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Chapter 1

Introduction

1.1 Background

Representation of shapes is of primary importance in every geometric problem.

The answer to a geometric query may be trivial in one representation, and

might require a more elaborate mathematical process in the other.

For example, given a point in space, it is trivial to determine if this point

is on a surface that is defined by an implicit equation. The same is not true if

the surface is represented parametrically.

In computer-aided design (CAD), and in many differential geometric topics,

parametric representation of shapes has become the most widespread formu-

lation, which defines the shape as the image of a mapping.

In the CAD domain, the designer is mostly concerned with the geometry of

the shape, that is, the image of the parametric function. The actual mapping

between the parametric domain and the shape may not necessarily be specified,

and as long as the image stays the same, this mapping may be changed.

Still, in many applications the mapping itself is a crucial component as

well. For instance, tool paths can be represented by parametric curves in NC

machining [38]. Here, the parametrization determines how fast the tool travels

along the path. This motion, however, is subject to physical constraints, such

as that the tool cannot move at arbitrary speeds, and the parametrization has

to conform to these restrictions. Numerical reparametrizations are often used

to yield a feasible or near-optimal tool path speed [13].

The most widespread parametric representations in use, such as Bézier

curves, B-splines, NURBS, etc. do not provide means to trivially separate the
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geometric properties of the shape from parametrization.

One of the goals of this thesis is to present a basis-independent formulation

to carry out this separation.

In the case of curves, this leads us to the investigation of how derivatives of

a curve change in the Frenet-frame. Arc-length derivatives depend on purely

geometric properties. I show, by a recurrence formula, how parametrization

alters the Frenet coordinates of derivatives in relation to the arc-length case.

Even though this result is a direct consequences of elementary differential

geometric theorems, there is no mention of such a formula to the author’s

knowledge in the classic and more recent literature on differential geometry

[9], [45], [27], [43], [44], [39].

Quantitative separation of parametrization from geometry requires a greater

effort in the case of surfaces. By using parameter lines that are both lines of

curvatures and arc-length, I show that, at non-umbilical points, the geometry

of the surface can be defined via the geometry of lines of curvature. After

investigating the properties of this natural parametrization, I show how par-

tial derivatives of an aribtrary parametrization use the differential geometric

properties of the lines of curvature. Again, an appropriate frame of reference

has to be fixed to carry out this study, for which the Darboux-frame is the

most natural choice.

Once geometric constraints are separated from the degrees of freedom of

parametrization, the thesis discusses the reconstruction of prescribed geometric

quantities at knots, that is, the problem of geometric Hermite (GH) interpo-

lation.

Classical Hermite interpolation creates curves that reconstruct prescribed

positional and derivative vector data at parametric endpoints. For instance,

cubic Hermite interpolation yields a cubic polynomial curve with given end-

point positions and first derivative vectors.

The geometric Hermite analogue of this problem is the reconstruction of

endpoint position and tangent directions, leaving the actual length of the first

derivative vectors unspecified (but non-zero). This means two new scalar de-

grees of freedom, which can be used to improve the quality of the curve or

even to decrease the algebraic degree of a polynomial solution.

The first published industrial application of this method was a second order

GH interpolation problem of reconstructing position, tangent direction, normal
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vector and curvature values at endpoints. In [26], Klass created a cubic integral

polynomial curve to approximate the offset of a given curve by reconstructing

the position, tangent, normal and curvatures of the offset. Klass found via

experiments that the second order GH interpolant provided a high accuracy

approximation to the offset and implemented this method in an automobile

CAD system in 1983.

The exact accuracy of this approximation was not verified algebraically,

however, until 1987. That year – independently of Klass –, de Boor, Höllig, and

Sabin investigated the same problem of reconstructing second order geometric

invariants at knots with cubic splines [7], also referred to as BHS splines.

They found that such an approximation is sixth order accurate, that is, if one

doubles the density of sampling, the error drops by 1
26
, which coincides with

the accuracy of quintic Hermite polynomials. They also addressed the issue

of existence, and proved that if the progenitor curve – from which the second

order GH data were sampled – is smooth enough, its curvature does not vanish,

and sample points are close, there is always a cubic solution to this problem,

see [7] for details. This paper also introduced the term geometric Hermite

interpolation to address these types of problems.

Both of the above papers handled GH interpolation as a tool of curve

approximation, thus the existence conditions were formulated in accordance

with that framework. However, these are not tangible concepts from a design

point of view: there is no underlying curve in that setting, instead, second

order GH data are specified by the user either directly or indirectly.

To alleviate this, in [41] Schaback gave purely geometric constraints on

when a given pair of second order GH data can be reconstructed by cubic

polynomials. He also presented necessary and sufficient conditions for the

existence of quartic interpolants, and shown when only a quintic polynomial

can achieve reconstruction. This has also shown that the interpolation problem

investigated by Klass and de Boor et. al. are analogous to the quintic Hermite

interpolation, the reconstruction of positional, first, and second derivative data.

Indeed, it was Mørken who pointed out that this cubic second order GH

interpolant can be considered as a reparametrization of a quintic polynomial

such that the coefficients of the quintic and quartic terms become zero. He

provided a mathematical analysis of when such a degree reducing parametriza-

tion is possible in [35]. He did preliminary work on generalizing his parametric
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Figure 1.1: Design and refinement process using control circles to define cubic
Bézier curves. From left to right: control circle hierarchy, Bézier segments
connected, application of curve-parameter dependent brush.

approximation framework to surfaces as well [34].

The main goal of this thesis is to provide a general formalization of geo-

metric Hermite interpolation of curves and surfaces in arbitrary bases. The

formulation presented here allows us to unify the design and approximation-

theoretical view on the GH interpolation problem. Incorporation of degree

reducing reparametrizations, multiple point, and mixed-order GH reconstruc-

tion also becomes trivial with this formulation.

It is important to emphasize that the geometric model presented here is

not a substitute for the existing representations, already implemented and

dominating in CAD systems. Instead, it acts as an interface to separate the

geometric and the parametrization components of the control data of an arbi-

trary underlying representation, whenever possible. As an example, Figure 1.1

illustrates how purely geometric input can be used to provide point, tangent,

curvature input for a design process that yields cubic Bézier curves [22], [23].

1.2 Overview

The thesis consists of two main chapters, one for the discussion of GH inter-

polation and related topics for curves and surfaces, respectively.

The theoretical results presented in the thesis are followed by examples that

are included to illustrate the usage of propositions, and to help the validation of

these results in relation to already established concepts in differential geometry

of CAGD.

4



Proofs of Lemmas and Theorems that are technical in nature are usually

disclosed in the Appendix. The main text of the thesis only contains the

statement of these and the reference to the proof.

Chapter 2 focuses on GH interpolation of curves. In order to do that,

I derive a recurrence formula that describes how parametrization affects the

Frenet coordinates of derivatives. To illustrate the flexibility of this recurrence,

I also show how it can be used to compute geometric invariants of curves and

to validate an arbitrary order geometric continuity of joining segments.

In Section 2.4, I show that once parametrization is set, point-wise geo-

metric reconstruction becomes a linear problem. I formulate the general GH

interpolation problem of curves in Section 2.3. It is followed by the investiga-

tion of solvability of the geometric reconstruction, for which I derive a general

existence theorem, and also provide worst-case degree bounds for polynomial

solutions. For cases the conditions of the existence theorem fail, I show how

a least squares sense best approximation to the problem can be computed, as

well as investigate other norms and functionals.

If parametrization is not fixed, one can formulate quality measures on

parametrizations that yield a non-linear optimization problem which is pre-

sented in Section 2.5. This way, a best parametrization – in the sense of

some real valued functional – can be found that still satisfies the prescribed

geometric constraints.

The extension of these results to surfaces is presented in Chapter 3. Due to

the lack of a throughout geometric characterization of higher order GH prob-

lems of surfaces, the chapter begins with the investigation of second order GH

interpolation, where point-wise position, surface normal, principal directions

and principal curvatures are to be reconstructed.

Section 3.3.3 derives the formulation of general GH interpolation of surfaces

by connecting the differential geometric properties of lines of curvature with

the geometry of surfaces, and translating the conditions of geometric continuity

to properties of lines of curvature.

The geometric reconstruction is once again a linear problem, if the parametriza-

tion is fixed, and the chapter continues with establishing existence conditions

analogously to the case of curves. Algorithms to construct geometric Hermite

interpolants close the chapter.

Finally, Chapter 3 iterates over the main contributions of this thesis.

5



1.3 Notation

The following table summarizes the notations used throughout this thesis:

R,R+
0 ,R

−
0 set of all, non-negative, and non-positive real numbers

f ◦ g the f(g(·)) composition of functions f and g

En the n-dimensional Euclidean space

a,b ∈ En a point in the n-dimensional Euclidean space

∆bj = bj+1 − bj

∆i+1bj = ∆ibj+1 −∆ibj forward differences on a bi sequence of points

x,y ∈ Rn a vector in the n-dimensional vector space over R

|x|, ||x||2 length of vector x

e, f ⊂ E2, g, h ⊂ E3 a line in plane or space

E,F ⊂ E3 a plane in the Euclidean space

x · y, xy dot product of two n-dimensional vectors

x× y cross product of two n-dimensional vectors

(i, j), (i, j,k) a basis in R2 and R3, respectively

(p; i, j), (p; i, j,k) a coordinate system with origin p and axes i, j(,k)

r̂(t) : [0, L]→ En, n = 2, 3 an arc-length parametrized curve

r(t) : [a, b]→ En, n = 2, 3 an arbitrary parametrized regular curve

s(t) : [a, b]→ [0, L] arc-length function of a curve

L,Lr(t) ∈ R+
0 the arc-length of a curve

r′(t), dn

dtn
r(t) differentiation with respect to the curve parameter

r̂′(s), dn

dsn
r̂(s) differentiation with respect to arc-length

r̂(s, t), r(u, v) the natural and an arbitrary parametric surface

r̂s, rt, ∂sk r̂, ru, rv, ∂ukr partial derivatives

t̂(s), n̂(s), b̂(s) : [0, L]→ R3 Frenet frame vectors of an arc-length parametrized curve

t(t),n(t),b(t) : [a, b]→ R3 Frenet frame vectors of an arbitrary parametrized curve

κ(t), τ(t) : [a, b]→ R curvature and torsion function of a parametric curve

κ̂(t), τ(t) : [0, L]→ R arc-length parametrized curvature and torsion functions

[x, y, z]TF a vector with coordinates (x, y, z) in F = (i, j,k) basis

[x, y, z]TF a point with coordinates (x, y, z) in F = (p; i, j,k)
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Chapter 2

Geometric Hermite

interpolation of curves

2.1 Overview

Hermite interpolation is a classic method in numerical analysis, which has

been used in many areas, ranging from curve approximations to numerical

integration quadratures (the Gauss-Hermite quadrature), computer animation

design [37], and even parametric surface constructions, such as the Ferguson

patches [12].

Hermite interpolation yields polynomial curves such that they interpolate

prescribed position and derivative data at given parameter values, or in other

words knots. Let us consider the simplest case of this, the two endpoint inter-

polation problem, that is, let there be given an

Hj = (pj ∈ E3;m′
j,m

′′
j , ...,m

(m)
j ∈ R3) , j = 0, 1

pair of data tuples, and find a p(t) : [0, 1]→ E3 polynomial curve such that

p(j) = pj

p(i)(j) = m
(i)
j , i = 1, 2, ..,m

holds, j = 0, 1, where p(i)(t) denotes the i-th derivative at t.

Hermite interpolation guarantees the existence of a degree 2(m + 1) − 1

polynomial solution to the above problem and it also constructs it. If input
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position and derivative dataHj originates from the sampling of a smooth curve,

the resulting Hermite polynomial interpolant has an approximation order of

(m+ 1).

The input data of Hermite interpolation consists of points and vectors,

that is, both representation – in this case, parametrization – dependent and

independent quantities. As a result, when used for approximation, Hermite

interpolation yields a curve that is affected by both the parametrization and

the geometry of the original curve.

In certain application this is a desired property, such as in animation design,

where not only the path of a given object is of importance, but also the speed

at which it is traversed. In these instances, dependence on parametrization is

a deesirable attribute.

In other areas, however, this is not the case. Shape representations are

to be dependent only on the geometry of a given objects, not on any of its

particular parametrizations.

Geometric Hermite (GH) interpolation is an expression coined by de Boer

et. al. [7], which refers to a special generalization of Hermite interpolation,

where only parametrization independent quantities are reconstructed. In the

case covered by their paper, it meant that instead of interpolating

Hj = (pj ∈ E3,m′
j,m

′′
j ∈ R3) , j = 0, 1 (2.1)

position, first, and second derivative data at endpoints, they created an integral

polynomial curve that reconstructed prescribed

Hj = (pj ∈ E3, tj ∈ R3, κj ∈ R) , j = 0, 1

data tuples consisting of position, unit tangent direction, and curvature value.

They obtained the normal vectors by a 90 degrees rotation of tj. Compared to

classical Hermite interpolation, tj is the substitute of m′
j and nj, κj together

replace m′′
j as input data.

It turns out that their cubic piecewise polynomial curve, hereafter referred

to as the BHS spline, is an even more special case of Hermite interpolation.

The approximation order of a BHS spline is six, which could have only been

achieved by a quintic polynomial with classic Hermite interpolation.

Indeed, it was shown by Schaback [41], that in general, the solution to
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the second order geometric Hermite interpolation problem of reconstructing

an arbitrary pair of

Dj = (pj; tj,bj;κj) , |tj| = |bj| = 1, j = 0, 1 (2.2)

geometric Hermite data tuples at endpoints requires a polynomial curve of

degree 5. The existence of a cubic interpolant requires strict geometric con-

straints on the input Dj tuples.

Obviously, a degree 5 solution always exists to reconstruct (2.2), but instead

of using quintics, de Boor et. al. created a cubic interpolant, which retained

the approximation properties of a degree 5 polynomial. Such a cubic solution

may not exist for arbitrary input - the algebraic conditions for the existence

of a cubic solution were also given by de Boor et. al. in [7].

Equivalent, geometric existence conditions were given by Schaback in [41],

who formulated intuitive, geometric constraints on the input data so that a

degree 3, and also, a degree 4, solution can be created.

These differing approaches may also be explained by the fact that while de

Boor et. al. used BHS splines in the context of curve approximations – thus

stipulating restrictions on the input curve and its sampling –, while Schaback

considered geometric Hermite interpolation as a design tool, where the input

data relies only on the user, and not on any underlying curve.

It is important to note that by replacing (2.1) with (2.2), two scalar degrees

of freedom are introduced per endpoint, or in general, per knot. That is,

unlike the classic Hermite quintic interpolant, the geometric Hermite quintic

interpolant is not uniquely defined. These new degrees of freedom may be used

to optimize the curve, for example by minimizing certain energy functionals,

or, even to reduce the degree of the interpolant.

The latter allows us to think of the BHS spline as a reparametrization of a

quintic geometric Hermite interpolant, such that the coefficients of the degree

5 and 4 are zeroed out.

This reparametrization-based approach was taken by Mørken and Sherer

in [35]. Within the domain of approximation theory, they gave algebraic condi-

tions that an input curve should satisfy so that a degree-reducing reparametriza-

tion is guaranteed to exist in the neighborhood of a single point. They proved

that in the neighborhood of a point of non-vanishing curvature, any planar
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curve can be approximated with sixth-order accuracy by integral cubics. These

results were also extended to approximation of curve segments, and to higher

orders.

In section 2.3, I present a formalization of general geometric Hermite in-

terpolation, which depends only on geometric, parametrization-independent

attributes. However, in order to do that, first we have to examine how

parametrization affects the geometry of a curve, more precisely, how the deriva-

tives of a given curve are affected by parametrization.

2.2 Derivatives in the Frenet frame

As a reminder, a parametric curve is defined by an r(t) : [a, b]→ E3 mapping

of a real interval [a, b] to the Euclidean space. Quantitatively separating the

effects of the mapping from the properties of the actual geometry - the image

of the mapping - is important in the discussion of geometric reconstruction.

In this section, I derive a recurrence formula that describes the geometry of

derivative vectors in the Frenet-frame, such that the effects of parametrization

can be studied separately from the geometric invariants. This formula is a

direct consequence of the Frenet-Serret formula.

2.2.1 Arc-length parameterized curves

Let r̂(s) : [0, L] → E3 be an arc-length parameterized curve, where L > 0

denotes the arc-length of r̂(s). Let us also assume that r̂(s) is biregular, that

is, r̂′(s) and r̂′′(s) are linearly independent for all s ∈ [0, L].

The Frenet-frame F = (t̂, n̂, b̂) of r̂(s) consists of the orthonormal vectors

t̂(s) = r̂′(s) ,

n̂(s) =
r̂′′(s)

|r̂′′(s)|
,

b̂(s) = t̂(s)× n̂(s) ,

forming a right handed orthonormal basis of R3, s ∈ [0, L].

Hereafter, arc-length parameterized curves are denoted by a hat, and prime

always denotes differentiation with respect to the actual parametrization of the

argument, i.e. r̂′ denotes the derivative of r̂ with respect to arc-length.
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For the sake of simplicity, let us omit the parameters from the formulae.

The Frenet-Serret formula relates the change of Frenet-frame to the curva-

ture and torsion of the curve as [9]

t̂′ = κ̂n̂

n̂′ = −κ̂t̂ +τ̂ b̂

b̂′ = −τ̂ n̂

Using the Frenet-Serret formula, I prove below that the Frenet coordinates

of successive arc-length derivatives are subject to a simple recurrence formula.

To show this, consider three scalar functions, â(s), b̂(s), ĉ(s) : [0, L] → R.

Using the rule of differentiation of products and the Frenet formula, one gets

(â · t̂)′ = â′t̂+ âκ̂n̂

(b̂ · n̂)′ = b̂′n̂− b̂κ̂t̂+ b̂τ̂ b̂

(ĉ · b̂)′ = ĉ′b̂− ĉτ̂ n̂

By introducing the notation [a, b, c]TF = a · t̂ + b · n̂ + c · b̂ for the Frenet

coordinates of r̂(n), the above can be written as






â

b̂

ĉ




F




′

=



â′

b̂′

ĉ′




F

+



0 −κ̂ 0

κ̂ 0 −τ̂

0 τ̂ 0






â

b̂

ĉ




F

(2.3)

=



â′

b̂′

ĉ′




F

+



τ̂

0

κ̂


×



â

b̂

ĉ




F

,

using the matrix form of the cross product:



x

y

z


×



p

q

r


 =




0 −z y

z 0 −x

−y x 0






p

q

r


 .

Let x̂i, ŷi, ẑi ∈ R denote the coordinates of r̂(i) in the Frenet frame. By

applying (2.3) to x̂1 = 1, ŷ1 = 0, ẑ1 = 0 recursively, and recalling that all these

coordinates depend on the arc-length parameter, the following is proved:
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Theorem 1 Let r̂(s) : [0, L] → E3 be an arc-length parameterized bi-regular

curve. For all s ∈ [0, L], the coordinates of r̂(n+1)(s) are

r̂(n+1) :=



x̂n+1

ŷn+1

ẑn+1




F

=



x̂′
n

ŷ′n

ẑ′n




F

+



0 −κ̂ 0

κ̂ 0 −τ̂

0 τ̂ 0






x̂n

ŷn

ẑn




F

, (2.4)

where n = 1, 2, ..., and x̂1 = 1, ŷ1 = 0, ẑ1 = 0, and F denotes the Frenet-frame

at s.

It is also important to note the flow of the coordinates: with the appropriate

multiplicative coefficients, the ŷn coordinate of r̂(n) is added to x̂n+1 and ẑn+1

of r̂(n+1), while x̂n and ẑn are added to ŷn+1. More precisely, by expanding the

matrix-vector multiplication in (2.4), one gets

x̂n+1 = x̂′
n −κ̂ · ŷn

ŷn+1 = ŷ′n +κ̂ · x̂n −τ̂ · ẑn

ẑn+1 = ẑ′n +τ̂ · ŷn

The Fundamental Theorem of space curves [45] states that the curvature

and torsion functions uniquely define a curve, up to a rigid body motion. The-

orem 1 shows quantitatively how they define the geometry of the derivatives

at a point.

It is important to note that the highest derivative of curvature in the Frenet

coordinates always appears along the normal first, while the first occurrence

of the highest derivative of torsion is along the binormal.

More precisely, the j-th derivative of the curvature w.r.t. arc-length, κ̂(j)

first appears in ŷj+2, j = 0, 1, ... . The torsion derivative τ̂ (j) is formally intro-

duced into the derivative coordinate formula in ẑj+3, however, the actual value

of the τ̂ (j) torsion may not be computable from r̂(j+3), because τ̂ (j) appears

multiplied by κ̂, that is, if the curvature vanishes, the value of τ̂ (j) is masked

in ẑj+3.

In particular, it was noted by Ye and Maekawa in [56], that the formula to

compute the torsion in the case of κ̂ = κ̂′ = .. = κ̂j−1 = 0 and κ̂j 6= 0 is

τ̂ =
r̂(j+3) · b̂

(j + 1)κ̂(j)
.

12



Example: in order to illustrate the computational use of Theorem 1, let

us consider the first three derivatives of r̂(s).

Using the Frenet formula and the chain rule of differentiation, the first,

second, and third derivatives of r̂(s) are

r̂′ = t̂ (2.5)

r̂′′ = (t̂)′ = κ̂n̂ (2.6)

r̂′′′ = (κ̂n̂)′ = κ̂′n̂− κ̂2t̂+ κ̂τ̂ b̂ (2.7)

or, with their Frenet coordinates,

r̂′ =



1

0

0




F

, r̂′′ =



0

κ̂

0




F

, r̂′′′ =



−κ̂2

κ̂′

κ̂τ̂




F

. (2.8)

According to Theorem 1, the first derivative is

r̂′ =



1

0

0




F

,

the second derivative is computed as

r̂′′ =



x̂′
1

ŷ′1

ẑ′1




F

+



0 −κ̂ 0

κ̂ 0 −τ̂

0 τ̂ 0






x̂1

ŷ1

ẑ1




F

=



1′

0′

0′




F

+



0 −κ̂ 0

κ̂ 0 −τ̂

0 τ̂ 0






1

0

0




F

=



0

κ̂

0




F

,
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and the third derivative is

r̂′′′ =



0′

κ̂′

0′




F

+



0 −κ̂ 0

κ̂ 0 −τ̂

0 τ̂ 0






0

κ̂

0




F

=



0

κ̂′

0




F

+



−κ̂2

0

κ̂τ̂




F

=



−κ̂2

κ̂′

κ̂τ̂




F

.

These are equal to (2.5)-(2.7).

2.2.2 Arbitrary parameterized curves

Without loss of generality, let us assume that the arbitrary parameterized

curve r(t) is a biregular reparametrization of an arc-length parameterized curve

r̂(s) : [0, L]→ E3, that is, r(t) : [0, 1]→ E3 is such that

r(t) = r̂(s(t)) ,

where s(t) : [0, 1]→ [0, L] is the arc-length function of r(t), i.e.

s(t) =

∫ t

0

|r′(x)|dx .

Let us also assume that the reparametrized curve remains biregular, that

is r′(t) 6= 0, and r′(t), r′′(t) are linearly independent.

The Frenet-frame of an arbitrary parametrized curve is computed as

t =
r′

|r′|
,

n = b× t ,

b =
r′ × r′′

|r′ × r′′|
.

14



The Frenet-Serret formulae for arbitrary speed curves are



t′

n′

b′


 = |r′| ·




0 κ 0

−κ 0 τ

0 −τ






t

n

b


 ,

where t = t̂ ◦ s, n = n̂ ◦ s, b = b̂ ◦ s and κ = κ̂ ◦ s, τ = τ̂ ◦ s, see [9].

A general, recursive formula for the Frenet frame coordinates of the deriva-

tives are obtained similarly to the arc-length case: let a(t), b(t), c(t) : [0, 1]→ R

be scalar functions. It follows from the arbitrary speed Frenet formula that

(a · t)′ = a′t+ as′κn

(b · n)′ = b′n− bs′κt+ bs′τb

(c · b)′ = c′b+ cs′τn

Denoting the Frenet-frame coordinates of r(i) by xi, yi, zi ∈ R, i = 1, 2...,

the following is proved:

Theorem 2 Let r(t) : [0, 1] → E3 be a biregular parametric curve with arc-

length function s(t) : [0, 1]→ [0, L]. Frenet frame coordinates of the derivative

vectors of r(t) are subject to

r(n+1) :=



xn+1

yn+1

zn+1




F

=



x′
n

y′n

z′n




F

+ s′



0 −κ 0

κ 0 −τ

0 τ 0






xn

yn

zn




F

,

where n = 1, 2, ..., and x1 = s′, y1 = 0, z1 = 0.

Note that, since s′ = |r′| = x1, the above formula is equivalent to

r(n+1) :=



xn+1

yn+1

zn+1




F

=



x′
n

y′n

z′n




F

+ x1



0 −κ 0

κ 0 −τ

0 τ 0






xn

yn

zn




F

. (2.9)

By expanding the matrix-vector multiplication, the flow of Frenet coordi-
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nates above evolved as

xn+1 = x′
n −s′ · κ · yn

yn+1 = y′n +s′ · κ · xn −s′ · τ · zn

zn+1 = z′n +s′ · τ · yn

that is, κ̂(n−2) is passed from yn to xn+1 and zn+1. Torsion τ̂ (n−3) spreads only

to yn+1 in r(n+1), and it is transferred to xn+2 later.

Because the derivatives depend on the curve parameter t ∈ [0, 1], care has

to be taken when the derivatives of the coordinates are to be computed. For

example, because κ = κ̂ ◦ s, it follows that κ′ = κ̂′ ◦ s · s′ and so on.

An important result of (2.9) is that, compared to the arc-length parametrized

case, arbitrary parametrization alters the geometry of the derivative vectors

along the tangent first, and a new degree of freedom is presented by parametriza-

tion at each derivative along the tangent, by the presence of s(n) in xn. Once

these s′, s′′, ... tangential degrees of freedom are set, the tangential x1, x2, ...,

normal y2, y3, .., and binormal z3, z4, .. coordinates are uniquely determined, if

the geometric invariants of the curve – the values and derivatives of curvature

and torsion – are known.

Example: As an illustration of Theorem 2, let us compute the Frenet

coordinates of the second and third derivatives of r : [0, 1]→ E3.

Using the above formulation, the derivatives of r(t) are expressed as com-

binations of the derivatives of the arc-length parameterized derivatives r̂(i)(s)

as follows:

r′ = (r̂ ◦ s)′ (2.10)

= r̂′ ◦ s · s′

r′′ = (r̂′ ◦ s · s′)′ (2.11)

= r̂′′ ◦ s · (s′)2 + r̂′ ◦ s · s′′

r′′′ = (r̂′′ ◦ s · (s′)2 + r̂′ ◦ s · s′′)′ (2.12)

= r̂′′′ ◦ s · (s′)3 + 3 · r̂′′ ◦ s · s′s′′ + r̂′ ◦ s · s′′′

where all functions are evaluated at t ∈ [0, 1], i.e. r′ = r′(t), s = s(t), etc.
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Substituting (2.5)-(2.7) into (2.10)-(2.12), and using s′ = |r′|, one gets

r′ = t̂ ◦ s · s′ (2.13)

r′′ = κ̂ ◦ s · n̂ ◦ s · (s′)2 + t̂ ◦ s · s′′ (2.14)

r′′′ = (κ̂′ ◦ s · n̂ ◦ s− κ̂2 ◦ s · t̂ ◦ s+ κ̂ ◦ s · τ̂ ◦ s · b̂ ◦ s) · (s′)3 (2.15)

+ 3 · κ̂ ◦ s · n̂ ◦ s · s′s′′

+ t̂ ◦ s · s′′′

The above equations show that the coordinates of the first, second, and

third derivatives in the Frenet-frame are

r′ =



s′

0

0




F

, r′′ =




s′′

(s′)2κ

0




F

, r′′′ =




s′′′ − (s′)3κ2

3s′s′′κ+ (s′)3 · κ̂′ ◦ s

(s′)3κτ




F

(2.16)

Using Theorem 2, the first derivative is r′ = [s′, 0, 0]TF by definition. The

second derivative is

r′′ =



(s′)′

0′

0′




F

+ s′



0 −κ 0

κ 0 −τ

0 τ̂ 0






s′

0

0




F

=



s′′

0

0




F

+ s′




0

κs′

0




F

=




s′′

(s′)2κ

0




F

,
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and the third derivative becomes

r′′′ =




(s′′)′

((s′)2κ)′

0′




F

+ s′



0 −κ 0

κ 0 −τ

0 τ 0







s′′

(s′)2κ

0




F

=




s′′′

2s′s′′κ+ (s′)2 · (κ̂ ◦ s)′

0




F

+ s′



−(s′)2κ2

s′′κ

(s′)2κτ




F

=




s′′′ − (s′)3κ2

3s′s′′κ+ (s′)3 · κ̂′ ◦ s

(s′)3κτ




F

.

These are equal to (2.16).

The first appearance of curvature is in y2, while the torsion is introduced

in z3. The highest derivative of curvature is always in the y Frenet coordinate:

κ̂(n−2) in yn. The highest derivative of torsion, τ̂ (n−3), is in zn.

Derivatives of κ and τ formally present in the various Frenet coordinates

are summarized in the table below:

Frenet coordinate κ up to τ up to

xn κ̂(n−3) τ̂ (n−5)

yn κ̂(n−2) τ̂ (n−4)

zn κ̂(n−3) τ̂ (n−3)

Please note that in any given derivative vector, the highest order derivatives

of torsion originate from the differentiation of z3 = (s′)3κτ . So in any coor-

dinate of r(n), torsion derivative τ̂ (j), j ≤ n− 3 is multiplied by an expression

that contains κ̂(n−3−j).

This, just like in the arc-length case, means that, while formally τ̂ (n−3) is

present in zn, as soon as κ = 0, the actual value of τ̂ (n−3) does not appear in

zn. No such masking occurs in the case of the highest derivatives of curvature,

because they result from the differentiation of y2 = (s′)2κ.

Theorem 2 allows the reformulation of classic results as well. The following

section demonstrates this by three examples.
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2.2.2.1 Application of Frenet coordinate theorems

2.2.2.2 Computation of geometric invariants

New formulae, which rely only on the Frenet coordinates of derivatives, can

be obtained from Theorem 2 to compute the geometric invariants, and their

derivatives w.r.t. arc-length. To illustrate this, let us consider the computation

of κ, τ, κ̂′.

This means, from (2.16), that the

s′(t) = |r′(t)| = (r′(t) · r′(t))
1
2 (2.17)

s′′(t) = ((r′(t) · r′(t))
1
2 )′ =

r′(t) · r′′(t)

|r′(t)|
(2.18)

s′′′(t) =

(
r′(t) · r′′(t)

|r′(t)|

)′

=
r′′(t) · r′′(t) + r′(t) · r′′′(t)

|r′(t)|
−

(r′(t) · r′′(t))2

|r′(t)|3
(2.19)

derivatives of the arc-length function have to be expressed in terms of Frenet

coordinates.

Lemma 3 The (2.17)-(2.19) derivatives of the arc-length function can be ex-

pressed with the Frenet-frame coordinates of the derivatives as

s′(t) = x1 (2.20)

s′′(t) = x2 (2.21)

s′′′(t) =
y22
x1

+ x3 (2.22)

= κ2x3
1 + x3

Proof. The proof can be found in Appendix A.1.

Frenet coordinates uniquely determine the geometric invariants of a curve,

and provide simple means to compute them.

Lemma 4 Geometric invariants of a curve, up to order three, can be obtained
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using Frenet coordinates as

κ =
y2
x2
1

(2.23)

κ̂′ ◦ s =
y3 − 3x1x2κ

x3
1

(2.24)

=
y3x1 − 3x2y2

x4
1

(2.25)

τ =
z3
κx3

1

(2.26)

=
z3
x1y2

(2.27)

Proof. The proof can be found in Appendix A.2.

Lemma 3 can be also used to reformulate (2.16) with geometric invariants

and tangential coordinates only, by direct substitution:

r′ =



x1

0

0




F

, r′′ =



x2

x2
1κ

0




F

, r′′′ =




x3

3x1x2κ+ x3
1 · κ̂

′ ◦ s

x3
1κτ




F

(2.28)

2.2.2.3 Conditions of Gn continuity

One of the most widespread definition of geometric continuity is due to [Farin

1992][Pottmann 1988]:

Definition 1 Two curves are Gn, n ≥ 1 at a common point x iff there exists

a regular parametrization with respect to which they are Cn at x.

An equivalent, and more geometric, definition for G1 and G2 connections

have been recognized early on: G1 is equivalent to the coincidence of tangent

lines at x. G2 is equivalent to the coincidence of osculating planes and signed

curvatures of the curves at x, or, in other words, the coincidence of osculating

circles.

In the literature, a dominant restriction of the above is to define G1 as

the coincidence of the normalized tangent vectors instead of the tangent lines,

and define G2 as the coincidence of the Frenet-frames of the curves and the

(unsigned) curvatures at x. Compared to Definition 1, this means that only

orientation preserving reparametrizations are allowed.
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Definition 2 Two curves meeting at a point are Gn, n ≥ 1 at a common point

x iff there exists an orientation preserving parameter transformation for both

curves, such that they are Cn at x after reparametrization.

By noting that, if two curves are Cr by some reparametrization, they are

also Cr by arc-length parametrization, one can easily find that Definition 2 of

geometric continuity is equivalent to the following:

Definition 3 Two curves are G1 at a common point x iff their tangent di-

rections coincide. Two curves are Gn, n ≥ 2 at a common point x iff their

Frenet-frames coincide at x and the first n−2 derivatives of the curvature and

the first n − 3 derivatives of the torsion, all taken with respect to arc-length,

are equal at x, where κ(−1) = τ (−1) = τ (−2) = 0.

The equivalence of definitions 3 and 2 follows from the fact that the Frenet-

frame coordinates of r̂(n)(s) are expressions in terms of the curvature and

torsion functions, and their derivatives with respect to arc-length, up to order

n − 2 and n − 3, respectively, as follows from Theorem 1. The Frenet-frame

coincidence forGn, n ≥ 2 is imposed by the restriction to orientation preserving

parameter transformations in Definition 2.

In this thesis, we use Definition 2 and 3 for the geometric continuity of

curves.

A useful application of Theorem 2 is to cast the conditions of geometric

continuity into a form, such that it only uses the Frenet coordinates of deriva-

tives.

Let there be given two biregular parametric curves r(t), s(t) : [0, 1] → E3,

sharing a point r(1) = s(0). If their unit tangent directions coincide, they form

a G1 join.

Lemma 5 Let us assume that the Frenet frames of r(t) and s(t) coincide at

r(1) = s(0), and let [xi, yi, zi]
T
F denote the Frenet coordinates of r(i)(1), and

[x̃i, ỹi, z̃i]
T
F that of s(i)(0). The two curves are G2 iff

y2
ỹ2

=

(
x1

x̃1

)2

.
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Furthermore, two G2 curves are G3 iff

κτx3
1

κ̃τ̃ x̃3
1

=

(
x1

x̃1

)3

,
y3 − 3x1x2κ

ỹ3 − 3x̃1x̃2κ̃
=

(
x1

x̃1

)3

both hold.

Proof. The proof can be found in Appendix A.3.

With this formulation, deciding geometric continuity boils down to checking

ratios of Frenet coordinate expressions, instead of finding reparametrizations.

2.2.2.4 β-splines

Checking geometric continuity of two joining curves by Definition 2 has been

extensively studied in the literature. Using the chain rule of differentiation and

formulating it in terms of connection matrices [Veltkamp] leads to β-splines

[BarskyDeRose]. The β-conditions for two curves s(t), r(t) : [0, 1]→ E3 having

a G3 join at a common point s(0) = r(1) are as follows

s(0) = r(1)

s′(0) = β1r
′(1)

s′′(0) = β2
1r

′′(1) + β2r
′(1)

s′′′(0) = β3
1r

′′′(1) + 3β1β2r
′′(1) + β3r

′(1)

where the βi ∈ R coefficients are the derivatives of an unknown reparametriza-

tion of r(t), from which s(t) originates. In other words, these βi coefficients

are degrees of freedom in connecting two curves geometrically continuously.

For each new derivative, a new degree of freedom is introduced along the

tangent directions, as it is evident in the recurrence formula of Theorem 2.

To illustrate the connection between the β-conditions and the recurrence

formula of Theorem 2, let r(t) and s(t) have the same Frenet frame and let

r(i)(1) = [xi, yi, zi]
T
F and s(i)(0) = [x̃i, ỹi, z̃i]

T
F , i > 0.
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If the β conditions are fulfilled, these coordinates have the relation of

s′ =



x̃1

0

0




F

= β1



x1

0

0




F

=



β1x1

0

0




F

s′′ =



x̃2

ỹ2

0




F

= β2
1



x2

y2

0




F

+ β2



x1

0

0




F

=



β2
1x2 + β2x1

β2
1y2

0




F

s′′′ =



x̃3

ỹ3

z̃3




F

= β3
1



x3

y3

z3




F

+ 3β1β2



x2

y2

0




F

+ β3



x1

0

0




F

=



β3
1x3 + 3β1β2x2 + β3x1

β3
1y3 + 3β1β2y2

β3
1z3




F

It follows from (2.16) that y2 = κx2
1 and ỹ2 = κx̃2

1. Due to the β-conditions,

x̃1 = β1x1 holds, so ỹ2 = κx̃2
1 = κβ2

1x
2
1 = β2

1y2.

Similarly, z3 = κτx3
1 and z̃3 = κτx̃3

1 and due to the β-conditions, z̃3 =

β3
1z3 = β3

1κτx
3
1.

In the case of y3 and ỹ3 it is enough to note that if x̃1 = β1x1, x̃2 =

β2
1x2 + β2x1 hold, then from (2.16) ỹ3 = 3x̃1x̃2κ + x̃3

1 · κ̂
′ ◦ ŝ = 3β1x1(β

2
1x2 +

β2x1)κ + β3
1x

3
1 · κ̂

′ ◦ ŝ should follow, which equals to the constraint from the

β-conditions: ỹ3 = β3
1y3 + 3β1β2y2 = β3

1(3x1x2κ+ x3
1 · κ̂

′ ◦ ŝ) + 3β1β2x
2
1κ.

2.3 Formalization of geometric Hermite inter-

polation

I propose a general formulation of higher order geometric Hermite interpolation

in this section. For the sake of simplicity, we first focus on symmetric cases,

i.e. when prescribed geometric data are of the same type and order at each

knot.

Let us represent these geometric data by tuples

Di = (pi; ti;κi,ni,bi; τi, κ̂
′
i; ..).

where κ̂′
i denotes the value of the derivative of curvature with respect to arc-
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length at an unspecified parameter value. This value is to be reconstruted by a

curve. From now on, this notation will be used to denote values of derivatives

of curvature and torsion with respect to arc-length as well.

An nth order GH data tuple consists of position p ∈ E3, vectors of the

Frenet frame (t, n, b), curvature κi, torsion τi, and derivatives of κi, τi up to

n− 2 and n− 3 w.r.t. arc-length. The following table summarizes these data,

where order n refers to the order of GH interpolation:

order (n) 0 1 2 3 4 .. n

data (Di) p t n, κ κ̂′, τ κ̂′′, τ̂ ′ .. κ̂(n−2), τ̂ (n−3)

Note that if n ≥ 2, by b = t×n, the Frenet frame is specified. Furthermore,

each new order constrains two scalar degrees of freedom.

Let there be given two nth order GH data tuples D0,D1. Let q(t) : [0, 1]→

E3 be a parametric curve, defined by control data qi ∈ R3 ∨ E3, i = 0, ..,m in

some, not necessarily polynomial, basis F0(t), .., Fm(t) : [0, 1]→ R such that

q(t) =
m∑

j=0

qjFj(t) .

Please note that not all qj need to be Euclidean points. For example, in the

case of classic Hermite interpolation, apart from the two endpoints, all data

are derivatives, i.e. vectors in R3. We refer to the Fj(t), j = 0, .., n functions

as the order (m+ 1) basis functions.

First, let us set up the system of equations that a parametric curve has to

satisfy, so that it reconstructs a pair of given GH data tuples.

Let us suppose, without loss of generality, that GH data are to be recon-

structed at parametric endpoints t = 0 and t = 1. The derivatives of the curve

at these points are
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


q(0)

q′(0)

q′′(0)

...

q(1)

q′(1)

q′′(1)

...




=




F0(0) F1(0) ... Fm(0)

F ′
0(0) F ′

1(0) ... F ′
m(0)

F ′′
0 (0) F ′′

1 (0) ... F ′′
m(0)

... ... ... ...

F0(1) F1(1) ... Fm(1)

F ′
0(1) F ′

1(1) ... F ′
m(1)

F ′′
0 (1) F ′′

1 (1) ... F ′′
m(1)

... ... ... ...




︸ ︷︷ ︸
F

·




q0

q1

...

qm




︸ ︷︷ ︸
q

.

Please note that the vectors in the above equation are actually matrices,

composed of the row vectors of q(0)T , ...,qT
0 .... The transposition symbols are

omitted from the equations, for the sake of simplicity.

If left-hand side Frenet coordinates satisfy the conditions of Theorem 2,

that is, using (2.28),




q(0)

q′(0)

q′′(0)

...

q(1)

q′(1)

q′′(1)

...




︸ ︷︷ ︸
F ·q

=




1 0 0 0 0 0 0 0

0 x1(0) 0 0 0 0 0 0

0 x2(0) κ0x
2
1(0) 0 0 0 0 0

... ... ... ... ... ... ... ...

0 0 0 0 1 0 0 0

0 0 0 0 0 x1(1) 0 0

0 0 0 0 0 x2(1) κ1x
2
1(1) 0

... ... ... ... ... ... ... ...




︸ ︷︷ ︸
G(x1(0),..,xn(0),x1(1),..,xn(1))

·




p0

t0

n0

b0

p1

t1

n1

b1




︸ ︷︷ ︸
f

,

or in short

F · q = G(x1(0), .., xn(0), x1(1), .., xn(1)) · f (2.29)

holds, then the curve defined by control data q0, ..,qm reconstructs the GH

data tuples D0,D1.

Here, the Frenet x coordinate functions xi(t) of q(i)(t) are evaluated at

t = 0 and t = 1. These functions are not subject to geometric reconstruction

constraints, and they can take on arbitrary values, as long as x1(0), x1(1) > 0

holds, which ensures the regularity of parametrization at endpoints.

For the sake of simplicity – and to emphasize their independence –, let us
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omit the evaluation parameters from the notation and let the particular values

of xi(0) and xi(1) on the right hand side of (2.29) be denoted by −→x i and
←−x i,

respectively.

The left-hand side of (2.29) consists of endpoint positions and derivatives

of q(t). The right-hand side is made up of points and derivative vectors of an

unknown curve that reconstructs D0 and D1 exactly. This curve has a par-

ticular parametrization, specified by −→x i,
←−x i, which also influences the overall

shape of the curve. Our aim is to match the right-hand side data with q(t).

Let us now investigate how many derivatives need to be constrained in

(2.29) so that the given geometric data D0, D1 are reconstructed.

If κ0, κ1 6= 0, constraining the position and the first n derivatives is all that

is required for reconstruction. In this case, κi, τi, and their (n− 2) and (n− 3)

derivatives w.r.t. arc-length appear with non-zero coefficients in the first n

derivatives of q(t).

If κ0 = 0, the reconstruction of torsion and its derivatives requires more

than n derivatives, as it was noted at the end of the previous section. To

illustrate this, let us consider the problem of third order GH interpolation

with κ0 = 0. According to (2.16), the third derivative is then

r′′′ =




s′′′

(s′)3κ̂′

0




F

,

which is clearly in the osculating plane, and the torsion of the curve cannot

be computed from it. If, additionally, κ̂′ 6= 0, Frenet coordinates of the fourth

derivative are

r(4) =




s(4)

6(s′)2s′′κ̂′ + (s′)4κ̂′′

2(s′)4κ̂′τ




F

,

from which the torsion can be expressed. So the reconstruction of third order

GH data constrains the first four derivatives of the curve at t = 0 if κ0 = 0

and κ̂′
0 6= 0.

More generally, as a consequence of the discussion at the end of the previous

section, the following can be stated:

Lemma 6 If κi = .. = κ̂
(hi−1)
i = 0, κ̂

(hi)
i 6= 0, i = 0, 1, the reconstruction of
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prescribed nth order GH data constrains n+h0 derivatives at t = 0 and n+h1

derivatives at t = 1.

If κ0, κ1 6= 0, the dimensions of the matrices in (2.29) are F ∈ R2(n+1)×(m+1),

G ∈ R2(n+1)×8, q ∈ R(m+1)×3, f ∈ R8×3.

In general, the sizes of G,q, and f depend on the dimension of the space, as

well. In a d-dimensional space there are d−1 scalar curvatures [51], and a local

coordinate system of the curve consists of d curvature vectors at a position,

that is F ∈ R2(n+1)×(m+1), G ∈ R2(n+1)×2(d+1), q ∈ R(m+1)×d, and f ∈ R2(d+1)×d.

If one or more curvatures vanish, and the GH data tuples D0,D1 sat-

isfy Lemma 6, the matrices are of dimensions F ∈ R(2n+2+h0+h1)×(m+1), G ∈

R(2n+2+h0+h1)×8, q ∈ R(m+1)×3, f ∈ R8×3 in the Euclidean space, and of dimen-

sions F ∈ R(2n+2+h0+h1)×(m+1), G ∈ R(2n+2+h0+h1)×2(d+1), q ∈ R(m+1)×d, and

f ∈ R2(d+1)×d in a d-dimensional space.

The tangential coordinates −→x i,
←−x i in (2.29) are degrees of freedom in GH

reconstruction. They determine the parametrization of the curve, while equa-

tions of (2.29) specify the geometry of q(t).

2.4 Solving the reconstruction equations

This section focuses on solving geometric Hermite interpolation via (2.29) for

a fixed parametrization at knots. In this case, geometric reconstruction con-

straints form a system of linear equations.

I present new existence conditions for exact reconstruction and show how

approximate solutions are computed in various norms, all these relying on the

formulation presented in the previous section.

It is important to note that by setting the scalar degrees of freedom of

parametrization, one carries out a kind of Hermite interpolation of the s′(t) =

|r′(t)| derivative of the arc-length function in the sense that every exact solution

has the set parametric speed magnitude, acceleration, and higher derivatives

at knots.

From this point of view, geometric Hermite interpolation allows us to inde-

pendently reconstruct geometric properties and specify the parametric speed

via an Hermite-like interpolation at knots.
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2.4.1 Exact solutions

For now, let us assume that the right-hand side tangential parameters −→x i,
←−x i

in (2.29) are fixed, i.e. the exact derivative vectors are given up to the necessary

order, specified by Lemma 6. Let us denote the total number of equations by

k = 2n + 2 + h0 + h1 and let us consider the computation of control data of

curve q(t) from equation (2.29).

If k < m+1, (2.29) is an underdetermined linear system that has infinitely

many solutions. The remaining degrees of freedom, not constrained by GH

interpolation, are available for the optimization of the curve, for example, by

minimizing an energy or other functionals.

If F is square and of full rank, the control points are computed as

q = F−1 ·G · f .

In this case, m = k − 1 should hold, and the row vectors of F – i.e.

values of basis functions and their derivatives at the endpoints – should be

linearly independent. The latter is the case for all ’reasonable’ basis functions

of appropriate order, for example, power and Bernstein basis polynomials of

degree at least k−1. In general, i.e. including overdetermined cases, we assume

that F is full rank. We refer to these as linearly independent bases.

In the case of polynomial bases, the next statement is the consequence of

Lemma 6 and Theorem 2.

Theorem 7 If κi = .. = κ̂
(hi−1)
i = 0, κ̂

(hi)
i 6= 0, i = 0, 1, there is always a

degree (2n+1+h0+h1) polynomial solution to the nth order GH interpolation

problem.

Proof. All derivatives of curvature and torsion listed in D0 and D1 appear in

the coordinates of the derivatives of q(t) with either non-zero or unspecified

coefficients.

The unspecified coefficients consist of curvature derivatives that are not

listed in D0 and D1, and of powers of s′ 6= 0. By setting them to arbitrary

non-zero values, the resulting equation constrains all derivatives of curvature

and torsion specified in D0 and D1.

Since the degree of the polynomial is (2n + 1 + h0 + h1), matrix F is

invertible, and control data of the curve are computed as q = F−1 ·G · f .
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In the worst case, if all the specified curvatures vanish at both endpoints,

the degree of a polynomial solution to symmetric n-th order GH interpolation

might be as high as 2n + 1 + 2(n − 1) = 4n − 1. On the contrary, there is

always a degree 2n+ 1 polynomial solution if κ0 6= 0 and κ1 6= 0.

Moreover, a lower degree polynomial solution may exist for appropriate

input data and selection of −→x i,
←−x i. We discuss this in more detail next.

Let us suppose that F cannot be inverted, and investigate the conditions

for the existence of an exact solution. Let us assume that rank(F ) ≥ min{m+

1, k}.

The overdetermined case k > m + 1 usually does not provide an exact

solution for fixed −→x i,
←−x i. However, if these tangential parameters may change,

the additional k − 2 scalar degrees of freedom in (2.29) may help us to carry

out exact reconstruction.

Mørken studied the conditions of such a reconstruction algebraically in [35],

while Schaback investigated this problem from a geometric point of view in [41].

My formulation, presented here, allows us to utilize nonlinear optimization

techniques to compute a lower-degree solution to a GH interpolation problem.

In general, that is, for arbitrary bases and orders, by the Rouché-Capelli

theorem, an exact solution to (2.29) exists if and only if every column of G · f

is in the column space, C(F ), of F , i.e. if rank(F ) = rank([F,G · f ]), where

[A,b] denotes the augmented matrix of A by appending the column vector b

to A.

If −→x i,
←−x i may vary, an overdetermined exact solution exists if and only if all

d columns of G(−→x 1, ..,
←−x 1, ..) ·f are in C(F ) for some −→x 1,

←−x 1 > 0,−→x 2,
←−x 2, .. ∈

R.

Let C := ×d
i=1C(F ) ⊂ Rk×d. On the one hand, C(F ) and C are linear

subspaces of Rk and Rk×d. On the other hand, G(−→x 1, ..,
←−x 1, ..) · f forms a –

generally nonlinear – subset of Rk×d as the −→x i,
←−x i vary (for each d coordinate

of the unknown control points). Let G denote all points of this nonlinear

subspace, that is, let

G := {x ∈ Rk×d|∃−→x 1,
←−x 1 > 0,−→x 2, ..,

←−x 2, .. ∈ R : x = G(−→x 1, ..,
←−x 1, ..) · f} .

Then, using the above notations, the existence conditions are formulated

in accordance with the following
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Theorem 8 A solution to the n-th order GH interpolation problem with (m+

1) control data exists in a linearly independent basis if and only if C∩G 6= ∅.

Let A[i] denote the i-th column of the argument matrix. The above con-

dition can be interpreted as the requirement of the existence of a g ∈ G such

that

∀i ∈ [0, d− 1] : C(F ) ∩ g[i] 6= ∅ .

If this condition of Theorem 8 is satisfied, any point of the intersection

C∩G results in exact reconstruction of GH data tuples D0,D1, as well as the

reconstruction of parametric speed defined by −→x i,
←−x i at endpoints.

Any g ∈ G defines a choice of −→x 1,
←−x 1 > 0,−→x 2, ..,

←−x 2, ... ∈ R values for the

parametrization degrees of freedom.

Example: To illustrate the use of Theorem 8, let us consider the first order

GH interpolation problem of reconstructing

Di = (pi; ti) , i = 0, 1

with a parabola

b(t) = (1− t)2b0 + 2t(1− t)b1 + t2b2

in Bézier form.

By choosing b0 = p0, b2 = p1, the end position data are reconstructed. If

additionally, the intersection of p0+tt0 and p1−st1, t, s > 0 exist, by choosing

it as b1, the reconstruction of tangents is carried out too.

On the other hand, the reconstruction equations take the form of




1 0 0

−2 2 0

0 0 1

0 −2 2



·



b0

b1

b2


 =




1 0 0 0

0 −→x 1 0 0

0 0 1 0

0 0 0 ←−x 1



·




p0

t0

p1

t1




(2.30)
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from which it follows that

C(F ) =

{
α




1

−2

0

0



+ β




0

2

0

−2



+ γ




0

0

1

2



=




α

−2α + 2β

γ

−2β + 2γ




∣∣∣∣α, β, γ ∈ R

}

Given actual input data tuples D0,D1, all there is left to do is to check all

i columns of the right hand side g of (2.30) so that there exist α, β, γ ∈ R, for

each column, independently, such that g[i] ∈ C(F ).

Let us now consider a numerical example:

p0 =

[
0

1

]
, t0 =

[
1

0

]
,

p1 =

[
1

0

]
, t1 =

[
0

−1

]
.

The right hand side of (2.30) is

g =




0 1
−→x 1 0

1 0

0 −←−x 1




and for g[0] ∈ C(F ) the following should hold, for some α, β, γ ∈ R:




α

−2α + 2β

γ

−2β + 2γ



=




0
−→x 1

1

0




that is, the x coordinates of the b0,b1,b2 control points are

α = 0 , β = 1 , γ = 1

and so
−→x 1 = 2 .
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Similarly, for g[1] ∈ C(F ) to hold, α, β, γ ∈ R should be such that




α

−2α + 2β

γ

−2β + 2γ



=




1

0

0

−←−x 1




,

that is, the y coordinates of the b0,b1,b2 control points are

α = 1 , β = 1 , γ = 0

so
←−x 1 = 2 .

From this, the b0,b1,b2 control points are

b0 =

[
0

1

]
, b1 =

[
1

1

]
, b2 =

[
1

0

]
.

2.4.2 Approximate solutions

If conditions of Theorem 8 do not hold, a best approximate solution has to

be found. In general, measuring how good an approximation a given q(t)

is to the input tuples D0,D1 can be formulated as minimizing a functional

f(q,D0,D1) ∈ R, where q = [q0, ..,qm]
T depends on −→x i,

←−x i. Two types of

these functionals are considered here.

Norm functionals are used to find q such that ||F ·q−G · f || is minimal in

some norm || · ||. These are computationally less demanding, and the subject

of approximations in ||.||p norms has been established and extensively studied

in the literature.

Taylor expansion based functionals are used to find a curve q(t) such that

its Taylor expansion at endpoints deviates the least from the two polynomials

having derivatives corresponding to the right-hand side of (2.29), for given
−→x i,

←−x i.

This can be done such that the parameterization of the end-point polyno-

mials (and hence −→x i,
←−x i) are also taken into account, or the approximation
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can be restricted to the geometric invariants only by using ’geometric’ Taylor

expansions (in other words, degree n parabolas, as Boehm referred to these in

[4]).

For the sake of simplicity, let us assume that κ0, κ1 6= 0.

2.4.2.1 Norm functionals

If −→x i,
←−x i ∈ R, −→x 1,

←−x 1 > 0 are fixed, the minimization problem

min
q0,..,qm

||G · f − F · q|| (2.31)

is a convex optimization problem for any norm, since it is linear and the

objective function is convex [5]. The latter ensures that any local minimum is

also a global minimum, i.e. any algorithm that is guaranteed to converge to a

local extrema will also find the global one.

The expression ||x||p = (xp
1 + xp

2 + ..+ xp
d)

1
p is a norm for p ≥ 1 and p =∞.

In practice, the three most commonly employed ||·||p norms are the p = 1, 2,∞

norms.

The p = 2 norm is a particularly attractive choice for computational rea-

sons. In this case, a concise expression of the approximate solution, which is

a curve having derivatives closest to the right-hand side vectors in the least

squares (LSQ) sense, is available.

It is known from linear algebra, that the LSQ solution to the overdeter-

mined system of linear equations A ·x = b is x ≈ A+ ·b, where A+ denotes the

Moore-Penrose pseudo-inverse of matrix A. The pseudo-inverse is expressed

in closed form as A+ = (AT ·A)−1AT . Even if (AT ·A) is singular, A+ can be

computed by singular value decomposition (SVD) of AT · A.

The LSQ solution minimizes ||F ·q−G · f ||22, and the control data is found

by

q ≈ (F T · F )−1 · F T ·G · f ,

assuming that rank(F ) = m+ 1.

This q minimizes the sum of squared Euclidean distances of the constraint

positions and derivatives from the positions and derivatives of curve q(t), i.e.

the right-hand side and left-hand side of (2.29), respectively.
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Then a weighting can be readily incorporated into the solution by

q ≈ (F T ·W T ·W · F )−1 · F T ·W T ·W ·G · f ,

where W = diag(w0,0, .., w0,n, w1,0, .., w1,n) is a diagonal matrix of dimensions

(2n+2)× (2n+2). Each wi,j > 0 can be considered as the relative importance

of the precise reconstruction of the correct j-th derivative at t = i, i = 0, 1, j =

0, 1, .., n.

The advantage of the L2 norm is that the solution can be expressed in

closed form, however, for certain applications other norms are preferred.

If a small number of input data is expected to be unreliable, the p = 1

norm is often chosen, which amounts to the minimization of the sum of error

magnitudes. It provides a more robust, less sensitive solution to error in input

[3]. Minimizing the || · ||1 norm of F · q − G · f is an unconstrained, convex

optimization problem in the form of

min
q0,..,qm

||G · f − F · q||1 . (2.32)

Transforming (2.32) into a canonical linear programming (LP) form allows

us to use the simplex method to find the global optimum. To do that, let

y+ − y− = G · f − F · q and q+ − q− = q such that all components of the

unknown vectors are non-negative: q+,q−,y+,y− ≥ 0.

Then the following LP problem is equivalent to (2.32):

min y+ + y− (2.33)

F · q+ − F · q− + y+ − y− = G · f

y+,y−,q+,q− ≥ 0,

i = 0, .., 2n+ 1, j = 0, ..,m

The simplex method can be applied to (2.33) to find the optimal 2(m+1)+

2(2n + 1) unknowns of (2.33) for each d coordinates. Coordinates of control

points corresponding to an optimal solution are computed by q = q+ − q−.

It has been shown in [55], that for larger problems, the dual simplex method

performs better. Other, more efficient modifications of the primal and dual

simplex methods have been also proposed for minimizing the L1 error [47], [1].
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Cadzow also proposed an algorithm in [5] to minimize the sum of error

magnitudes and to find an approximate solution with minimal largest error

magnitude, i.e. a best approximation in || · ||∞.

2.4.2.2 Taylor expansion based functionals

Let us partition (2.29) such that

G =

[
G0 0

0 G1

]
, f =

[
f0

f1

]
, F =

[
F0

F1

]
,

where Fi correspond to basis function value and derivative evaluations at t = i,

matrices Gi contain the reconstruction equations, and fi = [pi, ti,ni,bi]
T ,

i = 0, 1.

Let Tk(x)(t) denote the degree k Taylor expansion operator

Tk(



x0

..

xn


)(t) =

k∑

i=0

xi

i!
ti, t ∈ R, k ≤ n.

Taylor expansions of q(t) at t = i, i = 0, 1 are then

Tk(Fi · q)(t) ,

while the right-hand side derivatives in (2.29) can be expanded as a polynomial

by

Tk(Gi · fi)(t) ,

which is the expansion of an unknown curve that reconstructs both the geom-

etry specified by D0,D1 and the parametrization determined by −→x i,
←−x i.

Let the difference of these two polynomials be denoted by

ei(t) = Tn(Fi · q)(t)− Tn(Gi · fi)(t)

= Tn(Fi · q−Gi · fi)(t),

and consider the functionals

ei(q0, ..,qm) =

∫ 1

0

||ei(t)||dt , i = 0, 1 ,
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in some norm || · ||.

Finding control data such that

min
q0,..,qm

e0(t) + e1(t)

accounts for the reconstruction of both the geometric invariants and the para-

metrization of the unknown curve. The latter depends on the choice of −→x i,
←−x i

via matrix G.

Detaching parametrization from the functional – so that the optimality of

the approximation depends only on the geometry defined by D0,D1 – can be

done by using a Taylor-like polynomial expansion of the curves.

Let a degree n geometric Taylor polynomial be such that it has a contact

of order n+ 1 at t = 0 with a curve and all of its regular reparametrizations.

For example, a second and third degree geometric Taylor polynomial at

t = i, i = 0, 1 can be written as

p2(t) = pi +




t
κ
2
t2

0




fi

, p3(t) = pi +




t
κ
2
t2 + κ̂′

6
t3

κτ
6
t3




fi

.

Let us use the error functional

ẽ(t) = ẽ0(t) + ẽ1(t) ,

using

ẽi(t) =

∫ 1

0

||(pi − q(i)) +






1

0

0




fi

−



1

0

0




Fq(i)


 · t+






0

κi

0




fi

−




0
y2
x2
1

0




Fq(i)


 ·

t2

2
+ ...||dt ,

where F q(i) denotes the Frenet frame of q(t) at t = i. The computation of

invariants of q(t) are done using (2.23)-(2.26).

2.4.3 Symmetric interpolation constraints

A drawback of the approximation methods shown previously is that they can-

not guarantee exact reconstruction of any of the input geometric quantities.
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For example, not even weighted LSQ can be used to guarantee position recon-

struction.

Imposing partial exact reconstruction conditions, i.e. exact reconstruction

of certain quantities of the input geometric data, transforms the convex opti-

mization problem of (2.29) into a constrained nonlinear optimization problem,

where the constraints will not necessarily form a convex subset of the problem

space - the solution to these usually require more computationally intensive

and complex algorithms.

Instead of using these, an alternative approach can be taken if we are only

interested in incorporating symmetric partial reconstruction. To illustrate this,

let us consider the problem of stipulating exact position reconstruction at both

endpoints.

For the sake of simplicity, let us also assume that a best approximation is

to be found with respect to an arbitrary norm. Formally, this is equivalent to

min
q0,..,qn

||F · q−G · f ||

F0(0)q0 + ..+ Fn(0)qn = p0

F0(1)q0 + ..+ Fn(1)qn = p1

Note that all zero order (positional) constraints of (2.29) are automatically

satisfied for any feasible solution, that is, these constraints can be removed

from (2.29), yielding




F ′
0(0) .. F ′

n(0)

F ′′
0 (0) .. F ′′

n (0)

.. .. ..

F ′
0(1) .. F ′

n(1)

F ′′
0 (1) .. F ′′

n (1)

.. .. ..




· q =




−→x 1 0 0 0 0 0
−→x 2 κ0

−→x 2
1 0 0 0 0

.. .. .. .. .. ..

0 0 0 ←−x 1 0 0

0 0 0 ←−x 2 κ1
←−x 2

1 0

.. .. .. .. .. ..




· f (2.34)

which can be considered as restating the GH reconstruction constraints of

order 1 to n, on the derivative curve, or in other words, the hodograph of the

unknown curve.

Let E0(t), .., En−1(t) : [0, 1]→ R be the order n basis functions in the initial

basis of the problem that span the space of hodographs - for example, in the
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case of Bernstein polynomials Fi(t) = Bn
i (t) and Ei(t) = Bn−1

i (t).

Let us express the q′(0), ..,q′(1), ... derivative vectors in the Ei(t) basis and

let us denote their coordinates with ∆q0, ..,∆qn−1. Then (2.34) becomes




E0(0) .. En−1(0)

E ′
0(0) .. E ′

n−1(0)

.. .. ..

E0(1) .. En−1(1)

E ′
0(1) .. E ′

n−1(1)

.. .. ..




︸ ︷︷ ︸
E

·




∆q0

..

∆qn−1




︸ ︷︷ ︸
∆q

=




−→x 1 0 0 0 0 0
−→x 2 κ0

−→x 2
1 0 0 0 0

.. .. .. .. .. ..

0 0 0 ←−x 1 0 0

0 0 0 ←−x 2 κ1
←−x 2

1 0

.. .. .. .. .. ..




· f

Solving this, using any of the methods shown previously, results in an

h(t) : [0, 1]→ R3 hodograph, which is a best approximation to the second and

higher order geometric invariants in D0,D1.

Integrating this hodograph yields a q(t) curve with the same geometric

invariant approximation properties, and additionally, the integration constant

can be used to reconstruct one of the endpoint position data. Let us con-

struct the endpoint interpolating integrated curves for both p0 and p1 in the

F0(t), .., Fn(t) basis, i.e. let

qi(t) = pi +

∫ 1

0

h(x)dx , i = 0, 1

and let q<i>
j denote the control data of qi(t):

qi(t) =
n∑

j=0

q<i>
j Fi(t) .

By using the notation

NZ({Fj(t)}
n
j=0, x) =

{
i ∈ {0, 1, .., n}|Fi(x) 6= 0

}
,

a sufficient condition for position reconstruction is

∀i ∈ NZ({Fj(t)}
n
j=0, 0) ∩NZ({Fj(t)}

n
j=0, 1) : q

<0>
i = q<1>

i .
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Figure 2.1: Cubic, endpoint reconstructing GH interpolant. The red portions
of the curve denote non-constant speed regions. The red arrows at endpoints
denote the desired tangent directions, green arrows are normal vectors, the
gray parabolas represent the desired curvature at endpoints. As it can be
seen, a single cubic polynomial was insufficient to yield a good approximation
to these and satisfy exact position reconstruction at the same time.

Depending on the actual base of reconstruction, this may or may not be a

necessary condition of reconstruction.

The remaining control data can be computed by another optimization, or

simply by taking the average of the two sets of control data. In the latter case,

the control data of the final curve q(t) are

∀i ∈ NZ({Fj(t)}
n
j=0, 0) : qi = q<0>

i

∀i ∈ NZ({Fj(t)}
n
j=0, 1) : qi = q<1>

i

∀i 6∈ NZ({Fj(t)}
n
j=0, 0) ∩NZ({Fj(t)}

n
j=0, 1) : qi =

1

2
q<0>
i +

1

2
q<1>
i

It is important to take into account, that this method reduces the degrees of

freedom available for higher order geometric invariant reconstruction. Figure

2.1 shows an example of a cubic Bézier curve that was used to reconstruct

second order GH data with position constrains. The figure illustrates that

with the enforced reconstruction constraints, a cubic is not able to deal with

approximate reconstruction of higher order invariants simultaneously.

2.4.4 General GH interpolation

So far, our discussion focused on two-point, symmetric GH interpolation, but

the formulation of (2.29) allows us to investigate the interpolation of given
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Di, i = 0, .., k order-ni GH data tuples at prescribed t0, .., tk ∈ [0, 1] parameter

values, analogously.

In this case, f consists of all fi = (pi, ti,ni,bi) data, and the matrix G is

of a block-diagonal structure

G =




G0 0 .. 0

0 G1 .. 0

.. .. .. ..

0 0 .. Gk



, f =



f0

..

fk


 ,

where Gi ∈ R(ni+1)×(d+1) denotes the reconstruction matrix of order-ni:

Gi =




1 0 0 0

0 x<i>
1 0 0

0 x<i>
2 κi(x

<i>
1 )2 0

... ... ... ...




.

On the left-hand side, F contains the basis function and its required deriva-

tive evaluations at parameter values t0, .., tk. All results shown previously re-

garding solvability, approximate solutions, and partial exact reconstruction

apply to this case as well.

Geometric Hermite interpolation of this kind has been studied by Krajnc,

and Zagar et. al. They have shown that a single planar cubic segment, recon-

structing position and tangent data at three prescribed parameter values, has

an approximation order of six, just like the BHS spline. [28]

Example: In this context, finding the Bézier control points of the parabola

that passes through 3 points can be considered as the interpolation of

D0 = (a), D1 = (b), D2 = (c)

at

t0 = 0, t1 =
1

2
, t2 = 1,

that is, as 

1 0 0
1
4

1
2

1
4

0 0 1


 ·



q0

q1

q2


 =



1 0 0

0 1 0

0 0 1


 ·



a

b

c



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which gives us the control points as

q0 = a

q1 = 2b−
1

2
a−

1

2
c

q2 = c

2.5 Parametrization optimization

The right hand side of geometric reconstruction equation (2.29) depends on

the −→x i,
←−x i tangential coordinates of the derivatives. These are not fixed by

the geometric constraints of GH interpolation, in other words, they are degrees

of freedom of parametrization.

Setting them to particular values, and taking into account that the geomet-

ric invariants of the curve are fixed, amounts to a form of Hermite interpolation

of the hodograph of the arc-length function, as it was discussed earlier. This

is the consequence of Theorem 2, from which it can be seen immediately, that

the highest derivative of the arc-length function, s(n), is in xn.

Let us now consider how we could use the −→x i,
←−x i tangential degrees of

freedom to optimize the parametrization of the curve.

As a result of Theorem 8, these tangential parameters can be used to find

a lower degree solution than that of Theorem 7. Such a curve is found by

solving the following nonlinear optimization problem (NLP):

min
−→x 1, ..,

−→x n ∈ R
←−x 1, ..,

←−x n ∈ R

||F · q−G(−→x 1, ..,
←−x 1, ..) · f)|| (2.35)

−→x 1 > 0

←−x 1 > 0

where computation of control data q0, ..,qm reduces to the problem of finding

q0, ..,qm for fixed −→x i,
←−x i, which was discussed in the previous section.

Since the difference of curve and objective derivatives is zero for an exact
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Figure 2.2: A convergence map of Newton iteration used to solve the GH
interpolation problem of reconstructing p0 = [100, 100]T , t0 = [1, 0]T and
p1 = [300, 300]T , t1 = [0,−1]T (on the right) with a parabola. The degrees
of freedom are the −→x 1,

←−x 1 > 0 first derivative lengths. The plane on the right
has axes of −→x 1,

←−x 1. Each point corresponds to an initial guess for the start of
Newton iteration. Red points indicate initial values of derivative lengths that
did not result in a parabola that reconstructed the prescribed point-tangent
data within error threshold. Green points that correspond to initial −→x 1,

←−x 1

values that resulted in a parabola within error threshold.

solution, an arbitrary norm can be chosen in (2.35). Even if conditions of The-

orem 8 are not met, by changing the −→x i,
←−x i degrees of freedom, the deviation

from the prescribed geometric quantities can be minimized.

Note, however, that finding the degree reduced solution to a problem is

sensitive to the choice of optimization method used to solve (2.35). Figure 2.2

shows an example of this.

By separating the task of control data computation from minimizing a given

functional, parametrization optimization can be defined by the NLP problem

of

min
−→x 1, ..,

−→x n ∈ R
←−x 1, ..,

←−x n ∈ R

f(F,D0,D1;
−→x 1, ..,

←−x 1, ..) (2.36)

−→x 1 > 0

←−x 1 > 0

where f is a functional incorporating desirable properties, such as minimum
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strain energy, minimal curvature variation, etc.

Minimizing the deviation of parametrization from arc-length parametriza-

tion can be also achieved by minimizing

∫
|1− q′(t) · q′(t)|dt

however, a practically more useful objective is to penalize deviation from con-

stant speed parametrization. By noting that if q(t) is roughly constant speed

then q′(t) · q′(t) ≈ c, for an arbitrary c ∈ R+, hence q′(t) · q′′(t) ≈ 0, then

minimizing ∫
|q′(t) · q′′(t)|dt

results in a parametrization that minimizes deviation from being constant

speed. Figure 2.4 illustrates a GH quintic reconstructing second order GH

data that also minimizes the parametric acceleration.

This is an especially attractive parametrization when one considers the

use of geometric Newton-Raphson methods for curve interrogation [21] [48],

or any other technique that relies on a local re-parametrization of a curve. In

geometric Newton-Raphson methods, a nearly constant-speed parametrization

decreases the error of the pull-back step, increasing the accuracy of algorithms

using higher order geometric proxies.

Another set of problems that benefit from uniform speed is when the curves

define tool paths. Farouki proposed in [13] a rational reparametrization of

Bézier curve so that the reparametrization of the form tα(u) =
u(α−1)

2uα−u−α
yields

a more constant speed traversal of the curve. Figure 2.3 compares optimal

parametrizations. Note that while Farouki’s reparametrization turns the curve

in question into a rational curve, the optimization I proposed retains its alge-

braic class, i.e., integral polynomials in our case, at the expense of changing

the non-endpoint geometry of the curve.

The NLP problem of (2.36) requires two optimization algorithms at two

stages:

• a nonlinear optimization method is required to find the −→x i,
←−x i coordi-

nates that minimize f(·),

• another optimization method is used to compute the control data q such

that the resulting curve approximates the correct derivatives
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(a) Original quintic solution with −→x 1 =
100,←−x 1 = 100,−→x 2 =

←−
x 2 = 0.

(b) Equal parametric spacing along the
curve represented by red points.

(c) Nonlinear parametrization optimiza-
tion yields a more uniform speed
parametrization. Red points are samples
from the curve taken at an equal para-
metric spacing of [0, 1].

(d) Farouki’s optimal rational
reparametrization applied to the
curve. Green points are equal spacing
in the rational parametrization, almost
entirely coinciding with the red ones.

Figure 2.3: Parametrization optimization in GH interpolation. The input
second order GH data tuples are represented by the dark red parabolas at
endpoints. Green diagrams at the bottom show the normalized magnitude of
parametric speed from t = 0 to t = 1 (from left to right). Note how compressed
the range of speed became after applying parametrization optimization. In
this case, Farouki’s rational reparametrization resulted only a slightly more
compressed parametrization.
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Figure 2.4: A quintic second order GH interpolant curve with arc-length like
parametrization at endpoints, up to order 2. The blue regions denote constant-
speed areas, red regions denote high acceleration.

Figure 2.5 shows the results of two different search methods to find optimal
−→x i,

←−x i coordinates on the same second order GH input data pair, using LSQ

control data.

Another level of parametrization optimization arises when one interpolates

several Di GH data tuples at unkown parameter values. All classic methods

– like uniform, chordal, centripetal, Piegl’s, etc. - can be used to estimate

these parameter values and once those are fixed, the method discussed in this

section can be used. See [15] for a detailed survey of these methods and how

they affect the accuracy of approximation.

2.6 Adaptive curve fitting

It was shown in 2.4.3 how to satisfy symmetric reconstruction constraints in

GH approximation. However, the necessity of exact non-symmetric reconstruc-

tion arises naturally in applications.

An adaptive curve fitting scheme is introduced in this section to approx-

imate a given set of GH data tuples with a piece-wise degree n Bézier spline

curve. For this, an asymmetric, left-endpoint interpolatory GH interpolation

technique is used for segment construction. That is, let us consider the follow-
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(a) Grid-search method (b) Nelder-Mead simplex

Figure 2.5: Usage of different nonlinear optimization methods. Approximate
second order GH interpolant cubic curves, minimizing deviation from constant
speed. The red parts of the curve denote points where acceleration is large,
blue parts correspond to small acceleration points. In comparison of the two,
the curve on the left has a smaller deviation from being completely constant
speed.

ing problem:

Given are N GH-data tuples D1, ..,DN , an ǫ > 0 error threshold, n ∈ N+.

Find a piece-wise degree n polynomial spline that approximates the pre-

scribed D1, ..,DN data tuples within piece-wise ǫ error and it has a minimum

number of segments.

For the sake of simplicity, the solution to the above problem is sought

among G0 splines. The arguments presented here can be extended to higher

order continuity between segments. Let us also assume that the error func-

tional is the || · ||2 norm of F · q−G · f .

The spline solution is constructed segment by segment. For each segment,

a consecutive sequence of GH data tuples Da,Da+1, ...,Db is sought, such that

they can be approximated within ǫ error by a single degree n Bézier curve.

First, appropriate tj parameter values have to be found, where the segment

should reconstruct the Dj data, j ∈ {a, a+1, .., b}. This can be done simply by

tj =
j−a

b−a
equidistant parameters, but more sophisticated parameter estimation

methods can be used. Please refer to Floater et. al.’s survey of these [15].

In the construction of a single segment, G0 continuity stipulates that seg-
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ments should join at endpoints, which is achieved by connecting each new

segment to the t = 1 endpoint of its predecessor.

This requires that the first control point of the i-th segment, denoted by

q<i>
0 , is fixed, that is, for the q<i>

0 , ..,q<i>
n ∈ E3 control data of segment i

min
q<i>
0 ,..,q<i>

n

||F<i> · q<i> −G<i> · f<i>||2 (2.37)

q<i>
0 = q(i−1)

n

should be solved, assuming that the GH tangential degrees of freedom are set

to some feasible values.

Similarly to the symmetric reconstruction case, the equality constraint can

be omitted by removing q<i>
0 from q<i>. In order to do that, let us trans-

late (2.37) to the hodograph of q<i>(t). Once that is done, integrating the

hodograph and setting its integration constant to q<i>
0 = q

(i−1)
n yields a left-

endpoint interpolatory curve.

Transforming the F<i> · q<i> = G<i> · f<i> system to ∆q<i>
j hodograph

control data is straightforward for derivatives:




nBn−1
0 (0) .. nBn−1

n−1(0)

n(n− 1)Bn−1
0

′
(0) .. n(n− 1)Bn−1

n−1
′
(0)

.. .. ..

nBn−1
0 (1) .. nBn−1

n−1(1)

n(n− 1)Bn−1
0

′
(1) .. n(n− 1)Bn−1

n−1
′
(1)

.. .. ..




·




∆q0

..

∆qn−1




︸ ︷︷ ︸
∆q

=




−→x 1 0 0 0 0 0
−→x 2 κ0

−→x 2
1 0 0 0 0

.. .. .. .. .. ..

0 0 0 ←−x 1 0 0

0 0 0 ←−x 2 κ1
←−x 2

1 0

.. .. .. .. .. ..




· f<i> , (2.38)

however, the positional constraints on q<i>(t) have to be expressed in the

q<i>
0 ,∆q<i>

j basis as well.
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So let us find α<i>
j (t) : R→ R coefficient functions such that

q<i>(t) =
n∑

j=0

q<i>
j Bn

j (t) = q<i>
0 +

n−1∑

j=0

αj(t)∆q<i>
j

holds, that is, let us express the evaluations of the q<i>
0 +

∫ ∑n−1
j=0 n∆q<i>

j Bn−1
j (t)dt

integral curve with some α<i>
j (t) degree n polynomial coefficients for ∆q<i>

j .

From the rules of integration and the indefinite integral formula of Bernstein

polynomials [10]
∫

Bn
i (t)dt =

1

n+ 1

n+1∑

j=i+1

Bn+1
j (t) ,

it follows that

∫ n−1∑

j=0

n∆q<i>
j Bn−1

j (t)dt =
n−1∑

j=0

n∆q<i>
j

∫
Bn−1

j (t)dt

= q<i>
0 +

n−1∑

j=0

n∆q<i>
j

1

n

n∑

k=j+1

Bn
k (t) ,

by setting the integration constant to q<i>
0 = q

(i−1)
n .

The coefficients are then

α<i>
j (t) =

n∑

k=j+1

Bn
k (t) ,

which can be used to re-add the original positional constraints to (2.38) by

replacing the

q<i>(tj) = pj

type of position reconstruction constraints with

n−1∑

j=0

α<i>
j (t) ·∆q<i>

j = pj − q<i−1>
n .

The solution of the thus modified

F ′ ·∆q<i> = G<i> · f ′ (2.39)
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system yields a ∆q<i>, from which the control points of the degree n Bézier

segment are found as

q<i>
j = q<i>

j−1 +∆q<i>
j , j = 1, 2, .., n .

Now, let us formulate an algorithm that computes a degree n LSQ approx-

imant to a consecutive sequence of GH data tuples.

Algorithm 1 Approximation of a sequence of GH data tuples

1: procedure Approximate(a, b ∈ {1, .., N}, n ∈ N+)
2: Parameter setup:
3: Let ti ∈ [0, 1], i ∈ [a, b] be parameter values associated with Di

4: Setup reconstruction system:
5: Let q = [q0, ..,qn]

T be the unknown control data, F the matrix of
basis function evaluations at ti, i ∈ [a, b], G the generalized reconstruction
matrix of Da, ..,Db, and f the Frenet trihedrons of Da, ..,Db

6: Optimize parametrization:
7: Solve

min
x
(a)
1 ,..,x

(a+1)
1 ,..,x

(b)
1 ,..

||F · q−G · f ||2

where x
(a)
1 , .., x

(b)
1 > 0, with q = F+ ·G · f

8: Return:
9: q(t) and ǫ← ||F · q−G · f ||2

Algorithm 1 is used to construct the first segment of the final spline. It

is expressed in terms of control data q0, ..,qn, since in its case, there is no

position reconstruction restrain on the left endpoint.

All subsequent segments are created by Algorithm 2, which makes sure

that the resulting q<i>(t) approximant is such that q<i>(0) = x holds, for an

arbitrary x ∈ E3 input point.

The Parameters setup is a common step in both algorithms. It is used

to find the tj parameter values of the unknown curve q<i>(t) where it should

reconstruct Dj.

The final algorithm is a sequence of an initial segment creation, by using

Algorithm 1, followed by an iterative application of Algorithm 2. The final

algorithm is listed in 3. For the sake of simplicity, the trivial error-handling

parts are omitted.

The above construction can be generalized to higher order continuity be-
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Algorithm 2 Approximation of a sequence of GH data tuples with left-
endpoint interpolation

1: procedure ApproximateFromPoint(a, b ∈ {1, .., N}, n ∈ N+,x ∈ E3)
2: Parameter setup:
3: Let ti ∈ [0, 1], i ∈ [a, b] be parameter values associated with Di

4: Setup reconstruction system:
5: Let F ′,∆q, G, f ′ be as specified in (2.39)
6: Optimize parametrization:
7: Solve

min
x
(a)
1 ,..,x

(a+1)
1 ,..,x

(b)
1 ,..

||F ′ ·∆q−G · f ||2

where x
(a)
1 , .., x

(b)
1 > 0, with q = F+ ·G · f

8: Compute control points :
9: Let qj = x+∆qj, j = 1, 2, .., n .
10: Return:
11: q(t) and ǫ← ||F · q−G · f ||2

Algorithm 3 Adaptive curve-fitting

1: procedure FitCurve(D1, ..,DN , n ∈ N+, ǫ > 0)
2: Create first segment :
3: By binary search, find b ∈ {1, .., n} such that
4: Approximate(1, b, n) < ǫ
5: a← b+ 1, b← n,x← q(1)
6: Cover the remaining GH tuples : while a < n:
7: By binary search, find b ∈ {a+ 1, .., n} such that
8: ApproximateFromPoint(a, b, n,x) < ǫ
9: a← b+ 1, b← n,x← q(1)
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tween segments by translating (2.38) to a higher order hodograph of the so-

lution curve. The hodograph found then needs to be integrated, using the

derivative and positional data of the last point of the previous segment as

integration constants.

2.7 Algorithms of GH interpolation

Let us now consider the problem of constructing parametric curves such that

they reconstruct prescribed GH data tuples at knots.

Theorem 8 already provides us means to compute control data of GH in-

terpolants: in the full rank case the control data is computed as F−1 · f , while

in the non-full rank case the i-th coordinate of the control data vector can be

any point of the intersection C(F ) ∩ g(i)

In this section, I focus on interpolation algorithms that do not rely on direct

matrix inversion or on locating intersection points of nonlinear sets.

For the sake of simplicity, let us focus on reconstruction with a single curve

segment at parametric endpoints t = 0, 1. A Gn composite spline is obtained

by constructing these segments for each consecutive pairs of nth order GH

data tuples.

I propose two types of algorithms for the construction of GH interpolant

segments:

• Theorem 8 provides means to devise direct methods to compute the con-

trol data of a GH inderpolant. If conditions of Theorem 8 are met, the

members of the family of GH intrepolants can be obtained by traversing

all feasible tangential −→x i,
←−x i values. This provides a k parameter family

of solutions, for some k.

• Indirect methods blend one-point GH interpolants, or basic curves, to

construct GH interpolant segments. Basic curves reconstruct appropriate

Di GH data tuples at each knot, and these are blended such that their

geometric invariants are unchanged up to order n. Figure 2.6 shows an

example of this.

To illustrate these two different approaches, examples of each method are

presented to solve third order GH interpolation with Bézier curves.
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(a) Control circles (b) Second order GH interpolant

Figure 2.6: Planar second order GH data are represented by position tangent
direction, and osculating circles in (a). Portions of the control circles are then
blended together to yield the curve in black in (b).

A motivation for the choice of third order GH interpolation is the fact

that no throughout characterization of this problem has been presented in the

literature to the author’s knowledge.

2.7.1 Direct methods

This section provides a geometric characterization of third order GH inter-

polation. For robust computations, these conditions are important because

numerically finding a degree reduced parametrization is sensitive to the choice

of optimization method, as it was illustrated by the example in Figure 2.2.

Let there be given a

Di = (pi; ti;κi,ni,bi; τi, κ̂
′
i)

pair of third order GH data tuples, i = 0, 1, and let us find a

c(t) =
n∑

i=0

ciB
n
i (t), t ∈ [0, 1]

Bézier curve that reconstructs these quantities at t = 0 and t = 1. Bn
i (t)
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denotes the i-th degree n Bernstein polynomial: Bn
i (t) =

(
n

i

)
ti(1− t)n−i.

Restrictions on the control points have to be formulated such that, by

using the unconstrained degrees of freedom, all members of the family of GH

interpolant solutions can be generated. Here, our aim is to derive geometric

constraints on the input parametrization-independent data, similarly to how

Schaback formulated the second order GH reconstruction constraints of Bézier

control points in [41].

For the sake of simplicity, let us first consider only the t = 0 endpoint,

that is, the reconstruction of D0 at t = 0, and let us assume that κ0 6= 0.

Let us also omit the subscripts, that is, let κ = κ0,p = p0 and so on. Figure

2.7 illustrates the Frenet trihedron and the planes spanned by each pair of its

vectors at a given point of a curve. These planes play an important role in

what follows.

Let S[m],N[m],R[m] denote the translates of the osculating, normal, and

rectifying planes with respect to their normal vector, that is let

S[m] = {x ∈ R3 | x · b = m}

N[m] = {x ∈ R3 | x · t = m}

R[m] = {x ∈ R3 | x · n = m}

As the order of geometric Hermite reconstruction increases, the following

constraints are found on the derivatives of c(t), assuming that all lower order

reconstruction conditions are met:

• tangent direction reconstruction constrains c′(0) such that

c′(0) = α · t

for some α > 0. This can be interpreted geometrically as

c′(0) ∈ S ∩R ∧ c′(0) · t > 0

that is, the first derivative vector should lie in the intersection of the

osculating and rectifying planes, such that it is contained in the tangent

ray. In turn, this means that c1 should lie on the tangent ray starting

from c(0) = p, i.e. c1 = p + t · t for some t > 0. The set of all feasible
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Figure 2.7: Frenet trihedron vectors t,n,b, spanning the osculating (S), nor-
mal (N), and rectifying (R) planes.

c1 control points forms a half line, the tangent ray.

• curvature reconstruction constrains the c′′(0) second derivative. From

(2.16), it follows that

c′′(0) =




s′′

(s′)2κ

0




F

should hold for some s′ > 0, s′′ ∈ R. That is, the second derivative should

lie in the intersection of the osculating plane and a normal-translate of

the rectifying plane. More precisely, c′′(0) is such that

c′′(0) ∈ S ∩R[(s′)2κ] . (2.40)

This intersection forms a line in R3. Any vector of this intersection can be

chosen as the c′′(0) derivative, which – once c0 and c1 are set – determines

the c2 control point in E3. The resulting Bézier curve reconstructs the

prescribed curvature and binormal vector, if c0 and c1 were chosen such

that position and tangent direction conditions are satisfied.
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The set of all feasible c2 control points form an open half plane in E3

that lies inside the osculating plane, bordered by the tangent line.

• torsion reconstruction places restrictions on the c′′′(0) derivative vec-

tor, but only along the binormal. This can be seen, once again using

(2.16), from

c′′′(0) =




s′′′ − (s′)3κ2

3s′s′′κ+ (s′)3κ′

(s′)3κτ




F

.

This can be interpreted as stipulating that c′′′(0) lies in a binormal trans-

late of the osculating plane:

c′′′(0) ∈ S[(s′)3κτ ] . (2.41)

Choosing any vector of this translated osculating plane determines the

fourth control point, once c0, c1, c2 are fixed.

All feasible S[(s′)3κτ ] translates of the osculating plane – for all s′ > 0 –

form an open half-space in R3.

• curvature derivative reconstruction gives

c′′′(0) ∈ R[3s′s′′κ+ (s′)3κ′] , (2.42)

similarly to the torsion reconstruction case.

As a result, torsion and curvature derivative reconstruction together restrict

c′′′(0) such that

c′′′(0) ∈ S[(s′)3κτ ] ∩R[3s′s′′κ+ (s′)3κ′] ,

which can be interpreted geometrically as the intersection of two open half-

spaces in R3.

Analogously, all subsequent τ̂ (j−1) derivatives of torsion and κ̂(j) derivatives

of curvature impose restrictions on the c3+j control point along the binormal

and normal. This allows a straightforward generalization of the results pre-

sented here to fourth and higher order GH reconstruction with Bézier curves.

Translating these results more directly to control points can be easily done
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by introducing the Frenet coordinates of the first four control points: let

(x(i)
n , y(i)n , z(i)n ), i = 0, 1 denote the coordinates of the n-th control point in the

F = (pi; ti,ni,bi) coordinate system, that is, let x(i)
n , y(i)n , z(i)n ∈ R be such that

c(i)n = pi + x(i)
n ti + y(i)n ni + z(i)n bi .

Focusing on the i = 0 case, the first three derivatives of c(t) at t = 0 are

defined by control points c0, c1, c2, c3. Let us now translate the GH recon-

struction constraints on their xi, yi, zi coordinates.

Since position reconstruction requires that c0 = p, by omitting the up-

per indices and taking into account the higher order geometric reconstruction

constraints (2.40)-(2.42), the following should hold for the control points

c0 =



0

0

0




F

, c1 =



x1

0

0




F

, c2 =



x2

y2

0




F

, c3 =



x3

y3

z3




F

for some x1 > 0, x2, y2, x3, y3, z3 ∈ R scalars.

Moreover, by denoting the Frenet-coordinates of c(i) by xi, yi, zi, the fol-

lowing holds



x1

y1

z1




F

= n



x1 − x0

y1 − y0

z1 − z0




F

,



x2

y2

z2




F

= n(n− 1)



x2 − 2x1 + x0

y2 − 2y1 + y0

z2 − 2z1 + z0




F

,



x3

y3

z3




F

= n(n− 1)(n− 2)



x3 − 3x2 + 3x1 − x0

y3 − 3y2 + 3y1 − y0

z3 − 3z2 + 3z1 − z0




F

,

from the c(i)(0) = n!
(n−i)!

∆ic0 derivative rule of Bézier curves at the t = 0

endpoint.

Substituting the derivative coordinates from (2.16) on the left hand side
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and the zero Frenet coordinates on the right, the above is expressed as



x1

0

0




F

= n



x1

0

0




F

(2.43)



x2

x2
1κ

0




F

= n(n− 1)



x2 − 2x1

y2

0




F

(2.44)




x3

3x1x2κ+ x3
1κ̂

′

x3
1κτ




F

= n(n− 1)(n− 2)



x3 − 3x2 + 3x1

y3 − 3y2

z3




F

(2.45)

By rearranging these to express xi, yi, zi, and substituting the derivative

coordinates with the control point coordinates in the formula obtained from

(2.16), the ci, i = 0, .., 3 control points are expressed in the (p; t,n,b) Frenet

coordinate system as

c0 =



0

0

0




F

, c1 =




x1

n

0

0




F

, c2 =




x2

n(n−1)
+ 2x1

n
n−1

κx2
1

0




F

,

c3 =




x3

n(n−1)(n−2)
+ 3x2 − 3x1

3nx1n(n−1)(x2−2x1)κ+n3x3
1κ̂

′

n(n−1)(n−2)
+ 3 n

n−1
x2
1κ

n2

(n−1)(n−2)
x3
1κτ




F

,

depending on the xi tangential coordinates of the first three derivatives of c(t)

at t = 0. Since all tangential coordinates of the control points are degrees of

freedom, the control points can be more concisely expressed as

c0 =



0

0

0




F

, c1 =



x1

0

0




F

, c2 =




x2

n
n−1

κx2
1

0




F

,

c3 =




x3

3x1n(n−1)(x2−2x1)κ+n2x3
1κ̂

′

(n−1)(n−2)
+ 3 n

n−1
x2
1κ

n2

(n−1)(n−2)
x3
1κτ



F

.
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Let hi : Ri → E3 be the function generating all feasible locations of control

points ci, depending on xj, j = 1, .., i. In the case of the first three hi functions,

these can be expressed as

h0 = p (2.46)

h1(x1) = p+ x1t (2.47)

h2(x1, x2) = p+ x2t+
n

n− 1
κx2

1n (2.48)

h3(x1, x2, x3) = p+ x3t (2.49)

+
3n(n− 1)x1x2κ− 3n2x2

1κ+ n2x3
1κ

′

(n− 1)(n− 2)
n

+
n2

(n− 1)(n− 2)
x3
1κτb

where x1 > 0, x2, x3 ∈ R.

Let us now introduce the set of all possible locations of control point ci by

Hi, that is, let

H0 = {p | p = h0} (2.50)

H1 = {x ∈ E3 | ∃x1 > 0 : x = h1(x1)} (2.51)

H2 = {x ∈ E3 | ∃x1 > 0, x2 ∈ R : h2(x1, x2)} (2.52)

H3 = {x ∈ E3 | ∃x1 > 0, x2, x3 ∈ R : x = h3(x1, x2, x3)} (2.53)

These sets can be derived for both the t = 0 and t = 1 endpoints, and they

are denoted by H
(0)
i and H

(1)
i , respectively.

It is important to note, however, that if κ = 0, the fourth derivative has

to be restricted as well, hence c4 is also affected by the reconstruction of the

t = 0 endpoint GH data tuple. If, additionally, κ̂′ = 0 holds too, the fifth

derivative, that is c5, is also required for reconstruction at t = 0. Figure 2.8

illustrates these cases.

Let us now return to handling both endpoints, and let us assume that

κ0, κ1 6= 0. Then there is a 6-parameter family of degree 7 Bézier GH inter-

polants defined by

c0 = p0 , c1 = h
(0)
1 (x

(0)
1 ) , c2 = h

(0)
2 (x

(0)
1 , x

(0)
2 ) , c3 = h

(0)
3 (x

(0)
1 , x

(0)
2 , x

(0)
3 ) ,

c7 = p1 , c6 = h
(1)
1 (x

(1)
1 ) , c5 = h

(1)
2 (x

(1)
1 , x

(1)
2 ) , c4 = h

(1)
3 (x

(1)
1 , x

(1)
2 , x

(1)
3 ) ,
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Figure 2.8: A degree 7 GH interpolant to the third order GH interpolation
problem. If κ0 6= 0, control points affected by the D0 GH data tuple are
the ones in blue. The control points affected by D0 in the κ = 0 ∧ κ̂′ 6= 0
and κ = κ̂′ = 0 ∧ κ̂′′ 6= 0 cases are enclosed by the corresponding rounded
rectangles. Control points in red are affected by the D1 GH data tuple.

where x
(0)
1 , x

(1)
1 > 0, x

(0)
2 , x

(0)
3 , x

(1)
2 , x

(1)
3 ∈ R, which are the parameters of the

6-parameter family of integral septic GH interpolants reconstructing D0 and

D1. The control points satisfy

c0 = p0, c1 ∈ H
(0)
1 , c2 ∈ H

(0)
2 , c3 ∈ H

(0)
3 ,

c7 = p1, c6 ∈ H
(1)
1 , c5 ∈ H

(1)
2 , c4 ∈ H

(1)
3 .

and they are shown in Figure 2.8.

If the solution is sought among the degree 6 polynomials, the control points

are subject to

c0 = p0 , c1 = h
(0)
1 (x

(0)
1 ) , c2 = h

(0)
2 (x

(0)
1 , x

(0)
2 ) , c3 = h

(0)
3 (x

(0)
1 , x

(0)
2 , x

(0)
3 ) ,

c6 = p1 , c5 = h
(1)
1 (x

(1)
1 ) , c4 = h

(1)
2 (x

(1)
1 , x

(1)
2 ) , c3 = h

(1)
3 (x

(1)
1 , x

(1)
2 , x

(1)
3 ) ,

however, not all six x
(j)
i , i = 0, 1, j = 0, 1, 2 parameters are independent:

x
(0)
1 , x

(1)
1 > 0, x

(0)
2 , x

(1)
2 ∈ R should be chosen such that there exist x

(0)
3 , x

(1)
3 ∈ R

so that h
(0)
3 (x

(0)
1 , x

(0)
2 , x

(0)
3 ) = h

(1)
3 (x

(1)
1 , x

(1)
2 , x

(1)
3 ). In other words, c3 is under

the influence of both D0 and D1, as shown in Figure 2.9.

Algebraically, this is a system of 3 nonlinear equations with 6 unknowns:

the x
(j)
i parameters of the family of solutions. Instead of trying to formulate

algebraic existence conditions on the solution to this system, let us characterize

the above geometrically.

59



Figure 2.9: A degree 6 GH interpolant to the third order GH interpolation
problem, κ0, κ1 6= 0 case. Control points affected by the D0 GH data tuple are
the ones in blue. Control points in red are affected by the D1 GH data tuple.

The control point constraints can be written as

c0 = p0 , c1 ∈ H
(0)
1 , c2 ∈ H

(0)
2 ,

c3 ∈ H
(0)
3 ∩H

(1)
3 ,

c6 = p1 , c5 ∈ H
(1)
1 , c4 ∈ H

(1)
2 .

It turns out that the above formulation also allows us to concisely summa-

rize the necessary and sufficient condition for the existence of a degree 6 Bézier

G3 interpolant as follows:

Theorem 9 If κ0, κ1 6= 0, there is a degree 6 integral polynomial solution to

the third order GH interpolation problem ⇔ H
(0)
3 ∩H

(1)
3 6= 0.

Proof.

⇒: if a GH interpolant exists, then control point c3, viewed from the t = 0

endpoint, satisfies the c3 ∈ H
(0)
3 condition. If c3 is viewed from the t = 1

endpoint, it satisfies c3 ∈ H
(1)
3 as well. That is, c3 ∈ H

(0)
3 ∩ H

(1)
3 , hence

H
(0)
3 ∩H

(1)
3 6= ∅.

⇐: let c3 ∈ H
(0)
3 ∩H

(1)
3 be an arbitrary point.

Because c3 ∈ H
(0)
3 , due to the definition of H

(0)
3 , there exist x

(0)
1 > 0, x

(0)
2 ∈

R coordinates, such that they produce the y
(0)
3 and z

(0)
3 Frenet coordinates of c3

in F 0, and x
(0)
3 = (c3−p0) · t0. But these tangential coordinates also uniquely

determine c1 and c2, since c1 = h
(0)
1 (x

(0)
1 ) and c2 = h

(0)
2 (x

(0)
1 , x

(0)
2 ).

Similarly, because c3 ∈ H
(1)
3 , there exist x

(1)
1 > 0, x

(1)
2 ∈ R coordinates,

such that they produce the y
(1)
3 and z

(1)
3 Frenet coordinates of c3 in F 1. These

tangential coordinates also uniquely determine c4 = h
(1)
2 (x

(1)
1 , x

(1)
2 ) and c5 =

h
(1)
1 (x(1)).

60



Figure 2.10: Quintic integral polynomial solution to third order GH interpo-
lation. Control points affected by the D0 GH data tuple are the ones in blue.
Control points in red are affected by the D1 GH data tuple.

Because c0 = p0 and c6 = p1, all control points of a GH interpolant are

found.

A more complicated situation arises if the solution is sought among the

degree 5 integral Bézier curves. The inner two control points are constrained

by both D0 and D1, as illustrated in Figure 2.10.

The controls point of all solutions are subject to

c0 = p0 , c1 = h
(0)
1 (x

(0)
1 ) , c2 = h

(0)
2 (x

(0)
1 , x

(0)
2 ) , c3 = h

(0)
3 (x

(0)
1 , x

(0)
2 , x

(0)
3 ) ,

c5 = p1 , c4 = h
(1)
1 (x

(1)
1 ) , c3 = h

(1)
2 (x

(1)
1 , x

(1)
2 ) , c2 = h

(1)
3 (x

(1)
1 , x

(1)
2 , x

(1)
3 ) ,

As a result, from

c0 = p0 , c1 ∈ H
(0)
1 ,

c2 ∈ H
(0)
2 ∩H

(1)
3 , c3 ∈ H

(0)
3 ∩H

(1)
2 ,

c5 = p1 , c4 ∈ H
(1)
1 ,

a necessary condition for the existence of a quintic G3 interpolant is

H
(0)
2 ∩H

(1)
3 6= ∅ ∧ H

(0)
3 ∩H

(1)
2 6= ∅

The existence problem of the quintic interpolant can be constructively

phrased as finding a x ∈ H
(0)
2 ∩ H

(1)
3 point on the osculating plane of D0

such that there exists a y ∈ H
(0)
3 ∩ H

(1)
2 point on the osculating plane of

D1, whose x
(1)
1 , x

(1)
2 tangential coordinates reproduce x, i.e. ∃x

(1)
3 : x =

h
(1)
3 (x

(1)
1 , x

(1)
2 , x

(1)
3 ).

This can be formalized as the fix-point problem of finding x ∈ H
(0)
2 ∩H

(1)
3

such that

x ∈ h
(1)
3

(
h
(0)
3 (x)

)
(2.54)

61



where

h
(i)
3 (x) = {y ∈ E3|x1 =

√
n− 1

n

(x− p(i)) · n(i)

κ(i)
∧

x2 = (x− p(i)) · t(i) ∧

∃x3 ∈ R : y = h
(i)
3 (x1, x2, x3)}

and

h
(i)
3 (A) = {y|∃x ∈ A : y = h

(i)
3 (x)} .

The containment in (2.54) can be formulated as an equation by

x = h
(1)
3

(
h
(0)
3 (x)

)
∩ S(0) .

Both h
(i)
3 maps are continuous, however, in general, they do not fulfill exis-

tence conditions of neither the Brouwer, nor the Schauder fixed-point theorem

since the domain of the problem is an open subset of E3.

Still, fixed-point iterations provide numerical means to compute the control

data of a quintic interpolant, since any fixpoint can be chosen as c2, which in

turn determines c3, hence all the control points of the curve.

2.7.2 Indirect methods

These methods consist of two steps:

1. For each Di: construct a pi(t) : R → E3 basic curve that reconstructs

Di at t = 0

2. For each Di,Di+1 segment: with an appropriate f(t) : R → R blending

function, form the two-endpoint interpolant to Di and Di+1 by

pi,i+1(t) = f(t) · pi(t) + (1− f(t)) · pi+1(t− 1)

The advantage of these methods is that they can be easily incorporated

into design interfaces via the basic curves, see Figure 2.6. In a prior work, we

have shown how a control circle hierarchy based design process can be used to

create aesthetically pleasing curves [22], [23], illustrated in Figure 1.1.
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First, let us consider the construction of basic curves. The cubic

pi(t) = pi + [ti,ni,bi]




t
κi

2
t2 +

κ̂′

i

6
t3

κiτi
6
t3


 , t ∈ R (2.55)

reconstructs a given Di = (pi; ti,ni,bi;κi; κ̂
′
i, τi) third order GH data tuple at

t = 0, if κi 6= 0. This can be seen immediately by applying Theorem 2 to the

derivatives of pi(t).

If κi = 0 and κ̂′
i 6= 0, reconstruction of a τi 6= 0 torsion requires a quartic

polynomial. Similarly, if κi = κ̂′
i = 0, a quintic curve is required to reconstruct

Di, provided κ̂′′
i 6= 0. Since the latter is not constrained by Di, we can always

give it a non-zero value.

The following table summarizes which cubic, quartic, and quintic polyno-

mials reconstruct Di, depending on the curvatures:

κ κ̂′ τ polynomial curve

6= 0 6= 0 ∈ R




t
κi

2
t2 +

κ̂′

i

6
t3

κiτi
6
t3




0 ∈ R 0




t
κ̂′

i

6
t3

0




0 6= 0 ∈ R− {0}




t
κ̂′

i

6
t3 +

κ̂′′

i

24
t4

κ̂′

iτi
12

t4




0 0 ∈ R− {0}




t
κ̂′′

i

24
t4 +

κ̂′′′

i

120
t5

κ̂′′

i τi
40

t5




The proof of these reconstruction properties can be found in Appendix B.

Next, an appropriate geometric blending function construction has

to be formulated. In [17], Hartmann proposes the use of the following rational

Gn blending function:

fn,µ =
µ(1− t)n+1

µ(1− t)n+1 + (1− µ)tn+1
, t ∈ [0, 1]
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where n ≥ 0, and µ ∈ (0, 1) is a design parameter called the balance of blending

function fn,µ.

More generally, any Cn function that satisfies

f(0) = 1 , f(1) = 0 , (2.56)

f (k)(0) = f (k)(1) = 0 , k = 1, .., n (2.57)

is a Cn blending function and as such, f(t) ·pi(t)+(1−f(t)) ·pi+1(t) has a Cn

contact with pi(t) and pi+1(t) at pi,i+1(0) and pi,i+1(1), respectively. In turn,

this means that

p
(k)
i,i+1(0) = p

(k)
i (0)

p
(k)
i,i+1(1) = p

(k)
i+1(0)

k = 0, ..n, that is, pi,i+1(t) also reconstructs Di and Di+1 at t = 0 and t = 1.

From (2.56)-(2.56), an integral quintic blending function can be found for

the construction of second order GH interpolants as

f(t) = −6t5 + 15t4 − 10t3 + 1 ,

while a septic blending function, for third order GH blending, has the form of

f(t) = 20t7 − 70t6 + 84t5 − 35t4 + 1 .

These blending functions are readily found by Hermite interpolation.

If κi, κi+1 6= 0, each GH interpolant segment consists of a rational septic

curve using Hartmann’s rational blending function. Integral septic Hermite

blending functions yield a degree 10 GH interpolant segment.

The corresponding direct solution was a degree 7 integral polynomial, that

is, these indirect methods yield either rational or higher degree solutions.

This is an unfortunate disadvantage of indirect methods: even though spec-

ifying higher order geometric input can be done intuitively via using basic

curves as control shapes, the resulting curve might be of higher complexity.

Now, I propose an algorithm for blending polynomial basic curves in such

a way that the result matches the degree of the matrix-inversion based direct

methods.
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The algorithm first converts the pi(t),pi+1(t) basic polynomials to Bézier

form. The degree of these Bézier basic curves are then elevated to the degree

that is guaranteed to offer a solution, specified by Theorem 7. After degree

elevation, all control points that are affected by reconstruction of Di and Di+1

are independent of each other. Together, they form a degree n1+n2+1+h0+h1

Bézier curve that reconstructs Di and Di+1 at t = 0 and t = 1.

Algorithm 4 Parabolic n-th order GH interpolant

1: procedure CreateInterpolant(D0, D1,
−→x 1,

←−x 1)
2: p0(t)← GetParabola(D0,

−→x 1)
3: p1(t)← GetParabola(D1,

←−x 1)
4: m← n1 + n2 + 1 + h0 + h1

5: Convert :
6: b0(t)← ToBezier(p0(t))
7: b1(t)← ToBezier(p1(t))
8: DegreeElevate:
9: b(t)← DegreeElevateTo(b0(t),m)
10: c(t)← DegreeElevateTo(b1(t),m)
11: Combine:
12: d0, ..,dn1+h0 ← b0, ..,bn1+h0

13: dn1+h0+1, ..,dn1+n2+1+h0+h1 ← cn1+h0+1, .., cn1+n2+1+h0+h1

14: Return:
15: d(t), defined by control points d0, ..,d2n+1+h0+h1

That is, Algorithm 4 results in a degree n1+n2+1+h0+h1 Bézier solution

to given n1-th and n2-th order GH data tuples D0,D1, with two degrees of

freedom, −→x 1,
←−x 1 > 0. In the case of symmetric third order GH interpolation,

if κi, κi+1 6= 0, the solution is of degree 7.

In Algorithm 4, the function GetParabola returns a basic curve recon-

structing the argument GH data tuple, with the given scalar as the tangential

coordinate of its first derivative. This way the user can control the magnitude

of the speed at endpoints.

These −→x 1,
←−x 1 > 0 degrees of freedom can be also considered as the design

parameters of the algorithm, specifying the relative weights of their respective

basic curve in the formulation of the GH interpolant segment.

In general, basic curves provide simple means to specify higher order geo-

metric input. Their simplicity can be taken advantage of even if one is using

parametrization optimization methods to compute a GH interpolant.
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Chapter 3

Geometric Hermite

interpolation of Surfaces

3.1 Overview

Interpolating a set of points with parametric surfaces has been an extensively

studied topic in the literature. It is not only prevalent in modeling, it has im-

portant applications in reconstruction, design, visualization, and other areas.

Incorporating first order geometric data of surfaces into this problem yields

point-normal interpolation, which also gathered attention in the literature [52],

[11]. However, references to generalizations to second and higher order geo-

metric data is much less often found, these quantities are usually involved only

indirectly via energy minimizing and fairing functionals [33].

In many applications, this absence of attention is justified by the circum-

stances of data acquisition: if the set of points are obtained by measurements,

estimating higher order geometric quantities of the scanned surface is often

discouraged by measurement errors. However, in modeling and design, these

quantities can be easily made available, even without explicit specification of

these data.

Before formalizing the general geometric Hermite surface interpolation prob-

lem, I investigate a case study of second order GH surface interpolation in the

following section. The exploration of this specific topic is absent from the

literature, but it provides important insight into common problems of GH

interpolation of surfaces. The contents of Section 3.2 are from our paper [50].
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The general formulation follows in Section 3.3, and the analogue of the

parabola GH curve interpolant is presented in the final Section of this chapter.

Throughout this chapter all parametric surfaces are assumed to be regular

and sufficiently many times continuously differentiable.

3.2 Second order geometric Hermite interpo-

lation of surfaces

3.2.1 Introduction

The problem of second order GH interpolation has been studied for a wide

range of curves, including integral and rational Bézier curves ([41]), Pythagorean

Hodograph curves ([2]), Pythagorean Hodograph spiral curves ([54], [16]).

Surfaces that interpolate position and normal data, which can be considered

as the generalization of first order geometric Hermite curve interpolation, have

been studied in the literature, e.g. ([36]), ([42]).

Moreton used scattered data interpolation techniques to interpolate posi-

tional, surface normal and principal curvature data by solving nonlinear opti-

mization of fairness and engergy functionals subject to geometric reconstruc-

tion constraints [33]. His paper, however, did not give a geometric characteri-

zation of the reconstruction problem, instead, it focused on the incorporation

of functional minimization into the design process.

In this section, I characterize a generalization of second order geometric

Hermite interpolation to surfaces by examining the conditions for reconstruct-

ing G2 surface base point data, that is, position, normal, principal curvature,

and principal direction data, at a given point of a regular parametric surface.

3.2.2 Conditions for second order GH interpolation

Let us consider a regular parametric surface s : R2 → E3 and a (u0, v0) point

in its domain, and let there be given a G2 base point data tuple

D = (p,m, t1, t2, κ1, κ2), (3.1)

67



which is to be reconstructed at s(u0, v0), where p ∈ E3 denotes a point in the

Euclidean space, m ∈ R3 is the unit surface normal, κ1, κ2 ∈ R are princi-

pal curvature values, and t1, t2 ∈ R3 are corresponding principal directions,

|m| = |t1| = |t2| = 1, and κ1 is the minimum and κ2 is the maximum nor-

mal curvature. Without loss of generality, we assume that (t1, t2,m) form a

right-handed orthonormal base of R3, i.e. m = t1 × t2.

Let us examine what local constraints the regular parametric surface s(u, v)

should satisfy in order to reconstruct the second order geometric data of D at

parameter (u0, v0).

Analogously to the curve case, our goal is to find constraints on the par-

tial derivatives of the surface, such that when satisfied, they guarantee the

reconstruction of the given geometric Hermite data.

• Position reconstruction: interpolation of position p given in D re-

quires that

s(u0, v0) = p (3.2)

should hold at (u0, v0) for the surface s(u, v).

• Normal reconstruction: let su(u, v) and sv(u, v) denote the u and v

partial derivatives and let

m(u, v) =
su(u, v)× sv(u, v)

|su(u, v)× sv(u, v)|

be the unit surface normal function of s at (u, v). Interpolation of the normal

m ∈ D of the base point data at (u0, v0) means that m(u0, v0) = m should

hold.

To simplify notation, let su and sv denote the u and v partial derivatives

of s(u, v) at (u0, v0), i.e. su = su(u0, v0) and sv = sv(u0, v0), and let TD denote

the tangent plane corresponding to the data specified in D:

TD = {x ∈ E3 | (x− p) ·m = 0} .

To match the surface normal with m, the partial derivatives su and sv

should lie in the TD plane and their cross product should have the same

direction as m. The latter can be written as prescribing that their dot product

should be positive:

(su × sv) ·m > 0 (3.3)
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Proposition 10 A regular parametric surface s : R2 → E3 interpolates the

normal m of the G2 base point data if and only if there exist (xu, yu) ∈ R2

and (xv, yv) ∈ R2, such that

su(u0, v0) = xut1 + yut2 (3.4)

sv(u0, v0) = xvt1 + yvt2 (3.5)

0 < xuyv − xvyu (3.6)

Proof. (3.4) and (3.5) stipulate that the partial derivatives su and sv can be

expressed in the (t1, t2) orthonormal basis of TD, such that their length is

greater than zero and (3.6) is the expression of condition (3.3) in terms of the

partial derivatives’ coordinates with respect to (t1, t2), utilising that (t1, t2,m)

form a right-handed orthonormal basis.

• Principal curvature value and direction reconstruction: let us

find what conditions should hold so that a regular parametric surface

s(u, v) has prescribed κ1, κ2 principal curvature values and t1, t2 principal

directions at (u0, v0).

Let us assume that the position and normal reconstruction conditions are

already satisfied at (u0, v0), and that the principal curvature values and direc-

tions at (u0, v0) are κ1, κ2 ∈ D and t1, t2 ∈ D.

Now we show that, by choosing three specific independent tangent direc-

tions, the second order partial derivates suu = suu(u0, v0), suv = suv(u0, v0),

and svv = svv(u0, v0) are subject to simple geometric constraints.

Given a tangent vector in the tangent planeTD, with coordinates (du, dv) 6=

0 in the (su, sv) skew basis of the tangent plane, the normal curvature along

that tangent at (u0, v0) can be computed as [9]

κ(du, dv) =
II

I
=

L · du2 + 2M · du · dv +N · dv2

E · du2 + 2F · du · dv +G · dv2
(3.7)

The coefficients of the first and second fundamental forms above are com-
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puted at (u0, v0) as

E = su · su = x2
u + y2u

F = su · sv = xuxv + yuyv

G = sv · sv = x2
v + y2v

L = suu ·m = zuu

M = suv ·m = zuv

N = svv ·m = zvv

where partial derivatives, with respect to the (t1, t2,m) Darboux frame are

su = xut1 + yut2

sv = xvt1 + yvt2

suu = xuut1 + yuut2 + zuum

suv = xuvt1 + yuvt2 + zuvm

svv = xvvt1 + yvvt2 + zvvm

If principal curvatures and corresponding directions are known, the normal

curvature along a tangent direction is computed using the angle α between the

tangent direction and the principal direction t1 by Euler’s theorem:

κ(α) = κ1 cos
2 α + κ2 sin

2 α (3.8)

By choosing a d ∈ TD direction in the tangent plane, we can use both

(3.7) and (3.8) to compute the normal curvature corresponding to d, either

by using its coordinates in the (su, sv) or the (t1, t2) basis. Both expressions

should yield the same, that is

L · du2 + 2M · du · dv +N · dv2

E · du2 + 2F · du · dv +G · dv2
= κ1 cos

2 α + κ2 sin
2 α (3.9)
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Figure 3.1: Normal curvature of a curve on surface with given tangent vector
d = cosα · t1 + sinα · t2 = du · su + dv · sv ∈ TD can be computed by (3.7) in
the (t1, t2) orthonormal basis of TD, and by (3.8) in the (su, sv) skew basis of
TD.

should hold, where α = tan−1 du·yu+dv·yv
du·xu+dv·xv

since

d = du · su + dv · sv

= du · (xut1 + yut2) + dv · (xvt1 + yvt2)

= (du · xu + dv · xv)t1 + (du · yu + dv · yv)t2

Let us substitute the trigonometric functions in (3.9) by

cosα =
du · xu + dv · xv√

(du · xu + dv · xv)2 + (du · yu + dv · yv)2

sinα =
du · yu + dv · yv√

(du · xu + dv · xv)2 + (du · yu + dv · yv)2

after which (3.9) can be written as

II

I
=

Ldu2 + 2Mdudv +Ndv2

Edu2 + 2Fdudv +Gdv2
=

κ1(du · xu + dv · xv)
2 + κ2(du · yu + dv · yv)

2

(du · xu + dv · xv)2 + (du · yu + dv · yv)2

(3.10)
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Note that

I = E · du2 + 2F · du · dv +G · dv2

= (x2
u + y2u) · du

2 + 2(xuxv + yuyv) · du · dv + ·(x
2
v + y2v) · dv

2

= (du · xu + dv · xv)
2 + (du · yu + dv · yv)

2

that is, the denominators are equal, which simplifies (3.10) into

II = L · du2 + 2M · du · dv +N · dv2 = κ1(du · xu + dv · xv)
2 + κ2(du · yu + dv · yv)

2

(3.11)

By evaluating (3.11) along the su, su + sv, and sv tangents, the following

constraints are found on the second order partial derivatives:

• d = su: in this case (du, dv) = (1, 0) and, since zuu = L

L = zuu = κ1x
2
u + κ2y

2
u

that is, for the suu = xuut1 + yuut2 + zuum partial derivative

zuu = κ1x
2
u + κ2y

2
u

should hold.

• d = sv: in this case (du, dv) = (0, 1) and, since N = zvv

N = zvv = κ1x
2
v + κ2y

2
v ,

that is, for the svv = xvvt1 + yvvt2 + zvvm partial derivative

zvv = κ1x
2
v + κ2y

2
v

should hold.

• d = su + sv: in this case (du, dv) = (1, 1) giving

L+ 2M +N = κ1(xu + xv)
2 + κ2(yu + yv)

2
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and since M = zuv,

zuv =
1

2

(
κ1(xu + xv)

2 + κ2(yu + yv)
2 − L−N

)

=
1

2

(
κ1(xu + xv)

2 + κ2(yu + yv)
2 − (κ1x

2
u + κ2y

2
u)− (κ1x

2
v + κ2y

2
v)
)

= κ1xuxv + κ2yuyv

should hold.

To formulate the conditions for curvature reconstruction, we utilize the

Three Tangents Theorem proven by Pegna and Wolter in [29], which states

the following:

Theorem 11 (Three Tangents Theorem) Let there be given two C2 smooth

surfaces s1, s2 : R2 → E3 that are tangent at a point p0 ∈ E3. The two surfaces

have the same normal curvatures along any tangent direction at that point if

and only if they have the same normal curvatures along three tangent direc-

tions of which any two are linearly independent.

The theorem is used to prove the following

Theorem 12 Let s : R2 → E3 be a regular parametric surface that interpolates

the position and normal data of the G2 base point data D at (u0, v0). The

surface interpolates the principal curvature data at (u0, v0) as well if and

only if the following hold for the second order partial derivatives:

zuu = κ1x
2
u + κ2y

2
u (3.12)

zuv = κ1xuxv + κ2yuyv (3.13)

zvv = κ1x
2
v + κ2y

2
v (3.14)

Proof. ⇒: this follows directly from the derivation above. ⇐: since s(u, v)

is regular, the tangent directions su, su + sv, and sv are pairwise linearly

independent.

If the second partial derivatives of s(u, v) are such that (3.12)-(3.14) hold,

the normal curvatures of s(u, v) along su, su + sv, sv equal to the normal

curvatures specified by Euler’s theorem. By the Three Tangents Theorem this

means that s(u, v) has the same normal curvatures along all tangent directions
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as specified by the Euler theorem, which proves that at (u0, v0) surface s(u, v)

has principal curvature values κ1, κ2 and corresponding principal directions

t1, t2, given in D.

Intuitively, Theorem 12 has the following geometric interpretation: if the

parametrization of the tangent plane is given, that is, the su and sv partial

derivatives are set, the reconstruction of principal curvature relations poses

restrictions on the second partial derivatives suu, suv, and svv along the surface

normal m only, with respect to the local (t1, t2,m) base. Each of the second

partial derivative vectors must lie in a specific offset plane of the tangent

plane, and they can be moved parallel to the tangent plane without affecting

the principal curvature reconstruction. This is analogues to the fact that

geometric continuity in curves realized a scalar degree of freedom along the

tangential Frenet coordinate of derivatives.

3.2.3 Quadrilateral Bézier patches

3.2.3.1 Four corner GH interpolation

Let there be given four G2 base point data tuples

D(ij) = (p(ij),m(ij), t
(ij)
1 , t

(ij)
2 , κ

(ij)
1 , κ

(ij)
2 ),

i, j = 0, 1. Four corner second order geometric Hermite interpolation aims at

finding a

b(u, v) =
m∑

j=0

n∑

i=0

bijB
n
i (u)B

m
j (v),

quadrilateral Bézier surface, (u, v) ∈ [0, 1]2,bij ∈ E3, i = 0, .., n, j = 0, ..,m,

n,m ≥ 2, that reconstructs the D(ij) base point data at its parametric corners,
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that is a surface for which

b(i, j) = p(ij) (3.15)

m(i, j) = m(ij) (3.16)

κ1(i, j) = κ
(ij)
1 (3.17)

κ2(i, j) = κ
(ij)
2 (3.18)

t1(i, j) = t
(ij)
1 (3.19)

t2(i, j) = t
(ij)
2 (3.20)

holds for i, j = 0, 1, where κ1(u, v), κ2(u, v) denote the principal curvature

values, t1(u, v), t2(u, v) denote the corresponding principal directions of b(u, v)

at (u, v).

Let us begin the inspection of the problem by considering the parametric

corner (u, v) = (0, 0), and let us find the control points necessary for the

reconstruction of the second order geometric Hermite data in D(00). For the

sake of simplicity, we omit the upper indices of D(00) and its members, i.e.

D = D(00),p = p(00), etc. in what follows.

Position reconstruction (3.15) states that b(0, 0) = p should hold, imposing

the

b00 = p

constraint on control point b00, which is the only control point required for

the position interpolation.

Normal reconstruction (3.16) states that m(0, 0) = m should hold. The

normal at (u, v) = (0, 0) is computed as

m(0, 0) =
∆10b00 ×∆01b00

|∆10b00 ×∆01b00|

for which control points b00,b10,b01 are used.

Fulfilment of principal curvature reconstruction conditions (3.17) - (3.20)

require the first and second fundamental forms, which, in the case of the
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Figure 3.2: The control points of a Bézier surface that determine the position,
tangent plane, and principal curvature relations at (u, v) = (0, 0)

(u, v) = (0, 0) corner, are written as

E(u, v) = bu · bu = n2∆10b00 ·∆
10b00

F (u, v) = bu · bv = nm∆10b00 ·∆
01b00

G(u, v) = bv · bv = m2∆01b00 ·∆
01b00

L(u, v) = buu ·m = n(n− 1)∆20b00 ·m

M(u, v) = buv ·m = nm∆11b00 ·m

N(u, v) = bvv ·m = m(m− 1)∆02b00 ·m

The control points required for a second order geometric Hermite recon-

struction at (u, v) = (0, 0) are b00,b10,b01,b20,b11,b02, shown in figure 3.2.

The reconstruction poses 8 scalar constraints on these six control points.

To make these constraints explicit, let us express the control points in the

coordinate system (p; t1, t2,m) – that is, the coordinate system centered at p

and having the Darboux-frame as axes – as

bij = p+
[
t1 t2 m

]



xij

yij

zij


 , i, j ∈ N, i+ j ≤ 2,
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Using the results of Propositions 10 and Theorem 12, and the expression of

partial derivatives with respect to control points, the control points take the

form

b00 = p (3.21)

b10 = p+
xu

n
t1 +

yu
n
t2 (3.22)

b01 = p+
xv

m
t1 +

yv
m
t2 (3.23)

b20 = p+
xuu + 2(n− 1)xu

n(n− 1)
t1 +

yuu + 2(n− 1)yu
n(n− 1)

t2 +
zuu

n(n− 1)
m (3.24)

b11 = p+
xuv +mxu + nxv

nm
t1 +

yuv +myu + nyv
nm

t2 +
zuv
nm

m (3.25)

b02 = p+
xvv + 2(m− 1)xv

m(m− 1)
t1 +

yvv + 2(m− 1)yv
m(m− 1)

t2 +
zvv

m(m− 1)
m (3.26)

where the coordinates (xu, yu), (xv, yv) are subject to (3.6), and zuu, zuv, zvv

should satisfy (3.12)-(3.14). The coordinates (xuu, yuu), (xuv, yuv), and (xvv, yvv)

can be chosen freely.

To give a more geometric interpretation of (3.24)-(3.26), let us denote the

lifted tangent planes of D along the surface normal by

M(ij)(m) = {x ∈ E3|(x− p(ij)) ·m(ij) = m}.

In the case of the (u, v) = (0, 0) corner, (3.24) - (3.26) can be written as

b20 ∈M(z20) (3.27)

b11 ∈M(z11) (3.28)

b02 ∈M(z02) (3.29)

where we define

z20 =
zuu

n(n− 1)
(3.30)

z11 =
zuv
nm

(3.31)

z02 =
zvv

m(m− 1)
(3.32)

We can now turn to the discussion of all four corners. The control points
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required for the reconstruction of G2 base point data are

bi·n+(−1)ik,j·m+(−1)j l ∈ E3 (3.33)

i, j = 0, 1, and k + l ≤ 2.

Their coordinates can be formulated similarly as in the case of the (u, v) =

(0, 0) corner, however, it must be noted that the computation of the offsets of

the lifted tangent planes differ in the diagonal tangent directions.

This follows from the fact that in (3.11), the computation of the z
(ij)
uu ,

z
(ij)
uv , z

(ij)
vv coordinates of the second partial derivatives at corner (ij) have to

be done by parametric directions ((−1)i, 0), ((−1)i, (−1)j), (0, (−1)j), respec-

tively. Since

• (du, dv) = (1, 0) : L = κ1x
2
u + κ2y

2
u → L = zuu = κ1x

2
u + κ2y

2
u

• (du, dv) = (0, 1) : N = κ1x
2
v + κ2y

2
v → N = zvv = κ1x

2
v + κ2y

2
v

• (du, dv) = (−1, 0) : L = κ1x
2
u + κ2y

2
u → L = κ1x

2
u + κ2y

2
u = zuu

• (du, dv) = (0,−1) : N = κ1x
2
u + κ2y

2
u → N = κ1x

2
v + κ2y

2
v = zvv

the offset of the lifted tangent planes of the uu and vv partial derivatives

(and by that, the planes of the b20,b02, etc. control points) is the same in

the (1, 0),(−1, 0), and (0, 1), (0,−1) directions, but in the case of the mixed

partial derivatives they differ because

• (du, dv) = (1, 1):

zuv(1, 1) =
1

2

(
κ1(xu + xv)

2 + κ2(yu + yv)
2 − L−N

)

= κ1xuxv + κ2yuyv

• (du, dv) = (−1, 1) :

zuv(−1, 1) = −
1

2

(
κ1(−xu + xv)

2 + κ2(−yu + yv)
2 − L−N

)

= −κ1xuxv − κ2yuyv = −zuv(1, 1)
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Figure 3.3: Control net of the bi-quintic Bézier patch. The red, blue, green,
and azure regions correspond to the control points that are necessary for the
reconstruction of G2 base point data D(00), D(10), D(11), and D(01).

• (du, dv) = (−1,−1) :

zuv(−1,−1) =
1

2

(
κ1(xu + xv)

2 + κ2(yu + yv)
2 − L−N

)

= zuv(1, 1)

• (du, dv) = (1,−1) :

zuv(1,−1) = −
1

2

(
κ1(−xu + xv)

2 + κ2(−yu + yv)
2 − L−N

)

= −κ1xuxv − κ2yuyv = −zuv(1, 1)

3.2.3.2 Bi-quintic Bézier patch

The four corner Bézier second order geometric Hermite interpolation can be

always solved by bi-quintic integral Bézier surfaces.

Theorem 13 There is always a quadrilateral bi-quintic integral Bézier sur-

face solution for the four corner second order geometric Hermite interpolation

problem.
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Proof. To prove the proposition, we have to choose the coordinates of all

control points such that the surface reconstructs the prescribed base point

data at its parametric corners.

In the m = n = 5 bi-quintic case, the control points required for the

reconstruction of corner base point data do not overlap, that is, each corner’s

six control points can be determined independently, see figure 3.3.

Let us consider the corner (u, v) = (0, 0). The equations (3.21)-(3.26) take

the form

b00 = p

b10 = p+
xu

5
t1 +

yu
5
t2

b01 = p+
xv

5
t1 +

yv
5
t2

b20 = p+
xuu + 10xu

20
t1 +

yuu + 10yu
20

t2 +
zuu
20

m

b11 = p+
xuv + 5(xu + xv)

25
t1 +

yuv + 5(yu + yv)

25
t2 +

zuv
25

m

b02 = p+
xvv + 10xv

20
t1 +

yvv + 10yv
20

t2 +
zvv
20

m

Position reconstruction is satisfied by the choice b00 = p.

We can always find a u and v partial derivative xut1+yut2, xvt1+yvt2 that

satisfy (3.6), for example t1 and t2, which determines the position of control

points b10,b01. By proposition 10, normal reconstruction is satisfied.

Any point can be choosen for b20,b11,b20 from theM(z20), M(z11), M(z02)

lifted tangent planes, respectively. By (3.30)-(3.32) and Theorem 12, the cur-

vature relations are also reconstructed. The other corners are analogous.

The 12 control points in the middle of the control polyhedron, not required

for any of the corner’s G2 base point data’s reconstruction, can be chosen

freely.

3.2.3.3 Bi-quartic Bézier patch

The control points required for the G2 base point reconstruction are not in-

dependent in the bi-quartic case. Each of the b20,b02,b24,b42 control points
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Figure 3.4: The control points required for base point data reconstruction in
the case of a 4x4-es Bézier surface. The red, green, blue, and azure areas are
the control points required for D(00),D(10),D(01),D(11).

depend on two base point data tuples:

b20 ∈M(00)(z
(00)
20 ) ∩M(10)(z

(10)
20 ) (3.34)

b02 ∈M(00)(z
(00)
02 ) ∩M(01)(z

(01)
02 ) (3.35)

b24 ∈M(01)(z
(01)
20 ) ∩M(11)(z

(11)
20 ) (3.36)

b42 ∈M(10)(z
(10)
20 ) ∩M(11)(z

(11)
20 ) (3.37)

These overlapping control points and the control polyhedron are shown in

figure 3.4.

Only the overlapping control points and the ones that are used for the first

partial derivatives require further inspection, the rest can be chosen as in the

previous subsection.

In the following, we examine the overlapping control points, and whether a

boundary curve, satisfying the base point data reconstruction constraints, can

be constructed between the corresponding base point data tuples.

Let us consider the case of control point b20, and the v = 0 boundary curve
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of b(u, v). The other overlapping control points, and their boundary curves

are analogous.

Equation (3.34) states that b20 should lie on the intersection of M(00)(z
(00)
20 )

and M(10)(z
(10)
20 ).

• If m(00) is not parallel to m(10), the above intersection is a line l. Any

point of l is such that the (00) and (10) corner base point reconstruction

conditions are satisfied, and thus can be choosen as b20.

• If m(00) and m(10) are parallel, the lifted tangent planes M(00)(z
(00)
20 ) and

M(10)(z
(10)
20 ) have to coincide, or else, no suitable b20 control point can be

chosen. If M = M(00)(z
(00)
20 ) = M(10)(z

(10)
20 ) can be arranged, any point

of M satisfies the second order reconstruction constraints.

Let us examine the conditions necessary to guarantee the M(00)(z
(00)
20 ) =

M(10)(z
(10)
20 ) equality!

For the sake of simplicity, let M(ij) denote M(ij)(z
(ij)
20 ), i, j = 0, 1, and

p
(ij)
M ∈M(ij) the closest point of M(ij) to p(ij), that is

p
(00)
M = p(00) + z

(00)
20 m(00) (3.38)

p
(10)
M = p(10) + z

(10)
20 m(10) (3.39)

Equality M(00) = M(10) holds if and only if

(p
(00)
M − p

(10)
M ) ·m = 0, (3.40)

where m = m(00) = m(10). By definition (3.30) of z
(ij)
20

0 =(p
(00)
M − p

(10)
M ) ·m

=
(
p(00) + z

(00)
20 m(00) − (p(10) + z

(10)
20 m(10))

)
·m

=
(
(p(00) − p(10)) + (z

(00)
20 m(00) − z

(10)
20 m(10))

)
·m

=(p(00) − p(10)) ·m

+
1

12

(
κ
(00)
1 (x(00)

u )2 + κ
(00)
2 (y(00)u )2

)
m(00) ·m

−
1

12

(
κ
(10)
1 (x(10)

u )2 + κ
(10)
2 (y(10)u )2)m(10) ·m
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that is, (3.40) is a quadratic equation with four unknowns (x
(00)
u , y

(00)
u ), (x

(10)
u , y

(10)
u ),

the coordinates of the bu(0, 0), bu(1, 0) partial derivatives in the bases (t
(00)
1 , t

(00)
2 ),

(t
(10)
1 , t

(10)
2 ).

Let (l
(00)
u , γ

(00)
u ), (l

(10)
u , γ

(10)
u ) be such that

l(00)u (cos γ(00)
u , sin γ(00)

u ) = (x(00)
u , y(00)u )

l(10)u (cos γ(10)
u , sin γ(10)

u ) = (x(10)
u , y(10)u ).

Using these polar unknowns, (3.40) can be written as

0 =(p(00) − p(10)) ·m〉

+
1

12
l(00)u

2
(κ

(00)
1 cos2 γ(00)

u + κ
(00)
2 sin2 γ(00)

u )m(00) ·m

−
1

12
l(10)u

2
(κ

(10)
1 cos2 γ(10)

u + κ
(10)
2 sin2 γ(10)

u )m(10) ·m

Let us introduce the coefficients and variables

a =
1

12
(κ

(00)
1 cos2 γ(00)

u + κ
(00)
2 sin2 γ(00)

u )m(00) ·m

b =
1

12
(κ

(10)
1 cos2 γ(10)

u + κ
(10)
2 sin2 γ(10)

u )m(10) ·m

c = (p(00) − p(10)) ·m

x = l(00)u

y = l(10)u

so that (3.40) can be written as

ax2 − by2 + c = 0 . (3.41)

Let the angles γ
(00)
u , γ

(10)
u be fixed. Now (3.41) can be interpreted as a

quadratic curve.

Any point of the curve (3.41), that satisfies x > 0, y > 0, corresponds to a

partial derivative length pair l
(00)
u , l

(10)
u , such that (l

(00)
u , γ

(00)
u ), (l

(10)
u , γ

(10)
u ) rep-

resent bu(0, 0), bu(1, 0) partial derivatives, whose M(00), M(10) lifted tangent

planes coincide. These points of the quadratic curves solve the second order

geometric Hermite interpolation problem along their boundary curve in the

case of parallel normals.
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Table 3.1 details the different types of quadratic curves the above a, b, c co-

efficents can determine. Curves in bold denote a, b, c coefficient configurations

where no solution can be given. Red curves denote coefficient configurations

where no real solution can be given, while the curves in blue correspond to

curves that do not have any points in the first quadrant x > 0, y > 0.

The coefficient c depends on the input data only, its value and sign cannot

be changed. The sign of coefficients a and b, on the other hand, depend on

the choice of γ
(00)
u , γ

(10)
u , and the principal curvature signs. If κ

(00)
1 < 0 and

κ
(00)
2 > 0, the sign of a can be chosen to be negative, positive, or zero by

selecting an appropriate γ
(00)
u angle. This can be utilized to change a specific

(3.41) curve providing no solutions, into a real one, having points inside the

first quadrant, if the curvature configurations allow it.

We can use this remark to characterize the existence of bi-quartic Bézier

solutions for the four corner base point interpolation problem. In order to

do this, let H(ij) denote the half-space containing all the possible, bu partial

derivative dependent, lifted tangent planes, that is let

H(ij) = {p(ij) + αt
(ij)
1 +βt

(ij)
2 + γm(ij)|

α, β ∈ R, γ = sx, x > 0, s ∈ [sgn(κ
(ij)
1 ), sgn(κ

(ij)
2 )]},

where

sgn(x) =





1, x > 0

0, x = 0

−1, x < 0

The derivation above proves the following

Theorem 14 The four corner second order geometric Hermite interpolation

problem can be solved using quadrilateral bi-quartic integral Bézier surfaces if

and only if

H(ij) ∩H(kl) 6= ∅ (3.42)

holds for all neighbouring D(ij), D(kl) base point data.

Proof. Let (a) and (b) denote arbitrary neighbouring base point indices. If

m(a) is not parallel to m(b), then the intersection (3.42) is not empty, since

it contains the intersection line l, on which any point solves the interpolation

problem along the corresponding boundary curve.
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a b c equation of the quadratic type of the quadratic

+ - + q2x2 + r2y2 + t2 = 0 ellipse (imaginary)
+ - - q2x2 + r2y2 − t2 = 0 ellipse (real)
+ - 0 q2x2 + r2y2 = 0 intersecting lines (imaginary)
+ + + q2x2 − r2y2 + t2 = 0 hyperbola
+ + - q2x2 − r2y2 − t2 = 0 hyperbola
+ + 0 q2x2 − r2y2 = 0 intersecting lines (real)
+ 0 + q2x2 + t2 = 0 parallel lines (imaginary)
+ 0 - q2x2 − t2 = 0 parallel lines (real) (x = ±| t

q
|)

+ 0 0 q2x2 = 0 coincident line x = 0
- - + −q2x2 + r2y2 + t2 = 0 hyperbola
- - - −q2x2 + r2y2 − t2 = 0 hyperbola
- - 0 −q2x2 + r2y2 = 0 intersecting lines (real)
- + + −q2x2 − r2y2 + t2 = 0 ellipse (real)
- + - −q2x2 − r2y2 − t2 = 0 ellipse (imaginary)
- + 0 −q2x2 − r2y2 = 0 intersecting lines (imaginary)
- 0 + −q2x2 + t2 = 0 parallel lines (real) (x = ±| t

q
|)

- 0 - −q2x2 − t2 = 0 parallel lines (imaginary)
- 0 0 −q2x2 = 0 coincident line x = 0
0 - + r2y2 + t2 = 0 parallel lines (imaginary)
0 - - r2y2 − t2 = 0 parallel lines (real) (y = ±| t

r
|)

0 - 0 r2y2 = 0 coincident line y = 0
0 + + −r2y2 + t2 = 0 parallel lines (real) (y = ±| t

r
|)

0 + - −r2y2 − t2 = 0 parallel lines (imaginary)
0 + 0 −r2y2 = 0 coincident line y = 0
0 0 + t2 = 0 no solution
0 0 - −t2 = 0 no solution
0 0 0 0 = 0 the entire plane

Table 3.1: Table of quadratics in coordinates l
(00)
u , l

(10)
u . The first three columns

are the signs of the a, b, c ∈ {−, 0,+} coefficients. The fourth column is the
equation of the quadratic, determined by the signs of the a, b, c coefficients,
q, r, t > 0. The fifth column is the type of the curve.
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Figure 3.5: The control points required for base point data reconstruction in
the case of a 3x3-es Bézier surface. The red, green, blue, and azure areas are
the control points required for D(00),D(10),D(01),D(11).

If m(a)||m(b), the lifted tangent planes M(a) and M(b) can be moved such

that they coincide. All these planes lie in (3.42).

3.2.3.4 Bi-cubic Bézier patch

The control net of a bi-cubic Bézier patch has double overlaps of G2 recon-

struction control point regions along the boundary curves, as shown in figure

3.5.

Let us consider the case of D(00) and D(10), and the v = 0 boundary curve.
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Using (3.21)-(3.26), the control points are written as

b00 = p(00)

b10 = p(00) +
x
(00)
u

3
t
(00)
1 +

y
(00)
u

3
t
(00)
2

= p(10) +
x
(10)
uu + 2x

(10)
u

6
t
(10)
1 +

y
(10)
uu + 2y

(10)
u

6
t
(10)
2 +

z
(10)
uu

6
m(10)

b20 = p(10) +
x
(10)
u

3
t
(10)
1 +

y
(10)
u

3
t
(10)
2

= p(00) +
x
(00)
uu + 2x

(00)
u

6
t
(00)
1 +

y
(00)
uu + 2y

(00)
u

6
t
(00)
2 +

z
(00)
uu

6
m(00)

b30 = p(10)

Each inner control point must lie on the intersection of a tangent plane and

a lifted tangent plane:

b10 ∈ T(00) ∩M(10) (3.43)

b20 ∈ T(10) ∩M(00) (3.44)

where M(ij) denotes M(ij)(m
(ij)
20 ) again, and T(ij) = TD(ij) , i, j = 0, 1.

Let us examine when (3.43) and (3.44) can be satisfied. To do that, we

have to separate the case of non parallel and parallel normals:

• If m(00) is not parallel to m(10), then we have two intersection lines

l0 = T(00) ∩M(10)

l1 = T(10) ∩M(00)

if H(00) ∩T(10) 6= ∅ and H(10) ∩T(00) 6= ∅.

Let us choose a q ∈ T(00) point as the b10 control point. This determines

the l1 intersection line, along which control point b20 may be placed.

The set of control points x = p(10) + xt
(10)
1 + yt

(10)
2 ∈ T(10), that create
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intersection lines l0, such that b1 ∈ l0, are subject to

0 = (q− p
(10)
M ) ·m(10)

= (q− p(10)) ·m(10) − z
(10)
20

= (q− p(10)) ·m(10) − (κ
(10)
1 x2 + κ

(10)
2 y2)

that is, by setting

a = κ
(10)
1

b = κ
(10)
2

c = (q− p(10)) ·m(10)

they are the points of the quadratic curve

ax2 + by2 − c = 0 (3.45)

except the origin. Note that not every q ∈ T(00) creates a real quadratic on

T(10).

To solve this, let d0 be a unit vector in the T(00) tangent plane, and let

q(t) = p(00) + td0. The (3.45) quadratic’s coefficients, by substituing q with

q(t), take the form

a = κ
(10)
1

b = κ
(10)
2

c = td0 ·m
(10) + (p(00) − p(10)) ·m(10)

Because m(00) ∦ m(10), the dot product 〈d0,m
(10)〉 cannot be zero for all

directions d0, and it can take any sign, {+,−, 0}. Using parameter t, we

can always guarantee, that ax2 + by2 − c = 0 is a real quadratic (an ellipse,

hyperbola, or an intersecting or parallel pair of lines), provided H(10)∩T(00) 6=

∅.

Placing b20 into either of the intersection points of this quadratic and l1

satisfies the second order base point reconstruction constraints.
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• m(00)||m(10): if the surface normals are parallel, the equalities

T(00) = M(10)

T(10) = M(00)

should be satisfied by choosing appropriate bu(0, 0) and bu(1, 0) partial

derivatives.

These can be formulated as

(p
(00)
M − p(10)) ·m(10) = 0

(p
(10)
M − p(00)) ·m(00) = 0

Using definition (3.30), this can be written as

1

6
(κ

(00)
1 x(00)

u

2
+ κ

(00)
2 y(00)u

2
)〈m(00),m(10)〉+ 〈p(00) − p(10),m(10)〉 = 0 , (3.46)

1

6
(κ

(10)
1 x(10)

u

2
+ κ

(10)
2 y(10)u

2
)〈m(10),m(00)〉+ 〈p(10) − p(00),m(00)〉 = 0 . (3.47)

We examine the solvability of (3.46)-(3.47) by considering them as quadratic

curves, in this instance in the T(00) and T(10) tangent planes themselves. For

this, let

a =
1

6
κ
(00)
1 m(00) ·m(10)

b =
1

6
κ
(00)
2 m(00) ·m(10)

c = (p(00) − p(10)) ·m(10)

so that we can formulate the problem of finding b20, as finding a real point of

the quadratic curve

a(x(00)
u )2 + b(y(00)u )2 + c = 0 ,

except the origin. The conditions for the existence of such a point is similar

to the discussion in the previous subsection, with the difference that we are

looking for solutions in all four quadrants. The case of b10 is analogous.

Let us consider the use of rational cubic patches now. The boundary con-
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trol point computation problem can be solved by using osculatory interpola-

tion ([11]), which is concerned with finding weights w0, w1, w2, w3 for a given

Bézier control polygon b0,b1,b2,b3, such that the rational cubic reconstructs

prescribed κ0, κ1 curvature values at each end point.

The positions of the D(ij) base point data are chosen as b0 and b3, while

the b1,b2 control points can be chosen on the tangent planes freely. The

Meusnier theorem can be used to determine the end point curvature data by

computing the curvature of skew sections and using the osculatory interpolants

as boundary curves. The rest of the control points can be chosen as before.

The following proposition is the consequence of the above derivations:

Theorem 15 The four corner second order geometric Hermite interpolation

problem can be solved using quadrilateral bi-cubic Bézier surfaces if and only

if for each neighbouring D(ij), D(kl) base point data

H(ij) ∩T(kl) 6= ∅

H(kl) ∩T(ij) 6= ∅

3.2.4 Triangular Bézier patches

For the purpose of this thesis, investigation of GH interpolation with quadri-

lateral patches provides sufficient insight into higher order GH interpolation:

the way reconstruction constraints are to be placed upon partial derivatives of

the surface, finding polynomial degree bounds, and how control data overlap

increases the complexity of even the geometric characterization of existence.

However, in many applications the need for non-quadrilateral patches arises

naturally as well. For the sake of completeness, Appendix C details the appli-

cation of Theorem 12 to triangular Bézier patches in the same vein as presented

for quadrilateral patches.

3.3 Geometric Hermite surface interpolation

In the previous section, a generalization of second order GH interpolation to

surfaces was presented. It utilized parametrization independent surface data

up to second order to specify the desired geometric properties of the interpolant

surface.
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Similarly to the case of curves, Theorem 10 and 12 posed restrictions upon

the partial derivatives of the surface as requirements of GH reconstruction.

Unfortunately, these results did not present a ”most straightforward” set of

attributes to include in a higher order GH data tuples: their derivation relied

on Euler’s theorem to compute the normal curvature of a normal section curve

for a given tangent.

In this section, the properties I propose to prescribe in higher order GH

interpolation are based on the differential geometric invariants of lines of cur-

vature, which can be generalized to arbitrary order. The attributes presented

for this are chosen such that reconstruction of order n GH surface data tuples

ensures Gn geometric continuity of joining surfaces at that point.

The following point reviews the classical results retaining lines of curva-

tures. It is followed by a discussion of derivative coordinates in a special or-

thonormal basis, which is an analogue to the examination of curve derivatives

in the Frenet frame. The impact of this formulation is investigated next.

The statement of higher order geometric Hermite inteporlation of surfaces

closes this section.

3.3.1 Lines of curvature

Lines of curvature are curves on a regular parametric surface r(u, v) : R2 → E3,

such that at every point, their tangent coincides with one of the principal direc-

tions. Throughout this chapter, only regular parametrizations are considered.

A line of curvature can be defined via a
(
u(x), v(x)

)
: R→ R2 curve in the

parameter plane of the surface, such that

(L− κnE)u′ + (M − κnF )v′ = 0 (3.48)

(M − κnF )u′ + (N − κnG)v′ = 0 (3.49)

holds, where κn denotes one of the principal curvatures, n ∈ {1, 2} and differ-

entiation is carried out with respect to x. The lines of curvature on the surface

are then given by

ci(x) = r
(
u(x), v(x)

)
i = 1, 2.

Let dom(r(u, v)) denote the domain of r(u, v), that is, the (u, v) parameter

plane. The lines of curvature in dom(r(u, v)) can be also defined as the solution
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to ∣∣∣∣∣∣∣

(u′)2 −u′v′ (v′)2

E F G

L M N

∣∣∣∣∣∣∣
= 0 (3.50)

Lines of curvature form an orthogonal family of curves on a surface. The

curves of this family cover the surface simply, without gaps in the neighborhood

of any point where the first and second fundamental forms are continuous and

non-proportional [45].

At umbilics, where the fundamental forms are proportional, all normal

curvatures coincide. The examination of the properties of the surface require

higher order partial derivatives in these cases. Situations may arise where

there are either one or three principal directions, as well as points where there

are infinitely many principal directions - for a detailed overview, please refer

to [32]. The definition for principal directions, proposed by Rodrigues, gives a

well defined principal direction, even at umbilics:

κndr+ dm = 0 ,

where dr in an infinitesimal displacement along the surface and dm is the

change of surface normal m as a result of this displacement [32].

Cases where parameter lines are lines of curvatures are of distinct impor-

tance in what follows. The necessary and sufficient condition for this to hold

[9] is

F = 0 , M = 0 . (3.51)

In parametrizations such as this, the curvatures and torsions of the image

of parameter lines u = c, v = d (c, d ∈ R) are that of the lines of curvature.

3.3.2 Derivatives in the Darboux-frame

The unit surface normal can be expressed with the principal directions by

m = t1 × t2 that is, D = (t1, t2,m) form an orthonormal system, called

the Darboux frame. Without loss of generality, we can assume that D is a

right-handed basis of R3.

From now on, let r̂(s, t) denote a parametrization of a surface such that

the parameter lines are arc-length parametrized lines of curvature. This can
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be considered as the analogue of arc-length parametrization of curves. We

refer to this parametrization of surfaces as natural parametrization. A natural

parametrization is also regular, except at umbilics where there is only one

principal direction.

The first partial derivatives of the natural parametrization are the principal

directions, that is, their Darboux coordinates are

r̂s = t1 =



1

0

0




D

, r̂t = t2 =



0

1

0




D

,

and for the surface normal

m = r̂s × r̂t =



0

0

1




D

. (3.52)

Every reparamentrization of r̂(s, t) can be considered as to have the form

of

r(u, v) = r̂
(
s(u, v), t(u, v)

)
,

where s, t : R2 → R encode the deviation from unit speed parametrization, as

well as the change of first partial derivative directions from principal directions.

Thus, the partial derivatives of an arbitrary parametrization can be written

as a combination of partial derivatives of natural parametrization as

ru = r̂ssu + r̂ttu

rv = r̂ssv + r̂ttv

ruu = r̂sss
2
u + 2r̂stsutu + r̂ttt

2
u + r̂ssuu + r̂ttuu

ruv = r̂sssusv + r̂stsutv + r̂stsvtu + r̂tttutv + r̂ssuv + r̂ttuv

rvv = r̂sss
2
v + 2r̂stsvtv + r̂ttt

2
v + r̂ssvv + r̂ttvv

Darboux coordinates of successive partial derivatives in one direction, that

is rs, rss, rsss, etc., are defined by prescribing the differential geometric invari-

ants of the lines of curvature and the correspondence between the Frenet frame

of the given line of curvature and the Darboux frame.
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We will discuss this in more detail, but prior to that, let us consider the

problem of mixed partial derivatives. These are not defined by the data tuples

associated with the lines of curvatures, however, the following lemma holds:

Lemma 16 Let r̂(s, t) be a natural parametrization of a surface. Then

∂sktl r̂ = 0 ,

for all k, l > 0.

Proof. We prove the above by induction of total order of differentiation, which

is denoted by n = k + l.

For n = 2: since parameter lines are arc-length, they are subject to

r̂s · r̂s = 1 , (3.53)

r̂t · r̂t = 1 . (3.54)

Differentiating these with respect to t and s, in this order, yields

2r̂st · r̂s = 0 ,

2r̂st · r̂t = 0 ,

taking into account that r̂st = r̂ts. In addition, parameter lines are also lines

of curvature, that is, they satisfy

M = r̂st ·m = 0 . (3.55)

As a result, r̂st is such that it is perpendicular to r̂s = t1, r̂t = t2, and m.

These three vectors form an orthonormal basis of R3, and as such, only the

null vector can be simultaneously orthogonal to all three, that is, r̂st = 0.

Let us suppose that the induction condition holds for some total order n,

and let us validate it for a total order of n+ 1.

Let n = k + l, k, l > 0. From induction, differentiating (3.53)-(3.54) k and

l times by s and t gives

(∂sktl r̂) · r̂s = 0 ,

(∂sktl r̂) · r̂t = 0 .
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Differentiating each of the above two equations with respect to both s and

t, one gets

∂s

(
(∂sktl r̂) · r̂s

)
= 0

∂t

(
(∂sktl r̂) · r̂s

)
= 0

∂s

(
(∂sktl r̂) · r̂t

)
= 0

∂t

(
(∂sktl r̂) · r̂t

)
= 0

which is evaluated as

(∂sk+1tl r̂) · r̂s + (∂skvl r̂) · r̂ss = 0

(∂sktl+1 r̂) · r̂s + (∂skvl r̂) · r̂st = 0

(∂sk+1tl r̂) · r̂t + (∂skvl r̂) · r̂ss = 0

(∂sktl+1 r̂) · r̂t + (∂skvl r̂) · r̂tt = 0

that can be written as

(∂sk+1tl r̂) · r̂s = 0

(∂sktl+1 r̂) · r̂s = 0

(∂sk+1tl r̂) · r̂t = 0

(∂sktl+1 r̂) · r̂t = 0

using the induction condition ∂skvl r̂ = 0. That is, ∂sk+1vl r̂ and ∂sk+1vl r̂ are

perpendicular to r̂s = t1 and r̂t = t2. Differentiating (3.55) similarly results in

∂s

(
(∂skvl r̂) · m̂

)
= 0

∂t

(
(∂skvl r̂) · m̂

)
= 0

95



which, after substitutions becomes

(∂sk+1tl r̂) · m̂+ (∂skvl r̂) · m̂s = 0

(∂sktl+1 r̂) · m̂+ (∂skvl r̂) · m̂t = 0

that is, using induction, both ∂sk+1vl r̂ and ∂skvl+1 r̂ are perpendicular to m as

well, that is,

∂sk+1vl r̂ = ∂skvl+1 r̂ = 0 .

Note that arc-length – more precisely, constant speed – parametrization

played a pivotal part in the proof. The above lemma does not extend to sur-

faces that are parametrized by lines of curvature that are not constant speed.

Nevertheless, the lemma holds under weaker assumptions as well: parameter

lines need only be conjugate and arc-length, the proof above works analogously.

Example Let us consider the cylinder of radius a > 0 and height h > 0:

r(u, v) =



a cosu

a sin u

vh


 , u ∈ [0, 2π], v ∈ [0, 1]

This is known to be a parametrization by lines of curvature, and also, its first

partial derivatives are

ru =



−a sin u

a cosu

0


 , rv =



0

0

h




that is, this is a parametrization by constant speed. The uv mixed partial

derivative, in accordance with Lemma 16, is

ruv = 0 .

On the other hand, the parametrization of a torus of the form

p(u, v) =




(R + r cos v) cosu

(R + r cos v) sin u

r sin v


 , u, v ∈ [0, 2π]
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Figure 3.6: Curve normals n1,n2 of line of curvatures corresponding to the
first and second principal direction in the right-handed (m, t2) and (m,−t1)
bases, respectively.

with radii R, r > 0, is also parametrized by lines of curvatures. However, its

first partial derivatives are

pu =



−(R + r cos v) sin u

−(R + r cos v) cosu

0


 , pv =



−r cosu sin v

−r sin u sin v

r cos v




where the surface curve image of u = c is not constant speed. In turn, the

mixed partial derivative is

puv =




r sin u sin v

−r cosu sin v

0


 ,

which does not vanish for all (u, v) ∈ [0, 2π]2.

As a result of Lemma 16, partial derivatives of an arbitrary parametrization

r(u, v) only depend on the derivatives of the lines of curvature. The coordinates

of these derivatives need to be given in a common basis. Let this common basis

be the Darboux frame.

The lines of curvatures at a point can be defined by GH data tuples D1,D2.

Theorem 1 allows us to expresses the derivatives of a line of curvature in its

Fi = (ti,ni,bi) Frenet frame.

Let α and β denote the angles between the surface normal m and the n1,

n2 normal vectors of the two lines of curvatures, as shown in Figure 3.6. Then

the transformation from the Fi Frenet frame to the D Darboux-frame is a
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simple rotation specified by

F1 → D =



1 0 0

0 sinα − cosα

0 cosα sinα


 , F2 → D =



0 − sin β cos β

1 0 0

0 cos β sin β


 (3.56)

since

t1 =



1

0

0




D

, n1 =




0

sinα

cosα




D

, b1 = t1 × n1 =




0

− cosα

sinα




D

and

t2 =



0

1

0




D

, n2 =



− sin β

0

cos β




D

, b2 = t2 × n2 =



cos β

0

sin β




D

.

Let us use notation

κ1g = κ1 · sinα , κ1n = κ1 · cosα ,

κ2g = κ2 · sin β , κ2n = κ2 · cos β ,

τ1g = τ1 · sinα , τ1n = τ1 · cosα ,

τ2g = τ2 · sin β , τ2n = τ2 · cos β ,

to denote the geodesic and normal curvatures and torsions. This notation is

used for the derivatives of the curvatures as well, that is, κ̂′
1g = κ̂′

1 · sinα,

κ̂′′
1g = κ̂′′

1 · sinα.

The rotations above need to be applied to the Frenet frame expression of

the derivatives. For example, in the case of the first three non-zero partials,

one gets

r̂s =



1

0

0




F1

=



1

0

0




D

, r̂ss =



0

κ1

0




F1

=




0

κ1g

κ1n




D

, (3.57)

r̂sss =



−κ2

1

κ̂′
1

κ1τ1




F1

=




−κ2
1

κ̂′
1g − κ1nτ1

κ̂′
1n + κ1gτ1




D

, (3.58)
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and

r̂t =



1

0

0




F2

=



0

1

0




D

, r̂tt =



0

κ2

0




F2

=



−κ2g

0

κ2n




D

, (3.59)

r̂ttt =



−κ2

2

κ̂′
2

κ2τ2




F2

=



−κ̂′

2g + κ2nτ2

−κ2
2

κ̂′
2n + κ2gτ2




D

. (3.60)

The following corollary is simply the application of the Bonnet-Kovalevsky

formula [32] to the lines of curvature, which provides us the sought computa-

tional tool to compute the Darboux coordinates of the derivatives of lines of

curvatures:

Corollary 17 Let ĉ1(s) and ĉ2(t) denote the two lines of curvatures on a

surface through a common point p. The Darboux coordinates of the derivative

vectors of the two lines of curvatures at p are subject to the recurrence formulas

ĉ
(n+1)
1 :=



x̂n+1

ŷn+1

ẑn+1




D

=



x̂′
n

ŷ′n

ẑ′n




D

+




0 −κ1g −κ1n

κ1g 0 −τ1

κ1n τ1 0






x̂n

ŷn

ẑn




D

(3.61)

ĉ
(n+1)
2 :=



x̃n+1

ỹn+1

z̃n+1




D

=



x̃′
n

ỹ′n

z̃′n




D

+




0 −κ2g τ2

κ2g 0 −κ2n

−τ2 κ2n 0






x̃n

ỹn

z̃n




D

(3.62)

where n > 1 and

ĉ′1 =



1

0

0




D

, ĉ′2 =



0

1

0




D

.

Proof. By using the Frenet to Darboux transformation matrices (3.56), and

their inverses

D → F1 =



1 0 0

0 sinα cosα

0 − cosα sinα


 , D → F1 =




0 1 0

− sin β 0 cos β

cos β 0 sin β


 ,

given a [x, y, z]TD = xt1 + yt2 + zm Darboux vector, with all coordinates de-
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pending on the same variable, differentiation yields



x

y

z




′

D

=



x′

y′

z′




D

+ [t1, t2,m]′



x

y

z




D

,

which, using the linearity of differentiation, equals to



x

y

z




′

D

=



x′

y′

z′




D

+ (F1 → D) ·Ki · (D → F1) ·



x

y

z




D

where K denotes the Frenet frame development of either the ĉ1(s) or the ĉ2(t)

line of curvature:

Ki =



0 −κi 0

κi 0 −τi

0 τi 0


 , i = 1, 2 .

Carrying out the matrix multiplication for i = 1, 2 yields (3.61)-(3.62).

Theorem 3.61 allows us to compute all partial derivatives of a general pa-

rameterization, since those are combinations of derivative vectors of lines of

curvatures.

Example Let us express the first couple of partial derivatives of an arbi-

trary parameterized surface, r(u, v) = r̂
(
s(u, v), t(u, v)

)
, in the Darboux frame.

Taking into account that the mixed partial derivatives all vanish, these can
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be expressed as a combination of natural parametrization partials as

ru = r̂ssu + r̂ttu

rv = r̂ssv + r̂ttv

ruu = r̂sss
2
u + r̂ttt

2
u + r̂ssuu + r̂ttuu

ruv = r̂sssusv + r̂tttutv + r̂ssuv + r̂ttuv

rvv = r̂sss
2
v + r̂ttt

2
v + r̂ssvv + r̂ttvv

ruuu = r̂ssss
3
u + r̂tttt

3
u + 3r̂sssusuu + 3r̂tttutuu + r̂ssuuu + r̂ttuuu

ruuv = r̂ssss
2
usv + r̂tttt

2
utv + 2r̂sssusuv + 2r̂tttutuv

+ r̂sssvsuu + r̂tttvtuu + r̂ssuuv + r̂ttuuv

ruvv = r̂ssssus
2
v + r̂ttttut

2
v + 2r̂sssvsuv + 2r̂tttvtuv

+ r̂sssusvv + r̂tttutvv + r̂ssuvv + r̂ttuvv

rvvv = r̂ssss
3
v + r̂tttt

3
v + 3r̂sssvsvv + 3r̂tttvtvv + r̂ssvvv + r̂ttvvv

Using (3.57)-(3.60), the following is derived as the expression of arbitrary

parametrization partial derivatives with geometric invariants of lines of curva-

tures and the s(u, v), t(u, v) reparametrization:

ru =



su

tu

0




D

, rv =



sv

tv

0




D

ruu =




suu − κ2gt
2
u

tuu + κ1gs
2
u

κ2nt
2
u + κ1ns

2
u




D

, ruv =




suv − κ2gtutv

tuv + κ1gsusv

κ2ntutv + κ1nsusv




D

, rvv =




svv − κ2gt
2
v

tvv + κ1gs
2
v

κ2nt
2
v + κ1ns

2
v




D
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and

ruuu =




(κ2nτ2 − κ̂′
2g)tu

3 − su
3κ1

2 − 3κ2gtutuu + suuu

(−κ1nτ1 + κ̂′
1g)su

3 − tu
3κ2

2 + tuuu + 3κ1gsusuu

(κ2gτ2 + κ̂′
2n)tu

3 + (κ1gτ1 + κ̂′
1n)su

3 + 3κ2ntutuu + 3κ1nsusuu




D

rvvv =




−κ1
2sv

3 +
(
κ2nτ2 − κ̂′

2g

)
tv

3 − 3κ2gtvvtv + svvv(
−κ1nτ1 + κ̂′

1g

)
sv

3 + 3κ1gsvvsv − κ2
2tv

3 + tvvv

(κ1gτ1 + κ̂′
1n) sv

3 + 3κ1nsvvsv + (κ2gτ2 + κ̂′
2n) tv

3 + 3κ2ntvvtv




D

ruuv =




−κ1
2s2usv +

((
κ2nτ2 − κ̂′

2g

)
t2u − κ2gtuu

)
tv − 2κ2gtuvtu + suuv((

−κ1nτ1 + κ̂′
1g

)
s2u + κ1gsuu

)
sv − κ2

2t2utv + 2κ1gsuvsu + tuuv

((κ1gτ1 + κ̂′
1n) s

2
u + κ1nsuu) sv + ((κ2gτ2 + κ̂′

2n) t
2
u + κ2ntuu) tv + 2κ1nsuvsu + 2κ2ntuvtu




D

ruvv =




−κ1
2sus

2
v +

(
κ2nτ2 − κ̂′

2g

)
tut

2
v − 2κ2gtuvtv − κ2gtvvtu + suvv(

−κ1nτ1 + κ̂′
1g

)
sus

2
v + 2κ1gsuvsv − κ2

2tut
2
v + κ1gsvvsu + tuvv

(κ1gτ1 + κ̂′
1n) sus

2
v + 2κ1nsuvsv + (κ2gτ2 + κ̂′

2n) tut
2
v + 2κ2ntuvtv + κ1nsvvsu + κ2ntvvtu




D

Please note that κ1g and κ1n are just convenience of notation. The g and

n subscripts can be placed anywhere in multiplications, for example κ1gτ1 =

κ1τ1g = κ1τ1 sinα.

3.3.3 Geometric continuity and lines of curvature

A straightforward generalization of geometric continuity to surfaces can be

stated as [51]

Definition 4 Two parametric surfaces r(u, v) and p(z, w) are Gn continuous

at (u0, v0) and (z0, w0) if and only if there exists a reparameterization u =

u(ũ, ṽ), and v = v(ũ, ṽ) such that r̃(ũ, ṽ) and p(z, w) are Cn continuous at

r(t0, u0) and p(z0, w0).

Once again in practice, by reparameterization the majority of cases mean ori-

entation preserving mappings.

Conditions of G1 and G2 continuity can be phrased using purely geometric

invariants: two surfaces are G1 at a point iff their unit normal vectors coincide.

Additionally, they are G2 as well iff their principal directions and curvatures

are equal.

Let us investigate the relationship between Gn continuity of lines of curva-

ture and Gn continuity of surfaces.
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If the lines of curvatures areGn at a point, then the natural parametrization

of the surface is Cn there. As a result, the two surfaces are Gn at the join.

The converse, however, is not true: Gn continuity of two surfaces does not

guarantee Gn continuity of lines of curvature.

As an example of this, let us consider the join of r(u, v) and p(z, w) and

the case of second order geometric continuity at a common point. Because the

two surfaces are G2, for some r̃(ũ, ṽ) reparametrization of r(u, v), the equities

r̃ũ =



sũ

tũ

0




D

=



sz

tz

0




D

, r̃ũũ =




sũũ − κr
2gt

2
ũ

tũũ + κr
1gs

2
ũ

κr
2nt

2
ũ + κr

1ns
2
ũ




D

=




szz − κs
2gt

2
z

tzz + κs
1gs

2
z

κs
2nt

2
z + κs

1ns
2
z




D

hold, where the upper indices of geometric invariants denote the surface, for

example κr
in are the principal curvature functions of surface r(u, v), i = 1, 2.

This notation will be used for higher order derivatives of the geometric invari-

ants of lines of curvatures, that is, κr
i , τ

r
i are the curvature and torsion of the

lines of curvatures of r(u, v), i = 1, 2.

A G2 join implicates the equality of principal normal curvatures κr
in =

κs
in, i = 1, 2. However, the geometric interpretation of G2 does not stipulate

anything on geodesic curvatures. Indeed, since sũũ and tũũ are degrees of

freedom of reparametrization, they can be chosen such that

sũũ − κr
2gt

2
ũ = szz − κs

2gt
2
z

tũũ + κr
1gs

2
ũ = tzz + κs

1gs
2
z

hold without the equality of geodesic curvatures. Because geometric continuity

is defined modulo reparametrizations, the su, tu, suu, tuu coefficients may attain

arbitrary values as long as s2u + t2u 6= 0 holds.

This extends to higher order geometric continuity. As a result, the geo-

metric reconstruction constraints are masked by reparametrization in every

coordinate of a partial derivative of total order n where a partial derivative of

reparametrization of total order n appears.

In the case of order n geometric constraints, these are κ̂
(n−2)
ig and τ̂

(n−3)
in ,

i = 1, 2. That is, the Darboux x and y coordinates of two partial derivatives

may coincide without equity of geodesic curvatures and normal torsions - their

difference can be compensated by a reparametrization. Figure 3.7 shows two
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Figure 3.7: On the left κ1n = −0.25, κ1g = −1.125, κ2n = 0.25, κ2g = 0. On
the right κ1n = −0.25, κ1g = −0.0625, κ2n = 0.25, κ2g = 0.4375.

surfaces having same principal directions and curvatures and differing geodesic

curvatures.

This is not the case for the Darboux z coordinates: even though the partial

derivatives of reparametrization s(u, v), t(u, v) appear in those too, their total

order of differentiation is strictly smaller than n, that is, their values were set

in lower derivatives when ensuring a lower order geometric continuity.

Thus, only the projections of the n-th derivatives of lines of curvatures onto

the surface normal are subject to geometric reconstruction constraints when

dealing with geometric continuity. The orthogonal properties are masked by

the artifact of reparametrization.

Consequently, reconstruction might seem to have an unmanageable amount

of unknowns. For example, let us consider the order 3 partial derivatives of a

surface, that is,

rũũũ =




(κ2nτ2 − κ̂′
2g)tũ

3 − sũ
3κ1

2 − 3κ2gtũtũũ + sũũũ

(−κ1nτ1 + κ̂′
1g)sũ

3 − tũ
3κ2

2 + tũũũ + 3κ1gsũsũũ

(κ2gτ2 + κ̂′
2n)tũ

3 + (κ1gτ1 + κ̂′
1n)sũ

3 + 3κ2ntũtũũ + 3κ1nsũsũũ




D

,

and so on.

The z Darboux coordinates define four equations, that formally have eight

unknowns (κ̂′
in, κigτi, sũũ, tũũ, sũṽ, ũũṽ, sṽṽ, tṽṽ, i = 1, 2). What is even worse,

the number of unknowns seems to double for every successive total order of

differentiation, because τg is tied to κ resulting in two potential unknowns κ̂′τg,

κg τ̂
′. However, the geodesic curvatures are actually already set if we know that

the surface forms a G3 join. This, and a more general statement, is shown in

the following
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Theorem 18 Let r(u, v) and p(z, w) be two surfaces joining at a point, and

let us assume that neither principal curvature of the two surfaces is zero.

The surfaces are Gn, n > 1 at the join if and only if their lines of curvatures

are Gn−1 and (κ̂r
in)

(n−2) + (τ̂ rig)
(n−3)κr

i = (κ̂p
in)

(n−2) + (τ̂pig)
(n−3)κp

i .

Proof. ⇐: if lines of curvatures are Gn−1, then the natural parametrization

of r(u, v) and p(z, w) agree up to order (n−1), which implies that there exists

a repamaterezitaion of r(u, v), such that all partial derivatives up to order

(n− 1) agree with those of p(z, w). This reparametrization is that of p(z, w)

from the – up to order (n− 1) – common natural parametrization.

As a result, the ∂ũiṽjs and ∂ũiṽj t reparametrization coefficients of r(ũ, ṽ)

are equal to ∂ziwjs and ∂ziwj t of s(z, w), i+ j < n. Let us denote the common

reparametrization terms by

sij = ∂ũiṽjs = ∂ziwjs , tij = ∂ũiṽj t = ∂ziwj t .

The geometric invariants are also equal, that is κ̂
(j)
ig = (κ̂r

ig)
(j) = (κ̂p

ig)
(j)

and τ̂
(j−1)
in = (τ̂ rin)

(j−1) = (τ̂pin)
(j−1), j = 0, 1, .., n− 3.

The order n partial derivatives of the above ũ, ṽ reparametrization of r are

such that each x and y Darboux coordinate possess a scalar degree of freedom,

∂ũiṽn−is and ∂ũiṽn−it, respectively, i = 0, .., n. They appear along the x and y

coordinates in the sequence of partial derivatives. Hence, these can be used to

equate the x, y Darboux coordinates of ∂ũj ṽn−jr to that of ∂zjwn−jp, regardless

of the values of (κ̂r
ig)

(n−2), (τ̂ rin)
(n−3), (κ̂p

ig)
(n−2), (τ̂pin)

(n−3), i = 1, 2.

The z Darboux coordinates of partial derivatives of total order n consist of

reparametrization derivatives up to total order (n − 1) and lines of curvature

and torsion derivatives up to order (n − 3) and (n − 4) – which are known

to be equal –, and of terms of κ̂
(n−2)
in , τ̂

(n−3)
ig , i = 1, 2. The latter pair of two

quantities are unknown.

From Corollary 17 and the rules of multivariable derivation of composite

functions, it follows that the z coordiante of partial derivatives of total order

n can be written as

zrũj ṽn−j =
(
(κ̂r

1n)
(n−2) + (τ̂ r1g)

(n−3)κ1

)
sjũs

n−j
ṽ +

(
(κ̂r

2n)
(n−2) + (τ̂ r2g)

(n−3)κ2

)
tjũt

n−j
ṽ + crũj ṽn−j ,
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where cũiṽn−i denotes the remaining terms of the z Darboux coordinate, i.e.,

crũj ṽn−j = zrũj ṽn−j −
(
(κ̂r

1n)
(n−2) + (τ̂ r1g)

(n−3)κ1

)
sjũs

n−j
ṽ −

(
(κ̂r

2n)
(n−2) + (τ̂ r2g)

(n−3)κ2

)
tjũt

n−j
ṽ .

Since cr
ũj ṽn−j and cp

zjwn−j are made up of terms of reparametrization partial

derivatives up to order (n − 1) and curvature and torsion derivatives up to

order (n− 3) and (n− 4), they are equal, i.e. cujvn−j = cr
ũj ṽn−j = cp

zjwn−j .

Thus, equality of zr
ũj ṽn−j and zp

zjwn−j depends on equality (κ̂r
in)

(n−2) +

(τ̂ rig)
(n−3)κr

i = (κ̂p
in)

(n−2) + (τ̂pig)
(n−3)κp

i , which holds by assumption of the the-

orem.

⇒: if two surfaces are Gn, then there exists a reparametrization, such that

the two surfaces are Cn. Let this reparametrization be r(ũ, ṽ) and p(z, q).

If none of the principal curvatures vanish, then the partial derivatives of the

surface up to order n uniquely determine the differential geometric invariants

of the lines of curvatures up to order n − 1, see Appendix D for additional

details. That is, the lines of curvatures are Gn−1.

Because lines of curvatures are Gn−1, κ̂
(j)
ig = (κ̂r

ig)
(j) = (κ̂p

ig)
(j) and τ̂

(j−1)
in =

(τ̂ rin)
(j−1) = (τ̂pin)

(j−1), j = 0, 1, .., n − 3 hold, which, in turn, yields that sij =

∂ũiṽjs = ∂ziwjs , tij = ∂ũiṽj t = ∂ziwj t .

All that remains to be seen is that Gn join of r(u, v) and p(z, w) implies

equality (κ̂r
in)

(n−2) + (τ̂ rig)
(n−3)κr

i = (κ̂p
in)

(n−2) + (τ̂pig)
(n−3)κp

i .

Equity conditions ∂ũj ṽn−jr = ∂zjwn−jp can be written as




sn10 tn10

... ...

sn−i
10 si01 tn−i

10 ti01

... ...

sn01 tn01



·

[
(κ̂r

1n)
(n−2) + T

r,(n−3)
1

(κ̂r
2n)

(n−2) + T
r,(n−3)
2

]
+




cn0

...

ci,n−i

...

c0n



= (3.63)




sn10 tn10

... ...

sn−i
10 si01 tn−i

10 ti01

... ...

sn01 tn01



·

[
(κ̂p

1n)
(n−2) + T

p,(n−3)
1

(κ̂p
2n)

(n−2) + T
p,(n−3)
2

]
+




cn0

...

ci,n−i

...

c0n



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where cj,n−j = cr
ũj ṽn−j = cp

zjwn−j and the new unknown T
x,(n)
i denotes T

x,(n)
i =

(τ̂x1g)
(n)κx

i , x ∈ {r,p}.

Subtracting the right hand side of (3.63) from the equation yields the over-

determined homogeneous system of linear equations




sn10 tn10

... ...

sn−i
10 si01 tn−i

10 ti01

... ...

sn01 tn01




︸ ︷︷ ︸
A

·

([
(κ̂r

1n)
(n−2) + T

r,(n−3)
1

(κ̂r
2n)

(n−2) + T
r,(n−3)
2

]
−

[
(κ̂p

1n)
(n−2) + T

p,(n−3)
1

(κ̂p
2n)

(n−2) + T
p,(n−3)
2

])

︸ ︷︷ ︸
∆P

= 0

Using P x,n
i = (κ̂x

in)
(n−2) + (τ̂xig)

(n−3)κx
i and ∆P n

i = P r,n
i − P p,n

i , the above

can be written as

A ·

[
∆P n

1

∆P n
2

]
= 0

for which [∆P n
1 ,∆P n

2 ]
T = 0 is a unique solution if and only if rank(A) =

2. Because, by regularity of parametrization, s2u + t2u 6= 0, s2v + t2v 6= 0 and

∄α 6= 0 : αsu = sv ∧ αtu = tv, matrix A indeed has a rank of two, thus

(κ̂r
in)

(n−2) + (τ̂ rig)
(n−3)κr

i = (κ̂p
in)

(n−2) + (τ̂pig)
(n−3)κp

i holds.

3.3.4 Formalization of general geometric Hermite inter-

polation

Let E = (D1,D2) denote an order n GH surface data tuple, which consists

of two Di = (pi; ti;ni, κi,bi; κ̂
′
i, τi, ...), i = 1, 2 order n GH curve data tuples,

specifying the properties of the lines of curvature, with p = p1 = p2 and

t1 · t2 = 0.

Reconstruction of E at a point of a regular parametric surface r(u, v) is

formulated by expressing the dependence of the ∂uk∂vlr partial derivatives on

the geometric invariants of the lines of curvatures. The formulations are given

in the D = (t1, t2,m) Darboux frame, where m = t1 × t2.

Similarly to the case of curves, these dependencies are expressed a matrix-
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vector multiplication as




r

ru

rv

ruu

ruv

rvv

...




︸ ︷︷ ︸
F ·q

=




1 0 0 0

0 su tu 0

0 sv tv 0

0 suu − κ2gt
2
u tuu + κ1gs

2
u κ1ns

2
u + κ2nt

2
u

0 suv − κ2gtutv tuv + κ1gsusv κ1nsusv + κ2ntutv

0 svv − κ2gt
2
v tvv + κ1gs

2
v κ1ns

2
v + κ2nt

2
v

... ... ... ...




︸ ︷︷ ︸
G(su,sv ,...)

·




p

t1

t2

m




︸ ︷︷ ︸
d

(3.64)

where s2u + t2u 6= 0, s2v + t2v 6= 0, and sutv − tusv 6= 0. The latter expresses the

linear independence of the u and v partial derivatives by stipulating that the

cross of product of [su, tu]
T , [sv, tv]

T shall not be zero.

The entries of geometric reconstruction matrix G are made up of geometric

constraints from E and degrees of freedom of parametrization, in the form of

the su, sv, tu, tv, ... derivatives.

If one of the principal curvatures vanish, the order of differentiation needs

to be increased until the torsion of the corresponding line of curvature is no

longer masked by the zero curvature, similarly to the case of curves. If the

h-th derivative of a principal curvature is the first non-zero value, then partial

derivatives up to total order of n+ h need to be added to (3.64).

The system of (3.64) can be cast into a form such that its degrees of freedom

are transformed into Darboux coordinates of partial derivatives. Let ∂ukvlr =

[xukvl , yukvl , zukvl ]
T
D, making up the left hand side of (3.64). Then

su = xu , sv = xv ,

suu = xuu + κ2gy
2
u , tuu = yuu − κ1gx

2
u ,

suv = xuv + κ2gyuyv , tuv = yuv − κ1gxuxv ,

svv = xvv + κ2gy
2
v , tvv = yvv − κ1gx

2
v ,
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so (3.64) becomes




r

ru

rv

ruu

ruv

rvv

...




=




1 0 0 0

0 xu yu 0

0 xv yv 0

0 xuu yuu κ1nx
2
u + κ2ny

2
u

0 xuv yuv κ1nxuxv + κ2nyuyv

0 xvv yvv κ1nx
2
v + κ2ny

2
v

... ... ... ...




·




p

t1

t2

m




(3.65)

where x2
u + y2u 6= 0 and x2

v + y2v 6= 0 and xuyv − yuxv 6= 0.

The formulation of (3.65) emphasizes the masking effect of reparametriza-

tion on lines of curvature geometric invariant reconstruction.

Let us now consider a row of (3.65) that corresponds to a total order k+l =

n > 2 partial derivative. It is of the form of




...

∂ukvlr

...


 =



... ... ... ...

0 xukvl yukvl Kr,n + cukvl

... ... ... ...


 ·




p

t1

t2

m




(3.66)

where Kr,n = P x,n
1 xk

ux
l
v + P x,n

2 ykuy
l
v, and P x,n

i = (κ̂r
in)

(n−2) + (τ̂ rig)
(n−3)κr

i , and

cr
ukvl

= zr
ukvl

−Kr,n.

In the case of tensor-product surfaces

r(u, v) =
n∑

i=0

m∑

j=0

qijF
n
i (u)F

m
j (v)

where control data qij ∈ R3 ∨ E3, left hand side of (3.64) may be written in a

linearized manner as




F n
0 (u0)F

m
0 (v0) F n

1 (u0)F
m
0 (v0) ... F n

n (u0)F
m
0 (v0) ... F n

n (u0)F
m
m (v0)

(F n
0 )

′(u0)F
m
0 (v0) (F n

1 )
′(u0)F

m
0 (v0) ... (F n

n )
′(u0)F

m
0 (v0) ... (F n

n )
′(u0)F

m
m (v0)

... ... ... ... ... ...




︸ ︷︷ ︸
Fu0,v0

·




q00

q10

...

qn0

...

qnm




︸ ︷︷ ︸
q
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If the total number of control data is (n+1)(m+1) in this case, we refer to

the type of the unknown interpolant surfaces as an order (n,m) surface. For

polynomials, these are the degree n and degree m polynomial surfaces in the

two respective parameter lines.

It is important that control data that have zero coefficients in every eval-

uation are to be omitted from q. The remaining control points are said to be

affected by geometric reconstruction. Means of identifying affected control data

depends on the choice of surface representation basis and reconstruction pa-

rameters. For example, as it was illustrated previously in Figures 3.2 and C.1,

computation of position, surface normal, principal curvatures and directions

require 6 Bézier control points at corners both over triangular and rectangular

domains.

In general GH interpolation of surfaces, we are given (k+1) pieces of (ui, vi)

parameter values and E(i) order ni GH surface data tuples, i = 0, 1, .., k, and

the reconstruction system of equations




Fu0,v0

Fu1,v1

...

Fum,vm



· q =




G0 0 ... 0

0 G1 ... 0

... ... ... ...

0 0 ... Gm



·




d0

d1

...

dm




(3.67)

is to be solved, where di denotes the Darboux-frame of GH tuple E(i), Gi its

associated geometric reconstruction matrix and Fui,vi contain the basis function

evaluations up to the necessary order at (ui, vi). In short, we refer to these

type of GH interpolation problems to be of order (n0, n1, .., nk).

Example Let us consider the four corner point-normal reconstruction

problem and its solution with quadrilateral bi-quadratic Bézier patches. For

the sake of simplicity, let us use two-dimensional indices and assume that

reconstruction is to be carried out at endpoints.
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The formulation of the problem is




r(0, 0)

ru(0, 0)

rv(0, 0)

r(1, 0)

ru(1, 0)

rv(1, 0)

r(0, 1)

ru(0, 1)

rv(0, 1)

r(1, 1)

ru(1, 1)

rv(1, 1)




=




1 0 0 0 0 0 0 0

−2 2 0 0 0 0 0 0

−2 0 0 2 0 0 0 0

0 0 1 0 0 0 0 0

0 −2 2 0 0 0 0 0

0 0 −2 0 2 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 −2 2 0

0 0 0 −2 0 2 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −2 2

0 0 0 0 −2 0 0 2




·




q00

q10

q20

q01

q21

q02

q12

q22




(3.68)

=




1 0 0 0 0 0 0 0 0 0 0 0

0 x
(00)
u y

(00)
u 0 0 0 0 0 0 0 0 0

0 x
(00)
v y

(00)
v 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 x
(10)
u y

(10)
u 0 0 0 0 0 0

0 0 0 0 x
(10)
v y

(10)
v 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 x
(00)
u y

(00)
u 0 0 0

0 0 0 0 0 0 0 x
(00)
v y

(00)
v 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 x
(00)
u y

(00)
u

0 0 0 0 0 0 0 0 0 0 x
(00)
v y

(00)
v




·




p(00)

t
(00)
1

t
(00)
2

p(10)

t
(10)
1

t
(10)
2

p(01)

t
(01)
1

t
(01)
2

p(11)

t
(11)
1

t
(11)
2




Please note that control point q11 and its – all zero – coefficients are omitted

from the above. In practice, when computing closed-form solutions via Moore-

Penrose pseudo-inverse, this is a necessary step to avoid the singular value

decomposition of F T · F .

Example Let us consider the four corner, second order GH interpolation

problem. Then a GH surface data tuple at a knot consist of data

E(ij) =

((
p(ij); t

(ij)
1 ;κ

(ij)
1 ,n

(ij)
1 ,b

(ij)
1

)
,
(
p(ij); t

(ij)
2 ;κ

(ij)
2 ,n

(ij)
2 ,b

(ij)
2

))
, i, j = 0, 1 .
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According to (3.65) and (3.66), the geometric constraint matrix of a corner

is of the form




1 0 0 0

0 x
(ij)
u y

(ij)
u 0

0 x
(ij)
v y

(ij)
v 0

0 x
(ij)
uu y

(ij)
uu κ

(ij)
1n (x

(ij)
u )2 + κ

(ij)
2n (y

(ij)
u )2

0 x
(ij)
uv y

(ij)
uv κ

(ij)
1n x

(ij)
u x

(ij)
v + κ

(ij)
2n y

(ij)
u y

(ij)
v

0 x
(ij)
vv y

(ij)
vv κ

(ij)
1n (x

(ij)
v )2 + κ

(ij)
2n (y

(ij)
v )2




which shows that the second order GH interpolation (3.1) introduced at the be-

ginning of this chapter is indeed the n = 2 case of the general GH interpolation

defined here.

3.4 Solution of GH surface reconstruction

Let us study the solvability of system (3.67). For the sake of simplicity, let us

assume that the F n
i (u), F

m
j (v) basis functions are linearly independent in the

sense that matrix F is of full rank at all evaluation points.

The above assumption does not hold if there are unused control data listed

in q of (3.64). If that is the case, we obtain a reduced control data sequence

q by removing them. Since these did not affect any of the partial derivatives

necessary for geometric reconstruction, we did not alter the problem by their

removal.

Singularity of F may arise from improper choice of surface interpolant

class as well: for example, all partial derivatives of order N > n vanish for

a degree (n, n) integral polynomial surface, thus they cannot satisfy any non-

zero geometric constraint. Consequently, matrix F will be rank deficient due

to its all-zero rows. Removing these rows from F is equivalent to removing

the geometric constraints on all partial derivative vectors of order N > n.

This, however, changes the original GH problem and instead, a new choice of

interpolant surface class is necessary.

Depending on bases, certain evaluation points may cause degeneracy of F

too - these occurrences should be handled on a case by case basis, depending

on the representation of the interpolant surfaces.
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3.4.1 Exact solutions

The number of rows of an Fui,vi matrix of order ni equals to

1 + 2 + ...+ (ni + 1) =
(ni + 1)(ni + 2)

2
.

If all control data of an order (n+1,m+1) surface (for example degree (n,m)

quadrilateral Bézier patches) are required for surface evaluations, the number

of columns of F is (n+ 1)(m+ 1). That is, under the assumptions about the

basis functions introduced above, F is invertible if

(n+ 1)(m+ 1) =
k∑

i=0

(ni + 1)(ni + 2)

2
.

Affected ontrol data of the interpolant are computed by q = F−1 ·G · d.

Polynomial degree conditions, such as Theorem 7, can be also given for

surface reconstruction, however, the problem of overlapping control points has

to be taken into account. Indeed, as it was demonstrated by the second order

GH interpolation section, even though bi-quartic Bézier surfaces have 5× 5 =

25 control points, possessing 75 scalar degrees of freedom in total, they can

not guarantee reconstruction of arbitrary second order GH data tuples at four

corners, constraining only 4× 8 = 24 scalar degrees of freedom.

Considering four corner, symmetric GH interpolation of uniformly order n

GH data tuples, the following holds

Theorem 19 Let there be given four E(i) order n GH surface data tuples and

let us consider the problem of four corner reconstruction of such data with

quadrilateral polyonomial surfaces. If κ
(i)
1 , κ

(i)
2 6= 0, there is always a degree

(2n+ 1) by (2n+ 1) polynomial solution to the problem.

Proof. This is a direct generalization of Theorem 13. Bézier control points re-

quired for reconstruction of GH data tuples do not overlap at any corner. Their

values can be set by stipulating arbitrary Darboux coordinates in accordance

with (3.67).

If principal curvature have h zeros at each corner, the solution in general

needs to be found among the degree 2(n + h + 1) − 1 by 2(n + h + 1) − 1

polynomial patches, n > 2. The worst case scenario, when all prescribed prin-

cipal curvatures vanish, lead us to that reconstruction of order n GH surface
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data tuples may require polyonomial surfaces of degree up to 4n−1 by 4n−1,

n > 2. In the case of third order GH interpolation of surfaces, this means de-

gree 11×11 solutions. These correspond to the results of Theorem 7 regarding

the degree of polynomial curve interpolants.

Now, let us return to the general case where (k + 1) GH data tuples are

to be reconstructed and let us allow the right hand side degrees of freedom –

the Darboux x and y coordinates of partial derivatives – vary and consider the

overdetermined case, that is, when the total number of affected control points

is strictly smaller than
∑k

i=0
(ni+1)(ni+2)

2
.

Again, by the Rouché-Capelli theorem, an exact solution exists if and only

if rank(F ) = rank([F,G(xu, yu, ...) · d]).

Let C = ×d
i=1C(F ), where C(F ) is the column space of F and d is the

dimension of space in which the surface is embeded, i.e. d = 3 in our case, and

let G denote the set of all possible right hand side of (3.65), that is,

G = {x ∈ Rk×d|∀i ∈ {0, .., k} : ∃x(i)
u , y(i)u , x(i)

v , y(i)v , x(i)
uu, .. ∈ R :

(x(i)
u )2 + (y(i))2u 6= 0 ∧ (x(i))2v + (y(i))2v 6= 0 ∧ x(i)

u y(i)v − y(i)u x(i)
v 6= 0 :

x = G(x(0)
u , y(0)u , .., x(1)

u , y(1)u , .., x(k)
u , y(k)u , ..) · d} ,

where k =
∑k

i=0
(ni+1)(ni+2)

2
. Then if there is a right hand side that can be

reconstructed by the control data, the intersection of G and C will not be

zero, and this intersection determines the control data of the solution.

Theorem 20 A solution to the (n0, n1, .., nk) order GH interpolation problem

with (n+ 1)(m+ 1) affected control data exists in a linearly independent basis

if and only if C ∩G 6= ∅.

3.4.2 Approximate solutions

Theorem 20 provides means to identify whether an actual GH surface interpo-

lation problem has an exact solution or we need to find approximations.

Analogously to the case of curves, approximate solutions can be obtained by

minimizing various real valued functionals. In general, this can be formulated

as

min
q̃

f(F, q̃, G,d)
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where q̃ denotes all control data of the interpolant surface, not just the ones

required for GH reconstruction.

The algebraic norm-based methods reviewed in Section 2.4.2.1 work the

same way on surfaces as they did on curves, since, formally, the two problems

are equivalent.

Thus, the LSQ-sense best interpolant has a closed-form solution, using the

Moore-Penrose pseudoinverse as

q = F+ ·G · d .

Note that only the reduced control data q are listed in the equation - all

control data that play no part in satisfying the prescribed geometric constraints

have to be assigned values independently of GH interpolation. Compared to

the curve case, this increases the available degrees of freedom considerably.

For example, four corner second order GH interpolation can be solved by

bi-quintic integral polynomial patches for arbitrary input. The total degrees

of freedom in bi-quintic polynomials is 6 × 6 × 3 = 108, while the number of

scalar constraints from GH interpolation totals at 4×8 = 32, leaving 76 scalar

degrees of freedom available after GH reconstruction.

These degrees of freedom can be used to ensure higher order geometric or

parametric continuous join of two GH interpolant patches. I show an example

of this in Section 3.5.

Furthermore, degrees of freedom are also available for parametrization op-

timization of a single patch. The next point discusses these cases as well.

The norm-based functionals minimize the algebraic distance of the left

and right hand side of equation (3.64). Euclidean distance based functionals

can be obtained by using a geometric Taylor-like expansion of surfaces and

considering the distance of these geometric Taylor expansions from that of an

ideal, perfectly reconstructing surface.

For example, the paraboloid of

p̃(u, v) =




u

v
κ1

2
u2 + κ2

2
v2




has unit surface normal m = [0, 0, 1]T , principal curvature κ1, κ2 and corre-
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sponding principal directions t1 = [1, 0, 0]T , t2 = [0, 1, 0]T at (u, v) = (0, 0).

This is the osculating paraboloid in the Darboux frame of a regular point of a

surface. If given an E second order GH data tuple, it is reconstructed by

p(u, v) = p+ [t1, t2,m]




u

v
κ1

2
u2 + κ2

2
v2


 .

The functional

ei =

∫ ∫
||q(u, v)− p(u, v)||dudv

measures the deviation of the parametrization of the q(u, v) interpolant to

E(i) from that of p(u, v), as well as the error of reconstruction, up to normal

projection of principal curvatures. By using the bi-quadratic geometric Taylor

expansion of q(u, v) about the prescribed reconstruction parameter (ui, vi) =

(0, 0)

T2,2(q(u, v)) =




u

v
κ
q

1 (0,0)

2
u2 +

κ
q

2 (0,0)

2
v2




the above can be transformed to take only the difference of reconstruction into

account

ei =

∫ ∫
||T2,2(q(u, v))− p(u, v)||dudv .

3.4.3 Parametrization optimization

The strategy of separating geometric reconstruction constraints of second order

GH reconstruction from the degrees of freedom of the interpolant’s parametriza-

tion appeared in Moreton’s paper [33], who used the latter to optimize the

quality of a surface patch.

To achieve this, Moreton applied constrained nonlinear optimization of a

real-valued quality functional, which, using our nomenclature here, can be
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written as

min
q̃

f(q̃)

F · q = G · d

where q̃ once again denotes all control data that defines the interpolant surface

q(u, v).

If conditions of Theorem 20 hold, an exact reconstruction is guaranteed to

exist, so once an enumeration of all feasible solutions is given, only the f()

functional that determines its quality needs to be chosen.

A traditional fairness functional in surface design is the strain energy [33],

which can be expressed as a surface integral in the form of

∫ (
κq
1

)2
+

(
κq
2

)2
dA .

Moreton argued that due to the fact that the above functional penalizes

curvature, minimizing it results in unnecessarily flat surfaces, so instead, he

proposed minimizing the variation of curvature by the functional

∫ (
∂tq1κ

q
1

)2
+

(
∂tq2κ

q
2

)2
dA ,

using which one can minimize the variation of principal normal curvature along

principal directions, by computing the squared sums of directional derivatives

of principal normal curvature.

Due to the computational cost of evaluating a surface integral that requires

principal curvatures, one could instead try to minimize the squared length of

the uu and vv partial derivatives of the surface via

∫
q2
u + q2

vdA

however, this can be a very rough approximation of strain energy.

Alternatively, following our arguments in parametrization optimization of

curves, one could try to minimize the deviation of the parametrization of the

interpolant surface from natural parametrization.

Natural parametrization is composed of two components: parameter lines
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that are lines of curvature, and their arc-length parametrization.

Penalizing the deviation of parameter lines from constant speed parametriza-

tion can be formulated as minimizing

∫
|qu · quu|+ |qv · qvv|dA

since if qu ·qu ≈ c holds for some c ∈ R+, then differentiating by u and dividing

by the multiplier of 2, one gets

qu · quu ≈ 0 .

Minimizing the deviation of parameter lines from lines of curvature can be

achieved by maximizing

∫ ∣∣∣∣t
q
1 ·

qu

|qu|

∣∣∣∣+
∣∣∣∣t

q
2 ·

qv

|qv|

∣∣∣∣ dA

Algorithmically, minimizing an f functional that is subject to geometric

Hermite reconstruction constraints can be carried out by finding parametriza-

tion scalars su, sv, ... (or partial derivative x, y Darboux coordinates xu, yu, ...)

such that the resulting set of affected control data q amounts to a surface

q(u, v) that is optimal with respect to the functional in question.

If exact reconstruction is not guaranteed, any approximation technique

presented in subsection 3.4.2 can be used to find a best approximation to the

GH reconstruction using the prescribed su, sv, ... (or xu, xv, ...) parametrization

values.

This, again, amounts to a two-level optimization:

• find a best approximation to the geometric Hermite reconstruction prob-

lem for set su, sv, ... values

• find best su, sv, ... parametrization degrees of freedom that minimizes the

given global functional f

Parametrization optimization can be used to decrease the algebraic degree

of the interpolant surface. Morken has shown an example of a biquadratic

surface patch that is a fourth order approximation to a sphere in [34] - this

biquadratic surface was actually the osculating paraboloid of the sphere.

118



3.5 Algorithms of GH surface interpolation

This section presents methods to set the degrees of freedom present in GH

interpolant surfaces. Introducing heuristics to set the values of these can serve

as an initialization for iterative parametrization optimization techniques.

The source of these degrees of freedom is twofold: on the one hand, they

arise due to the ability of changing parametrization without affecting geometric

reconstruction, while on the other hand, usually there are a number of unaf-

fected control data in the representation of the surface patches that are not

subject to any geometric reconstruction constraint, hence they can be assigned

to arbitrary values.

Direct methods, in the same vein as curve methods presented in Section

2.7, are not readily available because of the latter type of degrees of freedom:

matrix inversion does not specify the entire control data-set of an interpolant.

Parametrization optimization methods presented in the previous section need

to be used to set the unaffected control data.

For the sake of simplicity, we only consider the problem of four corner GH

reconstruction with quadrilateral patches. The arguments presented below can

be easily extended to triangular domains as well.

Blending function-based methods presented in the next point allow us to

combine a wide-range of one-point GH interpolants to form a solution surface

to the four corner problem by blending these surfaces.

The paraboloid-based methods I propose next creates integral polynomial

Bézier interpolants. They work on a similar principle as the blending-based

methods, however, they offer a lower degree solution.

3.5.1 Blending-based methods

Blending-based methods use one-point exact reconstruction interpolants to GH

data tuples, then use geometric blending functions to create a solution surface

to the four corner reconstruction problem.

Let us suppose that p(ij)
(
u(ij), v(ij)

)
are reconstructing E(ij), i, j = 0, 1 at

(u(ij), v(ij)) = (0, 0).

Using geometric blending functions presented in Section 2.7.2 allow us to
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Figure 3.8: Four second order osculating paraboloids being blended by Hart-
mann’s G2 parametric blending function.

formulate quadrilateral solutions in the form of

p(u, v) :=
1∑

i=0

1∑

j=0

f (ij)(u, v)p̃(ij)(u, v),

where f (ij)(u, v) : R2 → R are Gn blending functions. Here, the local one-point

interpolants p(ij)(u(ij), v(ij)) are reparameterized such that over the common

parameter domain (u, v), one-point interpolant p̃(ij)(u, v) carries out recon-

struction at (u, v) = (i, j).

One can use single-variable blending functions to create the above f (ij)

functions. Let us suppose that f(t) : R→ R is a Gn blending function and let

f (ij)(u, v) = f(δi,1 + (−1)δi,1u)f(δj,1 + (−1)δj,1v) .
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Figure 3.9: Blending osculating paraboloids. The size of the subdomain of the
blended one-point interpolant is illustrated by the red and blue lines. These
lines are determined by projecting the neighboring GH data positions onto
the tangent plane of the osculating paraboloid on the bottom-left. On the
left these projections were used directly, while on the right the length of these
porjections were divided by ten.

These functions satisfy the multivariable blending function properties [17]

f (ij)(k, l) = δikδjl

∂usvtf
(ij)(k, l) = 0

∂vsvtf
(ij)(k, l) = 0

where i, j, k, l = 0, 1 and m = 1, 2, .., s+ t = m.

If we reparametrize the one-point interpolants such that we map the [0, 1]×

[0, 1] portion of their domain onto the global paramter domain [0, 1] using

appropriate flips and mirroring, one gets the following form of a parametric

blending-based surface:

p(u, v) =
1∑

i=0

1∑

j=0

f(δi,1 + (−1)δi,1u)f(δj,1 + (−1)δj,1v)p(ij)(−δi,1 + u,−δj,1 + v)

Naturally, given a one-point interpolant, an arbitrary portion of its domain

can be mapped onto the global parameter domain. The size of this mapped

subdomain also affects the overall shape of the blended interpolant, and it can

be considered as a form of weighing. Figure 3.9 illustrates this.
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The choice of blending functions also changes the shape of the blended

interpolant surface and also affects the distribution of parameter lines along

the surface.

In design, these one point interpolants can surve as design control shapes

to define the geometry of parametric surfaces.

3.5.2 Paraboloid-based methods

These methods are direct counterparts of the parabola-based methods pre-

sented for GH interpolation of curves in Section 2.7.2. Compared to the sur-

faces presented in the previous section, paraboloid-based methods simply spec-

ify the type of one-point intrepolant surfaces, as well as the blending function

that combines them, into a single solution surface.

One-point GH interpolant paraboloids are used to achieve exact reconstruc-

tion at parametric corners. Portions of these paraboloids are then selected and

converted into Bézier form. After degree elevation and combination of the ap-

propriate subsets of their control polyhedra, the control points of the blended

interpolant surface are created.

3.5.2.1 Second order GH base-paraboloids

Let us use the following notation for a given G2 base point data tuple

D = (p,n, t1, t2, κ1, κ2),

where p ∈ E3 denotes a point in the Euclidean space, m ∈ R3 is a surface

normal, κ1, κ2 ∈ R are principal curvature values and t1, t2 ∈ R3 are corre-

sponding principal directions, |m| = |t1| = |t2| = 1, and κ1 is the minimum

and κ2 is the maximum normal curvature. Without loss of generality, the

orthonormal basis (t1, t2,m) is assumed to be right-handed. We also assume

that the normals are oriented consistently.

Let there be given four

D(ij) = (p(ij),m(ij), t
(ij)
1 , t

(ij)
2 , κ

(ij)
1 , κ

(ij)
2 ), i, j = 0, 1
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G2 base-point data tuples and let us find a

b(u, v) =
m∑

j=0

n∑

i=0

bijB
n
i (u)B

m
j (v),

degree (n,m) quadrilateral Bézier surface, n,m ≥ 2, (u, v) ∈ [0, 1]2,bij ∈

E3, i = 0, .., n, j = 0, ..,m, , that reconstructs the D(ij) base point data at its

parametric corners (u, v) = (i, j), i, j = 0, 1.

Now, let us consider the problem of constructing C2 spline surfaces using

bi-quintic four-corner second order GH interpolants, provided the base points

constitute of a regular rectangular grid.

First, the remaining degrees of freedom of the control net need to be set.

In order to do that, let us assign the base paraboloids

p(ij)(u, v) = p(ij) + [t
(ij)
1 , t

(ij)
2 ,m(ij)]




u

v
κ
(ij)
1

2
u2 +

κ
(ij)
2

2
v2


 (3.69)

to each D(ij), i, j = 0, 1.

It is easily seen that the unit surface normal of a paraboloid in (3.69) at

(u, v) = (0, 0) is m(ij) and its principal curvatures and principal directions are

κ
(ij)
1 , κ

(ij)
2 , t

(ij)
1 , t

(ij)
2 . See Appendix E for a formal proof.

Let us consider the corner (i, j) = (0, 0) and let us drop the upper indices,

i.e. let D = D(00),m(00) = m,p(u, v) = p(00)(u, v) and so on.

Let u = (ax, ay),b = (bx, by) be two points in the domain of the paraboloid

p(u, v), and let gij, i, j = 0, 1, 2 denote the control points of the bi-quadratic

Bézier patch that represents the mapping of the 0, a, a+ b,b quadrilateral of

dom(p(u, v)), that is, let

g(u, v) = p(u · ax + v · bx, u · ay + v · by),

where u, v ∈ [0, 1] and g(u, v) =
∑2

j=0

∑2
i=0 gijB

2
i (u)B

2
j (v).

To specify the position of the bij, i, j = 0, 1, 2 control points, let us elevate

the degree of g(u, v) to five in both the u and v directions and assign the

3 × 3 control points of the resulting control net around (u, v) = (0, 0) to

bij, i, j = 0, 1, 2.
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These 9 control points are expressed explicitly in terms of the power basis

coefficients of the given paraboloid portion as follows: let the power basis

coefficients be

a00 = a21 = a12 = a22 = 0,

a10 =



ax

ay

0


 , a01 =



bx

by

0


 ,

a20 =




0

0
κ1

2
a2x +

κ2

2
a2y


 , a02 =




0

0
κ1

2
b2x +

κ2

2
b2y


 ,

a11 =




0

0

κ1axbx + κ2ayby




Then the coordinates of the control points in the (p; t1, t2,n) basis are

computed as

b00 = a00 (3.70)

b10 =
a10

5
+ a00 (3.71)

b20 =
a20 + 4a10 + 10a00

10
(3.72)

b01 =
a01 + 5a00

5
(3.73)

b11 =
a11 + 5a10 + 5a01 + 25a00

25
(3.74)

b21 =
5a20 + 4a11 + 20a10 + 10a01 + 50a00

50
(3.75)

b02 =
a02 + 4a01 + 10a00

10
(3.76)

b12 =
4a11 + 10a10 + 5a02 + 20a01 + 50a00

50
(3.77)

b22 =
5a20 + 8a11 + 20a10 + 5a02 + 20a01 + 50a00

50
(3.78)

If the angle between axt1+ayt2 and bxt1+byt2 is smaller than 180 degrees,
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direct evaluation of the differences prove that the choice of control points satis-

fies the conditions of proposition 10, i.e at (u, v) = (0, 0) base point quantities

of D(00) are reconstructed.

After handling the remaining three corners as above, 4×9 control points are

generated, which together form the control net of a bi-quintic Bézier patch that

satisfies the conditions of the four-corner geometric Hermite reconstruction of

D(ij), i, j = 0, 1.

The vectors a
(ij)
x t

(ij)
1 + a

(ij)
y t

(ij)
2 and b

(ij)
x t

(ij)
1 + b

(ij)
y t

(ij)
2 will be the tangent

vectors of the boundary curves in the u and v parametric directions at (u, v) =

(i, j), i, j = 0, 1. Let us refer to these vectors as base tangents.

In order to handle all the four corners correctly, we use the following power

basis coefficients:

a
(ij)
00 = a

(ij)
21 = a

(ij)
12 = a

(ij)
22 = 0, (3.79)

a
(ij)
10 =



(−1)iax

(−1)iay

0


 , a

(ij)
01 =



(−1)jbx

(−1)jby

0


 , (3.80)

a
(ij)
20 =




0

0
κ1

2
a2x +

κ2

2
a2y


 , a

(ij)
02 =




0

0
κ1

2
b2x +

κ2

2
b2y


 , (3.81)

a
(ij)
11 =




0

0

(−1)i+j(κ1axbx + κ2ayby)


 (3.82)

3.5.2.2 Continuous connection along boundaries

Let us suppose our data are given in a uniform rectangular grid. C2 continuity

at the corners of Bézier patches follows from the construction. Now, let us

consider b(u, v) and c(u, v), two bi-quintic four-corner GH interpolants of base-

point data tuples D(ij) and E(ij), i, j = 0, 1, with control points bij, cij, i, j =

0, .., 5 respectively. See figure 3.10.

Let D(1j) = E(0j), j = 0, 1 and let us examine how b(u, v) and c(u, v) can

be connected with second order parametric continuity along the u parametric

direction.
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Figure 3.10: Connecting second order GH interpolants

C2 connection along the b(1, v) = c(0, v), v ∈ [0, 1] boundary requires that

[11]

∆10b4j = ∆10c0j (3.83)

∆20b3j = ∆20c0j (3.84)

hold for j = 0, .., 5. This allows us to investigate the continuity condition

independently on the two control net portions around the two base point data

tuples.

Let us consider the case of D(10) = E(00). From (3.70)-(3.78) it follows that

ci,j, i, j = 0, 1, 2 depend on the selection of the base tangent vectors a(00),b(00).

Similarly, b3+i,j, i, j = 0, 1, 2 depend on the base tangent vectors c(10),d(10),

that is, the tangents vectors used for the construction of the bij control net.

Since both control net portions share the same base paraboloid, assigned

to D(10) = E(00), and taking into account the appropriate handling of base

tangent directions around this corner, conditions (3.83)-(3.84) can be satisfied

by using the same base tangent vectors for the u and v parametric directions,

i.e. if a(00) = c(10) = a,b(00) = d(10) = b. See figure 3.10.

The control points around the cornerD(11) = E(01) are handled analogously.

Continuity along the v parametric directions is derived similarly.
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Figure 3.11: Connection of two GH bi-quintic interpolants along their common
boundary. The length of base tangent vectors are twice as long on the image
on the right compared to the ones on the left.

3.5.2.3 Extension to higher order GH interpolation

Using paraboloids that are solutions to third or higher order GH surface

interpolation allows us to extend the paraboloid-based approach presented

here to create quadrilateral Cn spline surfaces from geometric data. This Cn

parametrization then can be used in parametrization optimization as a initial

value for the parametrization degrees of freedom.

Appendix E details how a third order GH interpolant paraboloid can be

constructed, as well as verifies that the paraboloid used previously indeed does

satisfy second order GH interpolation constraints. The techniques shown in

this appendix can be extended to higher order GH interpolation.
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Chapter 4

Summary

In this thesis I presented a general formulation of geometric Hermite interpo-

lation of curves and surfaces in terms of geometric reconstruction equations.

These reconstruction constraints were cast upon the positions and derivatives

of curves and surfaces at prescribed parameter values.

This allowed the separation of geometric constraints from degrees of free-

dom of parametrization in the control data of an arbitrary parametric repre-

sentation.

In the case of curves, this formulation relied on the expression of curve

derivatives in the Frenet frame, using a simple recurrence formula.

I also presented the use of Frenet coordinates to compute geometric invari-

ants – and their derivatives with respect to arc-length –, and I derived formulae

to verify G3 geometric continuity of two joining curves.

Solvability of the reconstruction equations was discussed for arbitrary but

fixed parametrization next, a setting in which the problem becomes linear. I

derived a general existence theorem for exact reconstruction, irrespective of the

basis of the curve. For polynomial curves, I gave upper bounds on the degree

of interpolants. I investigated the L1 and L2 best approximation to a given

reconstruction problem. I showed how both symmetric and one-point partial

exact reconstruction constraints can be incorporated into approximation.

By letting the coefficients of parametrization in the reconstruction equa-

tions vary, I used nonlinear optimization techniques to find optimal parametriza-

tions, which may be in the sense of some real valued functional or even the

degree reduction of a polynomial.

I presented algorithms to carry out geometric Hermite interpolation of
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curves and I characterized the problem of third order GH interpolation.

I showed how geometric properties of surfaces at a non-umbilical point can

be specified by geometric invariants of lines of curvature. I made a corre-

spondence between the geometric continuity of surfaces and the differential

geometric properties of lines of curvature of two joining surfaces. Finally, I

used these results to formulate geometric Hermite interpolation of surfaces,

which stipulates geometric reconstruction equations on partial derivatives.

Exact and approximate solutions to this problem were discussed in accor-

dance with the case of curves, and analogous results were shown regarding

the conditions of exact reconstruction and the upper-bound on the degree of

polynomial interpolants. nonlinear parameter optimization methods were pre-

sented.

The abundance of degrees of freedom in GH interpolation of surfaces re-

quires heuristics or the aforementioned parametrization optimization tech-

niques to fully define the interpolant patch. Blending based and direct methods

were presented to create such patches.
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Appendix A

Proof of Theorems and Lemmas

of curves

A.1 Equivalence of Frenet x coordinates and

derivatives of arc-length functions

Lemma 21 The derivatives of the arc-length function

s′(t) = |r′(t)| = (r′(t) · r′(t))
1
2

s′′(t) = ((r′(t) · r′(t))
1
2 )′ =

r′(t) · r′′(t)

|r′(t)|

s′′′(t) =

(
r′(t) · r′′(t)

|r′(t)|

)′

=
r′′(t) · r′′(t) + r′(t) · r′′′(t)

|r′(t)|
−

(r′(t) · r′′(t))2

|r′(t)|3

can be expressed with the Frenet-frame coordinates of the derivatives as

s′(t) = x1 (A.1)

s′′(t) = x2 (A.2)

s′′′(t) =
y22
x1

+ x3 (A.3)

= κ2x3
1 + x3

Proof.
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By noting that x1 > 0, i.e. |x1| = x1, it follows immediately that

s′(t) = |r′(t)| = (r′(t) · r′(t))
1
2

=






x1

0

0


 ·



x1

0

0







1
2

= |x1|

= x1

The second derivative of the arc-length function is

s′′(t) = ((r′(t) · r′(t))
1
2 )′ =

r′(t) · r′′(t)

|r′(t)|

=






x1

0

0




F

·



x2

y2

0




F


 /x1

= x2

The third derivative is similarly

s′′′(t) =

(
r′(t) · r′′(t)

|r′(t)|

)′

=
(r′′(t) · r′′(t) + r′(t) · r′′′(t))|r′| − (r′(t) · r′′(t))r

′(t)·r′′(t)
|r′(t)|

|r′(t)|2

=
r′′(t) · r′′(t) + r′(t) · r′′′(t)

|r′(t)|
−

(r′(t) · r′′(t))2

|r′(t)|3

=






x2

y2

0




F

·



x2

y2

0




F

+



x1

0

0




F

·



x3

y3

z3




F


 /x1 −






x1

0

0




F

·



x2

y2

0




F




2

/x3
1

=
x2
2 + y22 + x1x3

x1

−
x2
1x

2
2

x3
1

=
x2
2

x1

+
y22
x1

+ x3 −
x2
2

x1

=
y22
x1

+ x3 .
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A.2 Expression of geometric invariants with

Frenet coordinates

Lemma 22 Geometric invariants of a curve, up to order three, can be ob-

tained using Frenet coordinates as

κ =
y2
x2
1

(A.4)

κ̂′ ◦ s =
y3 − 3x1x2κ

x3
1

(A.5)

=
y3x1 − 3x2y2

x4
1

(A.6)

τ =
z3
κx3

1

(A.7)

=
z3
x1y2

(A.8)

Proof. It is the direct result from substituting (2.20)-(2.22) into (2.16), and

expressing the geometric invariants.

For curvature, this gives from

r′′ =




s′′

(s′)2κ

0




F

=



x2

x2
1κ

0




the expression

y2 = x2
1κ ,

that is

κ =
y2
x2
1

.

For torsion and arc-length derivative of curvature, using




s′′′ − (s′)3κ2

3s′s′′κ+ (s′)3 · κ̂′ ◦ s

(s′)3κτ




F

=




x3 − x3
1κ

2

3x1x2κ+ x3
1 · κ̂

′ ◦ s

x3
1κτ




F
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we get

y3 = 3x1x2κ+ x3
1 · κ̂

′ ◦ s

z3 = x3
1κτ

that is

κ̂′ ◦ s =
y3 − 3x1x2κ

x3
1

=
y3x1 − 3x2y2

x4
1

,

τ =
z3
κx3

1

=
z3
x1y2

.

A.3 Conditions of geometric continuity in terms

of Frenet coordinates

Lemma 23 Let us assume that the Frenet frames of r(t) and s(t) coincide at

r(1) = s(0), and let [xi, yi, zi]
T
F denote the Frenet coordinates of r(i)(1), and

[x̃i, ỹi, z̃i]
T
F that of s(i)(0). The two curves are G2 iff

y2
ỹ2

=

(
x1

x̃1

)2

.

Furthermore, two G2 curves are G3 iff

κτx3
1

κ̃τ̃ x̃3
1

=

(
x1

x̃1

)3

y3 − 3x1x2κ

ỹ3 − 3x̃1x̃2κ̃
=

(
x1

x̃1

)3

both hold.

Proof. By definition, r(t) and s(t) are G2 iff they are G1 and the κ, κ̃ curva-

tures are equal. It follows from (2.16) that

y2 = x2
1κ , ỹ2 = x̃2

1κ̃ ,
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and, the ratio of the normal coordinates is

y2
ỹ2

=
x2
1κ

x̃2
1κ̃

=
x2
1

x̃2
1

,

iff κ = κ̃. That is, the curvatures agree iff

y2
ỹ2

=

(
x1

x̃1

)2

.

The two curves r(t) and s(t) are G3 iff they are G1 and G2, and both the

torsions and arc-length derivatives of curvature agree.

The equality of τ = τ̃ is equivalent to

z3
z̃3

=

(
x1

x̃1

)3

,

following a similar reasoning to that of the curvature: it follows from (2.16)

that

z3 = κτx3
1, z̃3 = κ̃τ̃ x̃3

1 ,

so the ratio of
z3
z̃3

=
κτx3

1

κ̃τ̃ x̃3
1

=

(
x1

x̃1

)3

holds iff the torsions agree, since the two curves are already G2.

To find a similar ratio-based condition for the equality of arc-length deriva-

tives of the curvature, one has to express κ̂′ from

3x1x2κ+ x3
1 · κ̂

′ ◦ ŝ ,

yielding that, for two G2 curves, κ̂′ ◦ ŝ = κ̃′ ◦ s̃ holds iff

y3 − 3x1x2κ

ỹ3 − 3x̃1x̃2κ̃
=

(
x1

x̃1

)3

.
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Appendix B

Proof of parabolic GH

interpolant reconstruction

In this appendix we show that given a third order GH data tuple Di, the

polynomials in Table B.1 reconstruct Di at t = 0.

Let us restate the recurrence formula of Theorem 2

r(n+1) =



x′
n

y′n

z′n




F

+ s′



0 −κ 0

κ 0 −τ

0 τ 0






xn

yn

zn




F

, (B.1)

which can be expressed by coordinates as

xn+1 = x′
n − s′κyn

yn+1 = y′n + s′κxn − τzn

zn+1 = z′n + s′τyn

The first, second, and third derivatives are

r′ = s′



1

0

0




F

, r′′ =




s′′

(s′)2κ

0




F

, r′′′ =




s′′′ − (s′)3κ2

3s′s′′κ+ (s′)3κ̂′

(s′)3κτ




F

.

Let us prove that the parabolas reconstruct Di:

• κ 6= 0: it follows immediately from Theorem 2
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κ κ̂′ τ polynomial curve

6= 0 6= 0 ∈ R




t
κi

2
t2 +

κ̂′

i

6
t3

κiτi
6
t3




0 ∈ R 0




t
κ̂′

i

6
t3

0




0 6= 0 ∈ R




t
κ̂′

i

6
t3 +

κ̂′′

i

24
t4

κ̂′

iτi
12

t4




0 0 ∈ R




t
κ̂′′

i

24
t4 +

κ̂′′′

i

120
t5

κ̂′′

i τi
40

t5




Table B.1: Polynomial curves reconstructing a third order GH data tuple at
t = 0.

• κ = 0, κ̂′ 6= 0, τ ∈ R:

In this case r′, r′′ are linearly dependent, that is, the second derivative

of the curve does not deviate from the tangent line. As a result, the

osculating plane cannot be spanned by r′, r′′, thus the Frenet frame is

not yet defined, because r′||r′′ → r′ × r′′ = 0.

However, since κ̂′ 6= 0, the third derivative of the curve is

r′′′ =




s′′′

(s′)3κ̂′

0




F

which – due to the regularity of the curve, that is, because s′ 6= 0 – can

be used to specify the osculating plane, and the Frenet frame as

t =
r′

|r′|

n = b× t

b =
r′ × r′′′

|r′ × r′′′|
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Note that the torsion is still not present in r′′′, so the fourth derivative

has to be computed, which, in general, has the form of

r(4) =




s(4) − 3(s′)2s′′κ2 − 2(s′)4κκ̂′ − 3(s′)2s′′κ2 − (s′)4κ̂′κ

3(s′′)2κ+ 3s′s′′′κ+ 6(s′)2s′′κ̂′ + (s′)4κ̂′′ + κs′s′′′ − κ3(s′)4 − τ 2κ(s′)4

6(s′)2s′′κτ + 2(s′)4κ̂′τ + (s′)4κτ̂ ′




F

Substituting κ = 0 into this, the fourth derivative becomes

r(4) =




s(4)

6(s′)2s′′κ̂′ + (s′)4κ̂′′

2(s′)4κ̂′τ




F

Let us now look for a third order GH interpolant polynomial in the form

of

p(t) =




a1t∑4
i=2 bit

i

∑4
i=3 cit

i


 =




t

b2t
2 + b3t

3 + b4t
4

c3t
3 + c4t

4




Its derivatives at t = 0 are

p′ =



a1

0

0


 , p′′ =




0

2b2

0


 , p′′′ =




0

6b3

6c3


 , p′′′′ =




0

24b4

24c4



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which should be equal to

p′ =



a1

0

0


 =



s′

0

0




F

p′′ =




0

2a2

0


 =




s′′

(s′)2κ

0




F

p′′′ =




0

6b3

6c3


 =




s′′′ − (s′)3κ2

3s′s′′κ+ (s′)3κ̂′

(s′)3κτ




F

p′′′′ =




0

24b4

24c4


 =




s(4)

6(s′)2s′′κ̂′ + (s′)4κ̂′′

2(s′)4κ̂′τ




F

because of Theorem 2.

The arc-length function derivatives of p(t) at t = 0 are

s′ = 1

s′′ =



a1

0

0


 ·




0

2a2

0


 /|a1| = 0

s′′′ =




0

2a2

0


 ·




0

2a2

0


+



a1

0

0


 ·




0

6b3

6c3




|a1|
−







0

2a2

0


 ·



a1

0

0







2

|a1|3

=
4a22
|a1|

where the fourth derivative of s(t) is not necessary, since it can be con-

sidered as a degree of freedom constrained by the formulation of p(t).
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The coefficients of the polynomial are then

a1 = 1 = s′

b2 =
κ

2
=

(s′)2κ

2

b3 =
κ̂′

6
=

(s′)3κ̂′

6

c3 =
κτ

6
=

(s′)4κτ

6

b4 =
κ̂′′

24
=

(s′)4κ̂′′

24

c4 =
2κ̂′τ

24
=

(s′)4κ̂′τ

12

which satisfy the arc-length derivative conditions of s′′′ = (s′)3κ2, etc. as

well.

Thus, the following quartic polynomial reconstructs Di at t = 0:

p(t) =




t
κ̂′

6
t3 + κ̂′′

24
t4

κ̂′τ
12
t4


 (B.2)

• κ = κ̂ = 0, τ ∈ R

In this case the third and fourth derivatives of r(t) are

r′′′ =



s′′′

0

0




F

r(4) =




s(4)

(s′)4κ̂′′

0




F

Similarly to the previous case, a higher order derivative is required to

141



specify the Frenet-frame, which is now r(4), that is

t =
r′

|r′|

n = b× t

b =
r′ × r(4)

|r′ × r(4)|

In general, the Frenet coordinates of the fifth derivative are

x5 =(s′)
5
κ2 τ 2 − 4 (s′)

5
κ κ̂′′ − 3 (s′)

5
(κ̂′)2 − 30 (s′)

3
s′′ κ κ̂′

+ (s′)
5
κ4 +

(
−10 (s′)

2
s′′′ − 15 s′ s′′

2
)
κ2 + s′′′′′

y5 =− 3 (s′)
5
κ τ τ̂ ′ +

(
−3 (s′)

5
κ̂′ − 10 (s′)

3
s′′ κ

)
τ 2 + (s′)

5
κ̂′′′ + 10 (s′)

3
s′′ κ̂′′

+
(
−6 (s′)

5
κ2 + 10 (s′)

2
s′′′ + 15 s′ s′′

2
)
κ̂′ − 10 (s′)

3
s′′ κ3 + (5 s′ s′′′′ + 10 s′′ s′′′) κ

z5 =(s′)
5
κ τ̂ ′′ +

(
3 (s′)

5
κ̂′ + 10 (s′)

3
s′′ κ

)
τ̂ ′ − (s′)

5
κ τ 3

+
(
3 (s′)

5
κ̂′′ + 20 (s′)

3
s′′ κ̂′ − (s′)

5
κ3 +

(
10 (s′)

2
s′′′ + 15 s′ s′′

2
)
κ
)
τ

Substituting κ = κ̂′ = 0 yields

r(5) =




s′′′′′

(s′)5 κ̂′′′ + 10 (s′)3 s′′ κ̂′′

3 (s′)5 κ̂′′τ




F

Let us now look for a third order GH interpolant polynomial in the form

of

p(t) =




a1t∑5
i=2 bit

i

∑5
i=3 cit

i


 =




t

b2t
2 + b3t

3 + b4t
4 + b5t

5

c3t
3 + c4t

4 + c5t
5




and let us also assume that κ̂′′ 6= 0. Then it follows immediately, that

p′′′′′ =




0

120b5

120c5


 ,

142



and the reconstruction conditions are expanded as

p′ =



a1

0

0


 =



s′

0

0




F

p′′ =




0

2a2

0


 =




s′′

(s′)2κ

0




F

p′′′ =




0

6b3

6c3


 =




s′′′ − (s′)3κ2

3s′s′′κ+ (s′)3κ̂′

(s′)3κτ




F

p′′′′ =




0

24b4

24c4


 =




s(4)

6(s′)2s′′κ̂′ + (s′)4κ̂′′

(s′)4κ̂′τ




F

p′′′′′ =




0

120b5

120c5


 =




s′′′′′

(s′)5 κ̂′′′ + 10 (s′)3 s′′ κ̂′′

3 (s′)5 κ̂′′τ




F

which yields

a1 = 1 = s′

b2 = 0 =
(s′)2κ

2

b3 = 0 =
(s′)3κ̂′

6

c3 = 0 =
(s′)4κτ

6

b4 =
κ̂′′

24
=

(s′)4κ̂′′

24

c4 = 0 =
(s′)4κ̂′τ

24

b5 =
κ̂′′′

120
=

(s′)5 κ̂′′′ + 10 (s′)3 s′′ κ̂′′

120

c5 =
3κ̂′′τ

120
=

3 (s′)5 κ̂′′τ

120

after substituting κ̂′ = 0.
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κ κ̂′ τ polynomial curve

6= 0 6= 0 ∈ R




s · t
s2

2
κit

2 + s3

6
κ̂′
it
3

s3

6
κiτit

3




0 ∈ R 0




s · t
s3

6
κ̂′
it
3

0




0 6= 0 ∈ R




s · t
s3

6
κ̂′
it
3 + s4

24
κ̂′′
i t

4

s4

12
κ̂′
iτit

4




0 0 ∈ R




s · t
s4

24
κ̂′′
i t

4 + s5

120
κ̂′′′
i t

5

s5

40
κ̂′′
i τit

5




Table B.2: Polynomial curves with speed parameter s > 0, reconstructing a
third order GH data tuple at t = 0.

That is, if κi = κ̂′
i = 0, the following polynomial reconstructs Di:

p(t) =




t
κ̂′′

24
t4 + κ̂′′′

120
t5

κ̂′′τ
40

t5


 (B.3)

Incorporating a speed parameter into these curves is done by equating the

tangential coordinate with s · t, for some s > 0 value. Then the third order

GH interpolant polynomials are of the form shown in Table B.2.
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Appendix C

Second order GH interpolation

with triangular patches

C.1 Three corner GH interpolation

Let us consider the problem of finding triangular Bézier surfaces that recon-

struct the base point data at corners. This Appendix is from [50].

In what follows, the multi-indices denoted by i = (i, j, k) are always such

that i, j, k ∈ N.

Let there be given three G2 base point data tuples D(i), i = (0, 0, 1),

(1, 0, 0), (0, 1, 0).

A degree n triangular Bézier patch is defined as [11]

b(u) =
∑

||i||1=n

biB
n
i (u)

where u = (u, v, w), ||u||1 = 1, bi ∈ E3, ||i||1 = n, and the trinomial coefficients

Bn
i (u) are

Bn
i (u) =

n!

i!j!k!
uivjwk

The three corner second order geometric Hermite interpolation problem

is concerned with finding triangular Bézier surfaces that reconstruct the pre-

scribed D(i) base point data at parametric corners (0, 0, 1), (1, 0, 0), (0, 1, 0).

In the triangular setting, we have to make use of directional derivatives in-

stead of parametric u and v derivatives: let d1 and d2 be two linearly indepen-

dent directions in the domain. Using the blossom form ([11]), the derivatives
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Figure C.1: The control points around a corner required for second order
geometric Hermite interpolation.

can be written as

Dr,s
d1,d2

b(u) =
n!

(n− r − s)!
b[d<r>

1 ,d<s>
2 ,u<n−r−s>], r + s ≤ n

Let us consider the corner (u, v, w) = (0, 0, 0) and the corresponding, D =

D(001) base point data, and let d1 = (1, 0, 0) − (0, 0, 1) = (1, 0,−1) and d2 =

(0, 1, 0) − (0, 0, 1) = (0, 1,−1). The directional derivatives in these directions

required for the computation of the first and second funademental forms are

then

Dd1(0) = n(b1,0,n−1 − b0,0,n) (C.1)

Dd2(0) = n(b0,1,n−1 − b0,0,n) (C.2)

D2
d1
(0) = n(n− 1) ((b2,0,n−2 − b1,0,n−1)− (b1,0,n−1 − b0,0,n)) (C.3)

Dd1,d2(0) = n(n− 1) ((b1,1,n−2 − b1,0,n−1)− (b0,1,n−1 − b0,0,n)) (C.4)

D2
d2
(0) = n(n− 1) ((b0,2,n−2 − b0,1,n−1)− (b0,1,n−1 − b0,0,n)) (C.5)

The control points used in the formulas and for the G2 reconstruction are

shown in figure C.1. Expressing these control points in the (p; t1, t2,m) basis
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we get

b0,0,n = (0, 0, 0) (C.6)

b1,0,n−1 = (x1,0,n−1, y1,0,n−1, z1,0,n−1) = (
xu

n
,
yu
n
, 0) (C.7)

b0,1,n−1 = (x0,1,n−1, y0,1,n−1, z0,1,n−1) = (
xv

n
,
yv
n
, 0) (C.8)

b2,0,n−2 = (x2,0,n−2, y2,0,n−2, z2,0,n−2) (C.9)

= (
xuu + 2(n− 1)xu

n(n− 1)
,
yuu + 2(n− 1)yu

n(n− 1)
,

zuu
n(n− 1)

)

b1,1,n−2 = (x1,1,n−2, y1,1,n−2, z1,1,n−2) (C.10)

= (
xuv + (n− 1)(xu + xv)

n(n− 1)
,
yuv + (n− 1)(xu + xv)

n(n− 1)
,

zuv
n(n− 1)

)

b0,2,n−2 = (x0,2,n−2, y0,2,n−2, z0,2,n−2) (C.11)

= (
xvv + 2(n− 1)xv

n(n− 1)
,
yvv + 2(n− 1)yv

n(n− 1)
,

zvv
n(n− 1)

)

where (xu, yu) and (xv, yv) denote the coordinates of Dd1b(0), Dd2b(0), and

(xuu, yuu, zuu), (xuv, yuv, zuv), and (xvv, yvv, zvv) of D2
d1
b(0), Dd1,d2b(0), and

D2
d2
b(0), respectively, in the basis of (t1, t2,m).

The zuu, zuv, zvv tangent plane offset values are computed by expressing the

appropriate Dd1b(0), Dd2b(0) directional derivatives in the (t
(i)
1 , t

(i)
1 ) basis.

The other parametric corners and corresponding control points can be

treated similarly.

C.1.1 Quintic triangular Bézier patch

The control net of the quintic triangular Bézier is shown in figure C.2. As in the

case of quadrilateral bi-quintic Bézier patches, the base point reconstruction

regions at each corner are independent. If they are chosen such that their (C.6)-

(C.11) coordinates satisfy (3.4)-(3.6), (3.12)-(3.14), the corner base point data

are reconstructed. This proves the following

Theorem 24 There is always a quintic triangular Bézier solution for the three

corner second order geometric Hermite interpolation problem.
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Figure C.2: The control points of the quintic triangular Bézier patch. The
red, blue, and green regions correspond to the control points necessary for the
reconstruction of the G2 base point dataD(001), D(100), andD(010), respectively.

Figure C.3: The control points of the quartic triangular Bézier patch. The
red, blue, and green regions correspond to the control points necessary for the
reconstruction of the G2 base point dataD(001), D(100), andD(010), respectively.
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C.1.2 Quartic triangular Bézier patch

The quartic triangular case has three control points, that are under the influ-

ence of two different base point data tuples, see figure C.3.

The constraints on the overlapping control points can be written as

b2,0,2 ∈M(001)(z
(001)
2,0,2 ) ∩M(100)(z

(100)
2,0,2 ) (C.12)

b0,2,2 ∈M(001)(z
(001)
2,0,2 ) ∩M(010)(z

(010)
2,0,2 ) (C.13)

b2,2,0 ∈M(010)(z
(010)
2,0,2 ) ∩M(100)(z

(100)
2,0,2 ) (C.14)

Following the derivation of the quadrilateral bi-quartic case, the following

can be stated

Theorem 25 The three corner second order geometric Hermite interpolation

has a quartic triangular Bézier solution if and only if for each neighbouring

D(i), D(j) base point data

H(i) ∩H(j) 6= ∅ (C.15)

C.1.3 Cubic triangular Bézier patch

The control net of the cubic triangular Bézier patch is shown in figure C.4.

Let T(i) denote the tangent plane of D(i), and let M
(i)
x = Mi(z

(i)
x ), where

x ∈ {uu, uv, vv}. Let Mi = Mi,j,k denote the set of all feasible locations of

control point bi,j,k, subject to (C.6)-(C.11).

All control points are under the influence of at least one base point data

tuple. The following control points need to satisfy at least two base point

reconstruction constraints:

b1,0,2 ∈ T(001) ∩M
(100)
2,0,1 (C.16)

b2,0,1 ∈ T(100) ∩M
(001)
2,0,1 (C.17)

b0,1,2 ∈ T(001) ∩M
(010)
0,2,1 (C.18)

b0,2,1 ∈ T(010) ∩M
(001)
0,2,1 (C.19)

b2,1,0 ∈ T(100) ∩M
(010)
2,0,1 (C.20)

b1,2,0 ∈ T(010) ∩M
(100)
0,2,1 (C.21)

b1,1,1 ∈M
(100)
1,1,1 ∩M

(010)
1,1,1 ∩M

(001)
1,1,1 (C.22)
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Figure C.4: The control points of the cubic triangular Bézier patch. The
red, blue, and green regions correspond to the control points necessary for the
reconstruction of the G2 base point dataD(001), D(100), andD(010), respectively.

Conditions (C.16)-(C.21) can be satisfied as in the case of quadrilateral

patches, and the control points affected by these conditions can be chosen as

shown in section 3.4.

Condition (C.22) is a constraint specific to triangular patches, which de-

pends on all the boundary directional derivatives, and the base point data of

all three corners. It places b1,1,1 on the intersection of planes M
(001)
1,1,1 , M

(010)
1,1,1 ,

M
(100)
1,1,1 .

If the surface normals m(001), m(010), m(100) are linearly independent, these

planes are not parallel, and their intersection is a point. Placing b1,1,1 onto

this intersection point satisfies the second order reconstruction constraint of

all corners and the result is a cubic triangular patch solution to the three

corner reconstruction. However, we cannot state intuitive geometric existence

conditions for the parallel normal cases.

Let us consider the case where exactly two surface normals are parallel.

Without the loss of generality, let us assume that m(001) ‖ m(100). In order

for the intersection in (C.22) to exist, we have to guarantee that M
(100)
1,1,1 =

M
(001)
1,1,1 = M holds, so that placing b1,1,1 anywhere along the intersection line of

M∩M(010), base point reconstruction constraints are satisfied. M
(100)
1,1,1 = M

(001)
1,1,1
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holds if and only if

(p
(001)
M − p

(100)
M ) ·m = 0,

where p
(i)
M = p(i) +m

(i)
1,1,1m

(i) and m ∈ {m(001),m(100)}.

Finally, consider the case of m(001) ‖ m(100) ‖ m(010). Now all three lifted

tangent planes have to coincide, which can be formulated as

(
(p

(100)
M − p

(001)
M )× (p

(010)
M − p

(001)
M )

)
·m > 0

m ∈ {m(001),m(100),m(010)}, excluding the cases p
(100)
M = p

(001)
M and p

(010)
M =

p
(001)
M .
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Appendix D

Differential geometry of lines of

curvature

Lines of curvature are curves on a surface having the property that at every

point, the direction of their tangent vector coincides with one of the principal

directions.

Their
(
u(t), v(t)

)
, t ∈ R curve in the domain of a parametric surface is

defined by

(L− κnE)u′ + (M − κnF )v′ = 0 (D.1)

(M − κnF )u′ + (N − κnG)v′ = 0 (D.2)

which is result shown in every classical differential geometry textbook, see for

example [9], [45]. Lines of curvature form an orthogonal net over the surface

– outside the neighborhood of umbilical points –, and we have seen how this

orthogonal net can be used to define a natural parametrization of surfaces.

The behavior of lines of curvature around umbilics was of theoretical and

practical interest. In these points, every tangent direction is a principal direc-

tion due to the coincidence of both principal curvatures. Equations (D.1)-(D.2)

cannot provide the tangents of lines of curvature at an umbilic, instead, higher

order derivatives of the surface are required.

Although spheres and planes are obvious examples of surfaces that consist

of only umbilical points, they also turn out to be the only surfaces that are

composed of exclusively umbilical points. Umbilics of a surface are usually of

finite number and they are also isolated [38].
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Computation of higher order differential geometric properties of lines of

curvature was recently investigated by Joo et. al. in [24], both at umbilics and

non-umbilical points. The remainder of this appendix details their method.

We only consider the case of non-vanishing curvatures - for handling this case,

the interested reader is referred to [24].

They have taken advantage of the fact that a line of curvature can be

considered as a

c(t) = r
(
u(t), v(t)

)

curve on the surface, whose derivatives can be expressed in terms of the partial

derivatives of the parametric surface r(u, v), as well as a curve in space, whose

Frenet coordinates – in case of arc-length parametrization – are made up of

combinations of differential geometric invariants, that is, for example

c′ = ruu
′ + rvv

′ =



1

0

0




F

,

c′′ = ruuu
′ + 2ruvu

′v′ + rvvv
′ + ruu

′′ + rvv
′′ =



0

κ

0




F

,

if u(t), v(t) are subject to

u′ = η(M − κpF )

v′ = −η(L− κpE)

where

η =
±1√

E(M − κpF )2 + 2F (M − κpF )(L− κpE) +G(L− κpE)2
,

which ensures the unit-speed parametrization of the line of curvature
(
u(t), v(t)

)
.

Let us consider the two cp(t) lines of curvature of a surface at a point,

p = 1, 2. The second derivative of cp(t) can be written as

c′′ = κpnm+ κpgu = ruu
′′ + rvv

′′ + a2 (D.3)
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where m is the unit surface normal, up = m × tp, and κpn, κpg denote the

normal and geodesic curvature of the line of curvature, p = 1, 2, and

a2 = ruu(u
′)2 + 2ruvu

′v′ + rvv(v
′)2 .

By taking the dot product of (D.3) with ru, then with rv, one gets

Eu′′ + Fv′′ − κpg(u · ru) = −a2 · ru (D.4)

Fu′′ +Gv′′ − κpg(u · rv) = −a2 · rv (D.5)

that is, there are two linear equations for three unknown quantities: u′′, v′′, κpg.

A third equation can be obtained by differentiating either (D.1) or (D.2). By

doing the former, one gets

(L− κpnE)u′′ + (M − κpnF )v′′ = β1p

where β1p = −(L
′ − κ′

pE − κpE
′)u′ + (M ′ − κ′

pF − κpF
′)v′. It is important to

note that in certain cases, differentiating (D.1) yields an identity of the form

0 = 0. If this occurs, the equation obtained from differentiating (D.2)

(M − κnF )u′′ + (N − κnG)v′′ = γ1

is to be used instead to complement (D.4) and (D.5), where

γ1 = −(M
′ − κ′

nF − κnF
′)u′ − (N ′ − κ′

nG− κnG)v′ .

Therefore, the solution to the system




E F −(up · ru)

F G −(up · rv)

L− κpE M − κpF 0






u′′

v′′

κg


 =



−a2 · ru

−a2 · rv

β1




or, in case of its singularity, to




E F −(up · pu)

F G −(up · pv)

M − κnF N − κnG 0






u′′

v′′

κg


 =



−a2 · pu

−a2 · pv

γ1



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produces the u′′, v′′ parametric second derivatives of the cp(t) line of curvature

in the parametric domain of r(u, v), and its κpg geodesic torsion in space.

Singularity of one of the systems may happen in ’nice’ parametrizations too:

if the parameter lines are lines of curvature at a point and the first derivatives

are of unit length, either (D.4) or (D.5) becomes an identity.

A less articulated attribute of lines of curvature is the fact that their order-n

geometric invariants depend on surface derivatives up to order n+ 1.

This is an immediate result of the defining differential equation of lines of

curvature (D.1)-(D.2), which defines the first order u′, v′ behavior of lines of

curvature via the first and second fundamental form coefficients, that is, due

to the presence of E,F,G, L,M,N , via ru, rv, ruu, ruv, rvv. Similarly, u(i), v(i)

depend on surface derivatives up to order i+ 1. This is also evident from the

work of Joo et. al. quoted here.

In general, provided that none of the principal curvatures is equal to zero,

using the (n + 1)-th order partial derivatives of the surface, the order n geo-

metric invariants of the lines of curvature can be computed by




E F −np · ru −κpbp · ru

F G −np · rv −κpbp · rv

np · ru np · rv −1 0

L− κpnE M − κpnF 0 0



·




u(m)

v(m)

κ̂(m−2)

τ̂ (m−3)



= (D.6)



am · ru + xpmtp · ru + (ypm − κ̂+ p(m−2))np · ru + (zpm − κpτ̂

(m−3)
p )bp · ru

am · rv + xpmtp · rv + (ypm − κ̂+ p(m−2))np · rv + (zpm − κpτ̂
(m−3)
p )bp · rv

βp,m−1




where tp,np,bp denotes the vectors of the Frenet trihedron of cp(t), c
(m) =

[xpm, ypm, zpm]
T
F , and κp, τp are the curvature and torsion of the cp(t) line of

curvature as a space curve, p = 1, 2, and am, βpm are defined analogously as

before, using higher order differentiation. For a detailed discussion of this, as

well as the case of umbilical points, the interested reader is referred to [24].
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Appendix E

Paraboloid solutions to second

and third order GH

interpolation

E.1 Second order paraboloids

E.1.1 Principal curvature reconstruction

Let us consider the paraboloid of the form

p(ij)(u, v) = p(ij) + [t
(ij)
1 , t

(ij)
2 ,m(ij)]




u

v
κ
(ij)
1

2
u2 +

κ
(ij)
2

2
v2


 . (E.1)

where t
(ij)
1 , t

(ij)
2 ,m(ij) form a right-handed orthonormal system.

Its partial derivatives in the (t
(ij)
1 , t

(ij)
2 ,n(ij)) Darboux frame are

pu =




1

0

κ
(ij)
1 u




D

, pu =




1

0

κ
(ij)
2 v




D

puu =




0

0

κ
(ij)
1




D

, puv = 0 , pvv =




0

0

κ
(ij)
2




D
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thus, at (u, v) = (0, 0) we have

pu =



1

0

0




D

, pv =



0

1

0




D

puu =




0

0

κ
(ij)
1




D

, puv = 0 , pvv =




0

0

κ
(ij)
2




D

.

The principal normal here is pu × pv =



0

0

1




D

, which equals to m(ij).

The first and second fundamental forms are

E = 1 , F = 0 , G = 0

L = κ
(ij)
1 , M = 0 , N = κ

(ij)
2

Thus, it follows immediately that the parameter lines are lines of curva-

ture at (0, 0) and the principal directions in space are t
(ij)
1 and t

(ij)
2 , and the

corresponding principal curvatures are κ
(ij)
1 , κ

(ij)
2 .

E.1.2 Principal and geodesic curvature reconstruction

If one would like to exert control over the geodesic curvature of lines of curva-

ture, the formulation of (E.1) will not suffice. Instead, quadratic terms have

to be introduced along the Darboux x and y coordinates of the paraboloid,

that is, they should be of the form

p(ij)(u, v) = p(ij) +




u+ a
2
v2

v + b
2
u2

c
2
u2 + d

2
v2




D

We show in this subsection that the above is enough for the simultaneous

reconstruction of normal and geodesic curvature of lines of curvatures.
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The partial derivatives of the paraboloid at (u, v) = (0, 0) are then

p(ij)
u =



1

0

0




D

, p(ij)
v =



0

1

0




d

, m =



0

0

1




D

p(ij)
uu =



0

b

c




D

, p(ij)
uv =



0

0

0




D

, p(ij)
vv =



a

0

d




D

from which it follows that

E = 1 , F = 0 , G = 1 ,

L = c , M = 0 , N = d .

The principal directions in the domain of p(u, v) at (u, v) = (0, 0) are again

(u′, v′) = (1, 0) and (u′, v′) = (0, 1), and the corresponding principal curvatures

are

κ
(ij)
1n (0, 0) =

L

E
= c ,

κ
(ij)
2n (0, 0) =

N

G
= d .

If κ
(ij)
1 , κ

(ij)
2 are to be the curvatures of the two lines of curvature, the

following should hold

κ
(ij)
1n (0, 0) = κ

(ij)
1 cosα

κ
(ij)
2n (0, 0) = κ

(ij)
2 cos β

that is,

c = κ
(ij)
1 cosα ,

d = κ
(ij)
2 cos β .

Now let us verify that there exist a, b ∈ R such that the reconstruction of

geodesic curvature is also possible.

Let us consider the line of curvature corresponding to the p = 1 principal
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direction first. If this line of curvature, denoted by c1(s), is parametrized by

arc-length, then if κ
(ij)
1 is its curvature, the second derivative is of the form

c′′1(s) = κ
(ij)
1 n

(ij)
1

where n
(ij)
1 is the normal vector of c1(s) at s = 0. Since c1(s) is also expressed

as a curve on a surface, its second derivative can be written as

c′′1(s) = p(ij)
u u′′ + p(ij)

v v′′ + p(ij)
uu (u′)2 + 2p(ij)

uv u′v′ + p(ij)
vv (v′)2

that is

κ
(ij)
1 n1 = p(ij)

u u′′ + p(ij)
v v′′ + p(ij)

uu (u′)2 + 2p(ij)
uv u′v′ + p(ij)

vv (v′)2

should hold.

Since the parametric direction vector of the line of curvature corresponding

to the p = 1 principal direction is u′ = 1, v′ = 0, the above simplifies to

κ
(ij)
1 n1 = p(ij)

u u′′ + p(ij)
v v′′ + p(ij)

uu (u′)2 .

Since the curvature of the line of curvature curve can be expressed in the

plane perpendicular to the tangent of c1(s) as

κ
(ij)
1 n1 = κ

(ij)
1n m+ κ

(ij)
1g u

rewriting it into Darbaux coordinates one gets




0

κ
(ij)
1 sinα

κ
(ij)
1 cosα




D

that is, the second partial derivative of our unknown paraboloid with respect

to u is such that

c′′(s) =



1

0

0




D

u′′ +



0

1

0




D

v′′ +



0

b

c




D

(u′)2
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from which it follows that b and c are subject to




0

κ
(ij)
1 sinα

κ
(ij)
1 cosα




D

=




u′′

v′′ + b

c




D

.

By expanding this, one gets

u′′ = 0

v′′ + b = κ
(ij)
1 sinα

c = κ
(ij)
1 cosα

that is, the second partial derivative of the unknown paraboloid is to be sought

in the form of

puu =




0

κ
(ij)
1 sinα− ddv

κ
(ij)
1 cosα




D

where the unkown v′′ term is substituted by a ddv parameter.

For c2(s), that is, the line of curvature corresponding to the second principal

direction (u′, v′) = (0, 1) one similarly gets

κ
(ij)
2,nm+ κ

(ij)
2,g u2 =



1

0

0




D

u′′ +



0

1

0




D

v′′ +



a

0

d




D

(u′)2

and by using that u2 = m× t2 = −t1, this is expressed in the Darboux frame

as 

−κ

(ij)
2 sin β

0

κ
(ij)
2 cos β




D

=



u′′ + a

v′′

d




D

that is, the second order partial derivative in the direction of v is

pvv =



−κ

(ij)
2 sin β − ddu

0

κ
(ij)
2 cos β




D

.
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Then the unknown paraboloid can be written as

p(u, v) = p+




u−
κ
(ij)
2 sinβ+ddu

2
v2

v +
κ
(ij)
1 sinα−ddv

2
u2

κ
(ij)
1 cosαu2

2
+ κ

(ij)
2 cos β v2

2




D

Now let us investigave what values ddu, ddv should attain so that the

geodesic curvatures of lines of curvature are reconstructed!

The desired geodesic curvatures are

κ
(ij)
1g = κ

(ij)
1 sinα

κ
(ij)
2g = κ

(ij)
2 sin β

Following the method proposed by Joo et al. in [24] to compute the differ-

ential geometric properties of lines of curvature, we need to verify if ddu and

ddv can be assigned a value to reconstruct these geodesic curvatures.

Let us compute the u′′, v′′ derivatives and the geodesic curvature κpg of the

cp(s) line of curvature, p = 1, 2.

Following the method reviewed in Appendix D, either the




E F −(u2 · pu)

F G −(u2 · pv)

L− κnE M − κnF 0






u′′

v′′

κg


 =



−a2 · pu

−a2 · pv

β1




or the 


E F −(up · pu)

F G −(up · pv)

M − κnF N − κnG 0






u′′

v′′

κg


 =



−a2 · pu

−a2 · pv

γ1




system of linear equations can be used to compute the unknown u′′, v′′, κpg

values, where

κn = κ(ij)
pn

β1 = −(L
′ − κ′

nE − κnE
′)u′ − (M ′ − κ′

nF − κnF
′)v′

γ1 = −(M
′ − κ′

nF − κnF
′)u′ − (N ′ − κ′

nG− κnG)v′
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In the p = 1 case, the following two systems of linear equations arise:



1 0 0

0 1 −1

0 0 0






u′′

v′′

κg


 =



−a2 · pu

−a2 · pv

β1




and 

1 0 0

0 1 −1

0 κ2,n − κ1,n 0






u′′

v′′

κg


 =



−a2 · pu

−a2 · pv

γ1




The former is singular, due the first of the equations

(L− κnE)u′ + (M − κnF )v′ = 0

(M − κnF )u′ + (N − κnG)v′ = 0

becoming an identity.

Conversely, in the case of p = 2, the systems of linear equations are




1 0 1

0 1 0

κ1,n − κ2,n 0 0






u′′

v′′

κg


 =



−a2 · pu

−a2 · pv

β1




and 

1 0 1

0 1 0

0 0 0






u′′

v′′

κg


 =



−a2 · pu

−a2 · pv

γ1




that is, here the latter produces a singular system.

Solving the appropriate system for the p = 1 case, one gets



1 0 0

0 1 −1

0 κ2,n − κ1,n 0






u′′

v′′

κg


 =




0

ddv − κ
(ij)
1 sinα

κ
(ij)
1 cos β(κ

(ij)
1 sinα− ddv)




from which

ddv =

(
κ
(ij)
1

)2

cosα sinα

κ
(ij)
2 cos β

=
κ1,nκ1,g

κ2,n

should hold.
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Similarly, the solution of the non-singular system corresponding to p = 2




1 0 1

0 1 0

κ1,n − κ2,n 0 0






u′′

v′′

κg


 =




κ
(ij)
2 sin β + ddu

0

−κ
(ij)
2 cos β(κ

(ij)
2 sin β + ddu)




yields

ddu =

(
κ
(ij)
2

)2

cos β sin β

κ
(ij)
1 cosα

=
κ2,nκ2,g

κ1,n

.

Hence, the paraboloid with normal and geodesic curvature reconstruction

is

p(u, v) = p+




u− 1
2

(
κ2,g +

κ2,nκ2,g

κ1,n

)
v2

v + 1
2

(
κ1,g −

κ1,nκ1,g

κ2,n

)
u2

κ1,n

2
u2 + κ2,n

2
v2




D

(E.2)

For this paraboloid, the lines of curvature in its domain are

(u′, v′) = (1, 0) , (u′′, v′′) = (0,
κ1,nκ1,g

κ2,n

)

and

(u′, v′) = (0, 1) , (u′′, v′′) = (−
κ2,nκ2,g

κ1,n

, 0)

Please note that we can not control the second order derivative of the prin-

cipal direction and the reconstruction of geodesic curvature simultaneously:

there are no degrees of freedom left in the system to do this. Instead, cubic

polynomial surfaces need to be used.

E.2 Third order paraboloids

Let us find a cubic polynomial surface, that at (u, v) = (0, 0) reconstructs the

geometric invariants of lines of curvatures of a prescribed

E(i) = {p(i); t
(i)
1 ,n

(i)
1 ,b

(i)
1 ; t

(i)
2 ,n

(i)
2 ,b

(i)
2 ;κ

(i)
1 , κ

(i)
2 ; τ

(i)
1 , κ̂

(i),
1 , τ

(i)
2 , κ̂

(i),
2 }
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GH data tuple, t1, t2 being orthonormal and let m = t1 × t2.

E.2.1 Normal projection reconstruction

For the sake of simplicity, let us omit the upper (i) indices and let us add cubic

terms to the paraboloid of (E.2) as

p(u, v) = p+




u− 1
2

(
κ2,g +

κ2,nκ2,g

κ1,n

)
v2

v + 1
2

(
κ1,g −

κ1,nκ1,g

κ2,n

)
u2

κ1,n

2
u2 + κ2,n

2
v2 + a

6
u3 + b

6
v3




D

where D = (t1, t2,m). The third order partial derivatives at (0, 0) are

puuu =



0

0

a




D

, puuv = puvv = 0 , pvvv =



0

0

b




D

Formalization of third order GH reconstruction problem yields the




p

pu

pv

puu

pvv

puuu

pvvv




=




1 0 0 0

0 xu yu 0

0 xv yv 0

0 xuu yuu κ1nx
2
u + κ2ny

2
u

0 xvv yvv κ1nx
2
v + κ2ny

2
v

0 xuuu yuuu K1x
3
u +K2y

3
u + 3κ1nxu(xuu + κ2gy

2
u) + 3κ2nyu(yuu + κ2gx

2
u)

0 xvvv yvvv K1x
3
v +K2y

3
v + 3κ1nxv(xvv + κ2gy

2
v) + 3κ2nyv(yvv + κ2gx

2
v)




·




p

t1

t2

m




(E.3)

system of constraints, where Ki = (κiτig + κ̂′
in). The mixed-partial derivative

lines are omitted from above, taking into account that all mixed-partial deriva-

tives of p(u, v) vanish and at (0, 0) – because the parameter lines coincide with

lines of curvature there – the mixed-partial geometric constraints amount to

zero as well. We have also used that

su = xu , sv = xv

tu = yu , tv = yv

suu = xuu + κ2gy
2
u , svv = xvv + κ2gy

2
v

tuu = yuu + κ2gx
2
u , tvv = yvv + κ2gx

2
v
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Thus, for the third order partial derivatives one gets



0

0

a




D

=




xuuu

yuuu

K1x
3
u +K2y

3
u + 3κ1nxu(xuu + κ2gy

2
u) + 3κ2nyu(yuu + κ2gx

2
u)






0

0

b




d

=




xvvv

yvvv

K1x
3
v +K2y

3
v + 3κ1nxv(xvv + κ2gy

2
v) + 3κ2nyv(yvv + κ2gx

2
v




so the cubic polynomial of

p(u, v) = p+




u− 1
2

(
κ2,g +

κ2,nκ2,g

κ1,n

)
v2

v + 1
2

(
κ1,g −

κ1,nκ1,g

κ2,n

)
u2

κ1n

2
u2 + κ2n

2
v2 + a

6
u3 + b

6
v3




D

with

a = K1x
3
u +K2y

3
u + 3κ1nxu(xuu + κ2gy

2
u) + 3κ2nyu(yuu + κ2gx

2
u)

b = K1x
3
v +K2y

3
v + 3κ1nxv(xvv + κ2gy

2
v) + 3κ2nyv(yvv + κ2gx

2
v

reconstruct the prescribed GH data tuple so that it ensures G3 connection

of surfaces at (0, 0). This is true, because as we have already proved, (E.2)

ensures G2 continuity of lines of curvature.
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Összefoglaló

Értekezésem témája nemlineáris geometriai modellek konstrukciója és vizsgá-

lata. Parametrikus reprezentációk esetén ennek megvalóśıtásához szükségessé

válik a parametrikus leképezés képének – a reprezentált alakzat – tulajdonsá-

gait elválasztani magától a leképezéstől, vagyis az adott paraméterezéstől.

Egy rekurźıv összefüggést adtam arra, hogy miképpen módośıtja a para-

méterezés egy görbe deriváltjainak geometriáját a Frenet ḱısérő triéderben az

ı́vhossz szerinti deriváltakhoz képest.

Ezen eredmény felhasználásával formalizáltam az általános geometriai Her-

mite görbeinterpoláció problémáját általános bázisokban feĺırt görbékre. Meg-

mutattam, hogy rögźıtett paraméterezés esetén a geometriai invariánsok rekon-

strukciója lineáris probléma. Egzisztencia feltételt adtam geometriai Her-

mite interpoláns létezésére általános bázisokban. Bemutattam egy általános

paraméterezésoptimalizálási algoritmust a paraméterezés szabadságfokainak

tetszőleges funkcionál szerinti értelemben vett optimális beálĺıtására. Továbbá

algoritmusokat mutattam pontos és közeĺıtő geometriai Hermite interpolánsok

számı́tására.

Geometriailag jellemeztem a másodrendű geometriai Hermite feladat álta-

lánośıtását parametrikus felületekre. Megmutattam, hogy a főgörbületi von-

alak differenciálgeometriai mennyiségeivel miképpen jellemezhető egy felület

lokális geometriája. Összefüggést adtam ezen mennyiségek és két felület ge-

ometriailag folytonos csatlakozásának feltételei között. Ezek felhasználásával

kiterjesztettem a görbéknél látott formalizmust felületek általános rendű ge-

ometriai Hermite interpolációjára. A görbékhez hasonló módon beláttam pon-

tos megoldások létezésének feltételeit, általános algoritmikus keretet adtam a

fennmaradó paraméterezési szabadságfokok seǵıtségével történő paramétere-

zés optimalizációra. Algoritmusokat mutattam geometriai Hermite felületek

konstrukciójára és ezek paraméterezés szerint is folytonos csatlakoztatására.
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Summary

Parametric curves and surfaces represent shapes as the image of a mapping.

The topic of this thesis, nonlinear geometric models, relies on the separation of

the properties of this mapping, the parametrization, from that of the geometry

of the shape.

I showed, by using elementary differential geometric formulae, how the

effect of parametrization can be quantified on the derivatives of an arbitrary

parametrized curve in relation to the arc-length parametrized case.

Applying these results, I investigated the problem of general geometric

Hermite interpolation of curves by formulating a basis independent geometric

reconstruction equation. I showed that reconstruction of geometric data is

linear for fixed parametrization and provided existence conditions of exact

reconstruction, irrespective of the basis of curve representation. I presented

a general framework to utilize the degrees of freedom of parametrization to

optimize the parametrization of a curve, and also provided algorithms for the

construction of exact and approximate geometric Hermite interpolant curves.

I extended these results to surfaces. I presented and characterized a case

study of second order geometric Hermite surface interpolation. I derived the

connection between the differential geometric properties of lines of curvature

and the conditions of a higher order geometric continuous join of two surfaces.

Based on these, I presented a generalization of second order geometric Hermite

interpolation to surfaces of the same structure as in the case of curves. I ex-

tended the existence conditions, approximation and parametrization methods

to surfaces. Algorithms were presented to construct geometric Hermite inter-

polant surface patches that can be controlled by user input, or serve as initial

parametrizations for parametrization optimization methods.
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