implementation
allows getting high performance about ~20 ns.

1. Introduction
Error-correcting codes (ECC) are used to detect and correct different errors during data transmission
through the communication channels and reading information from storage devices. In papers [1–14],
FPGA design of the BCH’s code decoder which corrects independent errors is described. However,
there are tasks that need to correct errors grouped into bursts which is a special case of independent
errors. Reed-Solomon (RS) codes allow solving the tasks of this type. In papers [15–19], FPGA
hardware implementations of the Reed-Solomon decoders which are multistage are considered. In the
paper, the single stage hardware implementation will be reviewed at a high-speed FPGA decoder
which corrects burst errors based on a binary cyclic error-correcting code.

2. Generator polynomial search
For building the cyclic error-correcting code which corrects burst errors, it is required to find a
generator polynomial with length k + 1 (where k is the length of the check unit) for the determined
length of data unit (m) and error-correcting capability (p). A step by step description of the generator
polynomial [20] search algorithm is presented later.

Start.
Step 1. Put m, the length of the data unit, and p, the error-correcting capability.
Step 2. The minimum length of the check unit (or the highest power of the generator polynomial) is

computed by formula
p = 1, n + 1,

k = p = 2, 2*n + 1,

p > 2, 2*n + 1 + ∑ n ∗ 2�
���

	
� .

1

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012105 doi:10.1088/1742-6596/803/1/012105

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic archive of Tomsk Polytechnic University

https://core.ac.uk/display/84473389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0

Where k is the highest power of the generator polynomial, p is an error-correcting capability, n is a
codeword length.

Step 3. The first value of the polynomial weight is w = p. The minimum code distance for
correcting the burst errors of length p is d = p.

Step 4. The polynomial is selected from a variety of polynomials with highest power k and weight
w.

Step 5. The error-correcting polynomial code is built based on a selected generator polynomial and
all the codewords are generated.

Step 6. The minimum code distance of the codeword is computed (the minimum weight among all
codewords except zero).

Step 7. If the computed code distance meets the specifications then it goes to step 8, else it goes to
step 11.

Step 8. Error syndromes are computed by dividing all combinations of burst errors by the generator
polynomial.

Step 9. If all syndromes are unique for the built code, then it goes to step 10, else it goes to step 11.
Step 10. If polynomial 1+nx is divided by the generator polynomial without the remainder where

n is the length of the codeword, then it goes to the end, else it goes to step 11.
Step 11. If all polynomials from the variety are checked (the variety is determined by step 4), then

it goes to step 12, else it goes to step 4.
Step 12. If the weight w equals k, then increment k and it goes to step 4, else increment w and it

goes to step 4.
End.

The polynomial search is a preliminary stage for coding and decoding. The cyclic error-correcting

code is built by formula
() () 2 | 2= • •k kCW x M x mod((M(x)) / G(x)) , (1)

where G(x) – generator polynomial, CW(x) – codeword, M(x) – data polynomial, mod – remainder
operator.

Next, the hardware design of the fast single stage decoder for the cyclic binary code which corrects
burst errors is presented.

3. FPGA design of the fast decoder
The block diagram of the cyclic binary decoder which corrects burst errors is presented in figure 1. N-
1 cyclic shifts of the codeword where n is the codeword length are generated by the first step.
Generated codewords are supplied to a parallel computation module (remainder) which generates
remainders of division of codewords by the generator polynomial. Computed remainders are supplied
to a check_pattern module for matching with one of the burst error patterns. If the remainder matches
the pattern, it is summed by modulo 2 with a codeword, and reverse cyclic shifts for i bits are carried
out where i is a sequence number of the remainder which matches with the pattern.

Figure 1. The block diagram of the fast decoder which corrects burst errors.

Figure 2 presents a functional block of the cyclic binary decoder with parameters n = 15 (codeword
length), k = 7 (check unit length), p = 3 (errors burst length) which is designed for the Cyclone FPGA

2

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012105 doi:10.1088/1742-6596/803/1/012105

using module structure and hardware description language Verilog. The input of the block is a 15-bit
codeword and the output is corrected data with length m = 8 bits.

Figure 2. The functional block
of the decoder.

The functional block of the decoder includes such modules as remainder, check_pattern, pri,
decoder2. Each module contains a combinational circuit.

Module remainder computes the remainder of division of the codeword by the generator
polynomial using matrix division. Figure 3 presents the graphical interpretation of the module at the
register-transfer level (RTL view).

Figure 3. The remainder computation
module.

Figure 4 presents a block diagram of module remainder. The result of the vector (codeword) by
predetermined matrix multiplication is the formula for the combinational circuit which is built using
only «exclusive OR» gates. Sign «+» represents «modulo 2» addition in this case.

Figure 4. The block diagram of module remainder.

Module check_pattern checks the remainder for including in the error patterns area (Ri(x) ϵ P(x)).
Figure 5 presents a graphical interpretation of module check_pattern in the RTL view. If output

codeword[14..0] data[7..0]

error

decoder1

inst

3

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012105 doi:10.1088/1742-6596/803/1/012105

result has value «1», then it means that the remainder is included in the error patterns area.

Figure 5. Module check_pattern.

The block diagram of check_pattern is presented by figure 6. The remainder multiplied (with a
bitwise «AND» operation) by the matrix of error patterns with length 3. The combinational circuit
based on gates «AND», «OR», «NOT» is built using formula.

r1 r2 r3 r4 r5 r6r0
r0

r1

r1
r1

r1
r1
r1

r1
r1
r1
r1
r1

r1
r1
r1

r1
r1
r1

r1
r1

r1

r1
r1

r0

r0

r0

r0

r0
r0
r0
r0
r0

r0
r0
r0
r0
r0

r0
r0

r0

r0
r0
r0
r0

r2
r2
r2
r2
r2

r2

r2
r2
r2

r2

r2
r2

r2
r2

r3
r3

r3
r3
r3
r3
r3

r3
r3
r3

r3

r3
r3

r3

r4
r4
r4

r4
r4
r4
r4
r4

r4
r4
r4

r4

r4
r4

r5
r5
r5
r5

r5
r5
r5
r5
r5

r5
r5
r5

r5
r5
r5
r5

r6
r6
r6
r6
r6

r6
r6
r6
r6

r6
r6
r6
r6

r6
r6
r6
r6

Figure 6. The block diagram of module check_pattern.

Module pri chooses the highest «1» bit in the code. Code result[14..0] is supplied to the module
input from check_pattern modules. There is a 15-bit code at the output which contains only one
single-bit value in the position corresponding to the position of the highest «1» bit of code result
[14..0].

Figure 7 presents a graphical interpretation of module decoder2 in the RTL view. The module has
inputs sw_decoder2 for decoding permission flag, code_decoder2 [14..0] for the codeword and
r_decoder [6..0] for remainders. Output cw_decoder2 [14..0] is a corrected codeword.

4

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012105 doi:10.1088/1742-6596/803/1/012105

Figure 7. Module decode2.

Figure 8 presents a functional diagram of the decoder in the RTL view. Codeword
code_decoder2[14..0] is summed by modulo 2 with remainder r_decoder [6..0]. If the value of
permission flag sw_decoder2 is «1» (condition is realized using a multiplexer 2 in 1), then the result
is shifted to the right (the shift is performed by the code bits permutation) by counting bits equal the
index number of module decoder2.

Figure 8. The unctional block of module decoder2 in the RTL view.

After error correction 8, the bit data unit is selected from the codeword and supplied to the
decoder device output.

4. Fast decoder implementation results
Codewords are generated for data byte AA (hex) with different error types to check decoder efficiency
(figure 9). There are codewords without errors (556Fh or 101010101101111b), burst of 3 errors
(5568h or 101010101101000b), independent two-time error (546Eh or 101010001101110b) and burst
of 4 errors (5560h or 101010101100000b). All codewords are represented in hexadecimal.

Figure 9. Decoding results.

5

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012105 doi:10.1088/1742-6596/803/1/012105

As a result original data bytes are obtained from the codeword without errors and with the burst of
3 errors. For the burst of 4 errors, signal error is generated. It means that the burst length exceeds 3
and the decoder cannot correct this. Table 1 presents the decoder performance (ns) and the number of
LUT cells (LUTs).

Table 1. Decoder performance.

Decoding time
(ns)

Cells count
(LUTs)

19,73 223

5. Conclusion
The structure and FPGA Cyclone hardware implementation of the single stage decoder for the cyclic
binary error-correcting code, which corrects burst errors, were considered. Features of the generator
polynomial search algorithm were described to build error-correcting codes for burst errors. Modules
of the decoder functional block were built by combinational circuits. The fast decoder allows
correcting 3-bit burst errors for a 15-bit codeword (with 7 check bits) with ~20 ns performance. This
performance is achieved by using a matrix division algorithm implemented in the combinational
circuits and parallel processing of all codeword shifts. However, there are no results of the
performance research in papers [15–19] so the results cannot be compared.

References
[1] Habti A E, Gouri R E, Lichioui A and Laamari H 2015 J. of Theor. and Appl. Inf. Technol. 79

22–28
[2] Elumalai R, Ramachadran A, Alamelu J V and Vihba B R 2014 Int. J. of Adv. Res. in Electr.,

Electron, and Instrum. Eng. 3 7782–7788
[3] Prakash G and Muthamizhse I 2016 Int. J. of Innov. Res. in Sci., Eng. and Technol. 5 4467–

4474
[4] Sunita M S, Chiranth V, Akash H C and Kanchana Bhaaskaran V S 2015 ARPN J. of Eng. and

Appl. Sci. 10 3397–3404
[5] Yathiraj H U and Hiremath M R 2014 Int. J. of Computer Sci. and Mobile Appl. 2 45–54
[6] Sutaria H and Khurge D 2013 Int. J. for Sci. Res. & Develop. 1 665–668
[7] Mohammed S J and Abdulsada H F 2013 Int. J.l of Computer Appl. 71 35–42
[8] Mohammed S, Abdulsad H F 2013 J. of Telecommun. 19 11–17
[9] Anas E, Rachid E, Llichioui A and Laamari H 2015 J. of Theor. and Appl. Inf. Technol. 79 22–

28
[10] Lee J-H and Shakya S 2013 Int. J. of Sens. and Its Appl. for Control Syst. 1 1–12
[11] Yeon J, Yang S-J and Kim C 2013 J. of Semicond. Technol. and Sci. 13 465-472
[12] Hiremath M and Devi M 2013 Int. J. of Res. in Eng. Technol. and Manag. 1-8
[13] Rohith S and Pavithra S 2013 Int. J. of Res. in Eng. and Technol. 2 209-214
[14] Mytsko, E., Malchukov, A., Novogilov, I., Kim, V. (2016) Proceedings of 2016 International

Siberian Conference on Control and Communications, MEACS 2016, art. no. 7491748.
[15] Chen Y H, Chu C C and Yeh C C 2013 Progr. In Electromagn. Res. Symp. Proc. 1 1091–1096
[16] Elharoussi M, Hamyani A and Belkasmi M 2013 Int. J. of Adv. Computer Sci. and Appl. 4 33–

37
[17] Singh A and Kaur M 2013 Int. J. of Computer, Elect., Autom., Control and Inf. Eng. 7 1248–

1250
[18] Dayal P and Patial R K 2013 Int. J. of Computer Appl. 68 42–45
[19] Babreak V J and Sakhare S V 2014 Int. J. of Computer Appl. 87 16–19
[20] Evgeniy, M., Andrey, M. Novogilov I and Kim V (2014) Proceedings of 2014 International

Conference on Mechanical Engineering, Automation and Control Systems, MEACS 2014, art.
no. 6986902

6

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012105 doi:10.1088/1742-6596/803/1/012105

