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Problems in Chapter 1 
 

1.1. Let the set of machine numbers be (5, 4, 4)M − . Identify the special machine numbers!  
Map the following numbers:  1/50, 0.37, 3.67,  7.2,  21.78 into this set! 

5
0 1/ 2 2 2 1/ 32 0.03125kε

− −= ⋅ = = = ,     5 4(1 2 )2 (1 2 )2 16 1/ 2 15.5t k
M

+− −

∞ = − = − = − = , 
52 2 1/ 32 0.03125t

M
ε − −= = = = ,  

0
0fl( ) fl( ) .000001/ 2 ,  50 0.02 1/ 50 ε= ⋅ <= , 1fl(0.37) .10100 2−= ⋅  , 2fl(3.67) .11101 2= ⋅ ,   

21.fl( 78) = ∞ , because  21.78 M∞> . 

 

1.2. How should we convert 10.87 into a ternary number of base 3? 

Division by 3 for the integer part and multiplication by 3 for the fraction part: 

310 101=  and 30.87 .2121= …   

 

1.3. How the machine epsilon is modified, if chopping is applied instead of rounding? 

It will be twice as much because now the last digit is uncertain. 

 
Problems in Chapter 2 
 

2.1. Show that for all induced norm 1I =  holds. May the Frobenius norm be an induced 

norm? 

Apply definition: 
1

max 1
x

Ix
=

= .  If ,n nI ∈ℝ   then 
F

I n=  such that it may not be an induced 

norm. 

 

2.2. If A  is invertible then 
A

x Ax=  is also a vector norm. 

We have to check norm conditions: 1) 0
A

x Ax= =  only if 0x = . It is needed here that 

0Ax =   only if 0x = . If A   has an inverse, the only solution for the first equation is 
1 0A Ax x

− = = .  2) 
A

x Ax Axλ λ λ= = .  3) The triangle inequality is also inherited from 

the first vector norm: ( )A x y Ax Ay+ ≤ +  . 

 

2.3. A matrix condition number may not be less then 1 for induced norms. 

1 11 cond( )I AA A A A− −= = ≤ =  . 

 

2.4. Using the 2-norm, the condition number of orthogonal or unitary matrices is equal to 1. 



For unitary matrices 1H
U U =  such that max max( ) ( ) 1H

U U Iλ λ= = . The case for orthogonal 

matrices is similar. 

 

2.5. Prove:  
11

T
ab a b

∞
= .  

1

T
ab a b

∞∞
= .  

2 22

T
ab a b= . 

The 1-norm is the column norm: 
1 11

maxT

j
j

ab a b a b
∞

= = . The ∞ -norm is the row 

norm: 
1 1

maxT

i
i

ab a b a b
∞∞

= = . 

First solution for the 2-norm: 
2 2

22 1 1
max maxT T T

x x
ab ab x a b x

= =
= =  and it is maximal if 

vectors x and  b  are in the same direction, then 
2

/x b b= . In that case the result is  
2 2

a b . 

Second solution. We exploit the fact that the nonzero eigenvalues of T
bb  and T

b b  are equal: 
2 2 2 2 2

2 2 2 22
( ) ( ) ( )T T T T T

ab ba ab a bb a b b a bρ ρ ρ= = = = , where ρ  is the spektral radius. 

 

2.6. T
U U I=  (orthogonal) 

2 2
AU A→ = . 

( ) ( ) ( )2 2

2 2

T T T T T
AU U A AU A AUU A A Aρ ρ ρ= = = =  , because the eigenvalues are 

unchanged if interchanging matrices in a product, see the Remark after the spectral norm in 
the text. 

 

2.7. A B A B− ≤ ± . 

  A B B A B B A B A B+ − ≤ + + → − ≤ +   Interchanging A  and B  gives 

B A A B− ≤ + . Combining the two gives the statement for A B+ . Changing B   to B−  

gives the result for A B− . 

 

2.8. 
1 2

2 3 1
,   ?   ?  ?  

4 2 1
A A A A

∞

− 
= = = = − − 

 

{ }1
max 6,5, 2 6A = =  .  { }2

max 6,7 7A = = . 

( )
1/2

1/2 1/2 1/2
max max max2

14 1
( ) ( ) (35 53) / 2

1 21
T T

A A A AAλ λ λ
  

= = = = +  
  

 . 

 

2.9. 
2 1

A A A
∞

≤ . 

The 2-norm can be given by the spectral radius of TA A   and using the Theorem on the 
spectral radius, it is less than any norm of TA A : 

{ }
2

2 1
( ) =spectral radiusT T

A A A A A A Aρ
∞∞

= ≤ ≤  . 



 

2.10. Check the inequality 
2 2F

Ax A x≤ . (It is consistent with the 2-norm.) 

Observe that the Frobenius norm of vectors – as special matrices – is equal to the 2-norm, 
therefore it is the consequence of the fourth norm condition for matrix norms. 

 

2.11.  If TA A=  then 
2

( )A Aρ=  = spectral radius, that is, the spectral norm is the minimal 

norm for  symmetric matrices.  (
2

 . =  spectral norm.) 

{ }
2 2 2 2

max max2
( ) =spectral radius ( ) ( ) ( )T

A A A A A Aρ ρ λ λ= = = = . Absolute sign is not needed, 

because the eigenvalues are squared. 

 

2.12.  If TA A=  then 
2

,   1,
p

A A p≤ = ∞ . 

It is the consequence of the previous problem. For symmetric matrices the 2-norm is minimal. 

 

2.13. T
U U I=  (orthogonal) 

F F
AU A→ = . 

We use the identity: trace( ) trace( )AB BA= : 

2
trace trace traceT T T T T

F F F F
AU U A AU A AUU A A= = = . 

 

2.14. 
2 2

AB BA=  if TA A=  and TB B= . 

See the Remark after the spectral norm in the text. It follows that matrices can be cyclically 
permuted if there are more matrices in a product such that the eigenvalue is unchanged: 

( ) ( )

( ) ( )

2 2 2
max max2

2 2 2
max max2

T T

T T

AB B A AB A B

BA A B BA A B

λ λ

λ λ

= =

= =
 

 

2.15.  2
2 2cond ( ) cond ( )T

A A A= . 

( ) ( )

( ) ( )

1/2 1/2 1 1
2 max max

221 1
max max 2 2

2
2

cond ( )

cond ( )

T T T T T

T T

A A A AA A A A A A

A A A A A A

A

λ λ

λ λ

− − − −

− − −

=

= =

=

  

 

2.16.  ,   1, 2,
p p p

PA A AP p= = = ∞ , where P  is a permutation matrix. 

Matrix P   is orthogonal such that the result comes from Problem 2.6 for 2p = . For the 

column norm ( 1p =  ) there is no change in 
1

AP  because only the columns are permuted. In 



1
PA  rows are permuted that can not change the 1-norm of a column, therefore the column of 

maximal norm should be the same. Similar argument applies for the infinity norm. 
 
 
Problems in Chapter 3 
 
3.1. Perform a dyadic multiplication with two vectors. Explain that it should have rank 1. 
Which method is simpler to multiply by a dyad? a) Form T

A ab=  then compute Ax . b) 
Compute T

b x  first and then multiply vector a  with that scalar. 
Every column of the resulting matrix is a scalar multiple of a  therefore the columns are 
linearly dependent. a) Forming T

A ab=  needs 2
n   flops, further computing Ax  needs 22n  

additional flops, the operation count is 23n  flops. b) Computing T
b x  needs 2 1n −  flops and 

multiplying vector a  with a scalar still requires n  flops, altogether 3 1n −  flops. Clearly, this 
latter one is simpler. 
 
3.2. Consider the permutation matrix 2 4 3 1[ , , , ]e e e eΠ = . Check that its transpose gives the 

inverse. Prove this fact in general! How can we store this permutation matrix in a vector? 
Check 

 

2

4
2 4 3 1 4

3

1

[ , , , ]

T

T

T

T

e

e
e e e e I

e

e

 
 
  =
 
 
  

 , 

where 4I   is the identity of order 4. The general case is similar: 

 

1

2

1 1
[ , , , ]

n

n

T

i

T

i

i i i n

T

i

e

e
e e e I

e

 
 
 

= 
 
  

…
⋮

  

For storing a permutation matrix in a vector, chose a vector [ ]1 2a n= …   and store aΠ . 

 
3.3. Check: 1

i
F a e

− =  of (3.3). 

 1 ( ) T

i i
i iT

i

a e e a
F a a a a e e

e a

− −
= − = − + =  . 

 
3.4. With the aid of formula (3.5), show that the determinant of a matrix will not change if a 
scalar multiple of a column is added to another column of the matrix. Apply the theorem on 
the determinant of the product of two matrices!  

Take the determinant in (3.5): ( )T

i k
A I e e Aα+ =  because the second multiplier is a special 

triangular matrix having 1’s in the diagonal such that its determinant is 1. 
 
3.5. Form the rank-1 sum of ADB , where [ ]i ijD d δ=  is a diagonal matrix, (only the diagonal 

elements are nonzero). 



 
1 1 1

n n n
T T T

i i i i i i i i

i i i

ADB Ae e DB Ae e d B d Ae e B
= = =

= = = ⋅∑ ∑ ∑ . 

 
 
3.6. Applying the scalar product and the dyadic product forms of matrix multiplication, show 
that ,tr( ) tr( ),  , T m nAB BA A B= ∈ℝ !  

Observe that for vectors ,a b  ( )T Ttr ab b a=  holds. Then 

 ( ) ( ) ( ) ( )
( ) ( )

T T

i i i i

i i

tr AB tr Ae e B tr e BAe tr BA= = =∑ ∑ . 

 
3.7. Let matrix A  be invertible. Give the expansion of vector x  in terms of the columns of 
A . 

 ( )1x A A x−=   

 
3.8. Collect the vectors of a biorthogonal system into matrices 1 2[ , , , ]

n
A a a a= …  and 

1 2[ , , , ]
n

B b b b= … . Check that TA B  is a diagonal matrix! How can we give vector x  as a 

linear combination of vectors 
i

a ? And how can we give the expansion with the aid of vectors 

i
b ? 

Applying definition of biorthogonality gives T T

i j i ij
A B D a b Dα δ   = = = =   . Therefore the 

inverse of A  is 1 TD B−  and 1( )Tx A D B x−=  . The inverse of B   is 1 TD A− , hence the second 

answer is: ( )1 Tx B D A x−= . 

 
3.9. Check: if P  is a projection, then I P−  is also a projection. 

 ( )( ) 22I P I P I P P I P− − = − + = − . 

 
3.10. A plane has normal vector s  and its defining equation is T

s x σ= . Introduce the 
projection /T T

P I ss s s= − . Show that for all vectors y  the operation / TPy s s sσ+  produces 
a vector in the plane. 
It is enough to check the statement: 

 ( )/ / / 0T T T T T T Ts Py s s s s I ss s s y s s s sσ σ σ+ = − + = + . 

 
3.11. Show with the previous matrix P : Py s⊥ , in other words Py  is perpendicular to s . 

Give the vector that connects / TPy s s sσ+  and y !  

0T
s P =   therefore the statement follows for any y . The connecting vector is parallel to the 
normal vector: 

 ( )/ /
T

T T T

T

s y
y Py s s s y y ss y s s s

s s
σ σ σ− + = − + = . 

 
3.12. Show that the backward identity 1 1[ ]

n n
J e e e−= … , where the columns of the unit matrix 

are given in reverse order, is involutory. What projection will it define for 2,3n = ? 



In fact, J  is a symmetric permutation matrix, therefore it is involutory. The projections 
defined are: 

 

1/ 2 1/ 2
1 1 1/ 2 1/ 21

  and 0
1 1 1/ 2 1/ 22

1/ 2 1/ 2

− 
  −       − =        −        − 

 . 

 
3.13. Show that matrix 2( )( ) /( ) ( )T TI x y x y x y x y− − − − −  will reflect vectors x  and y  into 

each other, if they are different and have the same length: T Tx x y y= . 

Assume 2T Tx x y y σ= = . Then 

 
2

2 2

( )( ) ( )
2 2( ) ( )

( ) ( ) 2 2

T T T

T T T

x y x y x y x y x
I x x x y x x y y

x y x y y x y x

σ

σ σ

 − − − −
− = − − = − − = 

− − − − 
. 

The other reflection can be checked similarly. 
 
3.14. We have the possibility to reflect vector x  with the previous matrix into vector  

1y eσ= ± , where 2 T
x xσ = . How should we choose the sign of σ  to avoid cancellation error 

in the denominator? 
Assume 1y eσ=  such that the sign is attached to sigma. From the previous problem the 

denominator now is 2 ( )T

i
e xσ σ − . There will be no cancellation for sign( ) sign( )T

i
e xσ = − . 

 
3.15. Introduce T

F I UV= + , where the unit matrix is modified by the n l×  matrices U  and 
V , that is, they have l n<  columns. If F  is invertible, show that 1 1( )T T

l
F I U I V U V

− −= − +  

(Sherman-Morrison-Woodbury formula) holds, where 
l

I  is a unit matrix of size l l× . 

It is enough to check: 

 

( )( )

( )

( )( )

1 1

1 1

1 1

1

( )

( ) ( )

( ) ( )

( )

T T T

l

T T T T T T

l l

T T T T

l l

T T T

l l

FF I UV I U I V U V

I UV U I V U V UV U I V U V

I U I I V U V U I V U V

I U I I V U I V U V I

− −

− −

− −

−

= + − +

= + − + − +

= + − + − +

= + − + + =

  

 
 
Problems in Chapter 4 
 
4.1. Using LU-decomposition, solve the following linear system: 

 

2 2 3 1

4 3 7 5 .

6 7 5 3

x

   
   =   
   −   

 



 

2 2 3 12 2 3 1 2 2 3 1

4 3 7 5 2 1 1 3 2 1 1 3 ,

6 7 5 3 3 1 4 6 3 1 3 3

1 2 2 3 1

2 1 ,    1 1 ,   2

3 1 1 3 1

L U x

    
     → − → −    
    − − − − − −     

     
     = = − = −     
     − −     

  

 
4.2. Find the operation count for 1 1,   ,   Ax LUx U L x− − . The factorizations given in Section 3.11 
may be applied for the last case. 
All of them needs 22n  flops, the last one requires still n  divisions. 
 
4.3. Using Problem 3.15, show that the matrix of (4.6) can be inverted by taking the negative 
of the block 21 . Similar result for the upper triangular case can be found by transposition. 

We look for the inverse of the matrix in (4.6): ( )1 1
1 11 1 1 11

21

0
T T

L I AE A E E I E
A A

− −

−

 
= − − = −  

 
 

such that using the Sherman-Morrison-Woodbury formula. The matrix in the middle will be a 

unit matrix because of 1 1
21

0
0T

E
A A

−

 
= 

 
 and it remains only to change sign.  

 
 
4.4. Let 11L  be a lower triangular matrix, which is complemented by a block row [ ]21 22L L  

to a larger lower triangular matrix. Assuming that the diagonal blocks are invertible, apply the 
partitioned inverse to get 

 11

22 11 22

1 1
11

1 1 1
21 22 21

LL

L L L L L L

− −

− − −

  
=   

−    
. 

Applying the partitioned inverse formula (4.9): 

 

( )
1

11 111
11 21 11 2

2

1
11

1 1 1
22 21 11 22

00

0 0

0 00

0 0

L
L L L L L I

I

L

L L L L

−
−− −

−

− − −

   
 = + −     

  

   
= +   −  

  

 

4.5. By using the block partitioned form, check the determinant identity ( )11 11A A A A= . 

It can be seen from the block decomposition formula: 

 
( )

1
111 1 11 12

1
1121 11 2 2

0
,

0

AI I A A
A

A AA A I I

−

−

    
=     
    

  

 
4.6. With the aid of the previous problem, check the identities 

 
1

1
T

T Tb
b a I ab

a I

 −
= + = + 

 
. 



Compare it with the approach given in Example E3.3!  
We use the formula of Problem 4.5. Chosing for 11A  the left upper element gives the last 

determinant. Taking the Schur complement ( )22|A A , where 22A  is the identity matrix will 

lead to the formula in the middle. As seen, this approach is much simpler. 
 
4.7. What is the dominant term in the operation count of the Gauss-Jordan factorization? 
We have to do roughly 2 ( )n n k−  flops in the k -th step, see Theorem T3.1. Summing up for 

1, , 1k n= −…  yields for the dominant term 3
n  flops. 

 

4.8. 

2 2 1 0 3

4 1 3 1 2
,   ,    ,   .     ?,   ?   ?

2 1 0 2 2

6 3 2 2 0

A b A LU Ax b L U x

− −   
   − − −   = = = = = = =
   − − −
   

−   

 

 

  

2 2 1 0 32 2 1 0 3 2 2 1 0 3

4 1 3 1 2 2 3 1 1 4 2 3 1 1 4

2 1 0 2 2 1 3 1 2 5 1 1 2 1 1

6 3 2 2 0 3 3 1 2 9 3 1 2 3 5

2 2 1 0 3 1

2 3 1 1 4 2 1
,   

1 1 11 1 2 1 1

3 1 1 13 1 1 4 4

L U

− −   − −  − −
    − − − − −     → → →
    − − − − − − − − −
    

− − −        

− −   
   −   → → =
   − −− − −
   

−−    

2 2 1 0 1

3 1 1 2
,   .

2 1 1

4 1

x

−   
   −   = =
   −
   
   

 

 
 
Problems in Chapter 5 
 

5.1. We have the Cholesky-decomposition TA LL= . Give the operation count for computing 
T

x Ax  if matrix A  is used in the computation! How can we decrease the number of operations 
if T T

x LL x  is used? 

To compute Ax  requires 22n  flops and the remaining scalar product 2n  flops. But the 
computation of T

L x  involves ( 1)n n −  flops plus 2n  flops for sclar product computation. 
Therefore the second approach needs half as many operations. 

 

5.2. We can avoid square roots, if we use the form TA LDL= , where L  has unit diagonal and 
D  is a diagonal matrix. Elaborate the steps of this decomposition! This method can also be 
used for indefinite matrices if the pivot elements in D  happen to be large enough. 

This time we proceed similarly as in LU-decomposition. If a step is ready, we divide the row 
of the pivot with the pivot and save pivot in a diagonal matrix. For symmetric matrices 
division is not necessary, because the U  part is the transpose of L. 



5.3. Show that the row diagonal dominance is preserved if the matrix is multiplied from the 
left by a nonsingular diagonal matrix. Also, it is preserved if two rows and columns with the 
same row and column numbers are interchanged. 

A diagonal matrix on the left multiplies rows with a number. If that number is nonzero, the 
ratio between the entries will be the same such that diagonal dominance is kept.  

Interchanging the same two rows and columns will keep the diagonal element in diagonal 
position, only the order of row elements is changed that will introduce no effect in diagonal 
dominance. 

 

5.4. Show that for the  LU-decomposition of essentially diagonally dominant matrices (by 
row): strict diagonally dominance takes place in the j th step for the k-th row, if there was 

strict diagonal dominance in the j -th row and the element ( ) ,   j

jka j k<  was not zero. 

It is enough to check the first step. Strict diagonal dominance in the first row means that the 
full absolute contribution of the first column element will be less than the first column 
element, if it is nonzero. 

 

5.5. Show that diagonal dominance by columns is also inherited in LU-decomposition. 

This time we attach the divisor to columns and consider the contribution of the left out row 
elements in a column. The only change is that the reasoning is done to columns. 

 

5.6. If we are given a new right vector b , which data should be preserved and which data 
should be recomputed in both algorithms (fast LU and passage)? 

Fast LU: The second row in (6.5) should be recomputed for b′  elements. The off-diagonal and 
pivot elements are needed in the computation. 

Passage: The 
i

f  elements should be recomputed. Still 
i

g ’s are neede for the solution. 

 
5.7. Prove that the tridiagonal matrix in  (6.2) is positive definite, because it has a TLL -
decomposition. 
In fact, diagonal dominance will take place in the actual rows when doing LU-decomposition. 
The second pivot is 2 1/ 2 3 / 2− = . The third one is 2 2 / 3 4 / 3− =  . Assuming the 1n − -st 
pivot is / ( 1)n n − , inductively one gets 2 ( 1) / (2 1) / ( 1) /n n n n n n n− − = − + = +  for the next 
pivot, such that Choleski-decomposition is possible. 
 

5.8. 

4 2 4 4

2 10 5 5
,  ?  

4 5 9 3

4 5 3 22

T
LL L

− − 
 − −  = =
 − −
 
− − 

 



2 24 2 4 4 2 1 2 2
1 32 10 5 5 1 9 3 3 1 3 1 1

 ,
4 5 9 3 2 3 5 1 2 1 4 2 2 1 2 1

4 5 3 22 2 3 1 18 2 1 2 17 2 1 1 16

2

1 3

2 1 2

2 1 1 4

L

     − −  − −
       −− − − − − −       → → →
      − − − − −
      

− − − − −            

 
 − =
 −
 
− 

 

 
 
Problems in Chapter 6 
 

6.1. Prove formula (6.5)! 

Multiplying two factors shows, the statement is true for 2i = . Taking a next factor will add a 
new term only in the sum because of orthogonality of the vectors. Inductively, one term will 
be added for an arbitrary i  by the same reasoning. 

 

6.2. Show that , 1j i
r + ’s of  (6.7) and (6.8) are equal! 

It is because the projections for 
j

z  do not make change in the j-th orthogonal vector: 

1 2 1
T T

j j jq q PP P −= …  . 

 

6.3. Collect the orthogonal vectors into matrix 1 2[ ]
i

Q q q q= … . Derive the formula: 

1 1i i
PP P− =…  ( )

1
.T TI Q Q Q Q

−

= −  

Apply the weighted dyadic sum of Sect. 3.4 for the last formula of (6.5). See also: Problem 
3.5. 

 

6.4. Let matrix m nA ×∈ℝ  have linearly independent columns. Check that ( )
1

T TI A A A A
−

−  is 

also a projection and applying it to a vector, the resulting vector will be orthogonal to all 
columns of A . 

It is enough to check the projection condition 2P P=  for ( )
1

T TA A A A
−

 as I P−   is also a 

projection. Really, ( )( )1
( ) 0T T T Tz I A A A A A z A A

−

− = − = . 

 

6.5. One can elaborate the variant of GS orthogonalisation, when the 
j

q ’s are normed vectors, 

2
1

j
q = . Rewrite formulas for that case! 



In this case TQ Q I=  holds such that TQ A R=  from (6.9). All divisors in the projections are 
1’s and the 1i +  -st vector is given by 

 1, 1 1 1 , 1 , 1 1
1

,   ,
i

T

i i i i j j i j i j i

j

r q a q r r q a+ + + + + + +
=

= − =∑  , 

where 1, 1i i
r+ +   is found from the condition that 1i

q +   is normalized. 

 

6.6.  Having a QR -decomposition of A , how can we solve the linear system Ax b= ? 

First step: form T TQ Ax Rx Q b= = . Second step: solve TRx Q b=  from below for x , because 
R   is upper triangular. 

6.7. Make the QR -decomposition of   

3 0 1

3 4 1

6 4 3

− 
 
 
 − − 

! 

We may choose [ ]1 1 2
T

−  for 1q  because all elements of the first column can be divided by 

3 and thus the computation is simpler.  Now 1 1 6T
q q = . The projection for the second column 

results in:  2 2

0 1 2 1
12

4 1 2 2 ,   1
6

4 2 0 0

q q

− −       
       − = = =       
       − −       

.  2 2 2T
q q = .  From the third column 

3

1 1 1 1
( 6) 2

1 1 1 1
6 2

3 2 0 1

q

−       
−       − − = =       

       −       

  and   

3 0 1 1 1 1 3 2 1

3 4 1 1 1 1 2 1

6 4 3 2 0 1 1

− − −     
     =     
     − − −     

. 

 

6.8. 

1 3 4

2 0 2

2 3 3

A QR

 
 

= − = 
 
 

. Give QR -decomposition in modified Gram-Schmidt style! 

 

  1 1 2 / 3             1      5/3                

1 3 4 2 10/3 0 1 2
1 1 2 / 3

2 0 2   -2 -10/3  0 .   2 2 .
1 5 / 3

2 3 3 1 5/3 0 2 1

  9 9 6                9   15

A QR

       
        

− → → = − =        
        

       

 

Now we calculate the scalar products of the first column with all columns in the initial matrix 
and the result is shown under the columns. On top of the columns these numbers are divided 
by the squared norm of the first column (=9). Next the first column is multiplied by the 
numbers above the second and third columns and the resulting vector is subtracted from the 
corresponding vectors. In other words, form the dyad by the first column and the row vector 
on top of the matrix and subtract – similarly to LU-decomposition.  

Repeat the same procedure for the second matrix that has by one less columns. The third 
matrix is zero and finally the decomposition is given. Observe, the row vectors above the 



intermediate matrices give the nonzero row elements of R . As seen, there are only two 
linearly independent vectors in this set. 

 
6.9. Let the Arnoldi method is performed so that the orthogonal vectors are normed. Show 
that if A  is symmetric, then the upper Hessenberg matrix  H  is also symmetric, i.e. 
tridiagonal. 
The matrix form of the recursion is 1, 1

T

i i i iAQ QH h q e+ += + , where ( )1 2 iQ q q q= … . 

Multiplying from the left by TQ  gives  TQ AQ H= . That shows the symmetricity of  H  for 
symmetric  A  and then the Hessenberg matrix should be tridiagonal. 

 

 

6.10. Let the starting vector x  be the sum of three eigenvectors of A  having different 
eigenvalues. How many new vectors can be generated by the Arnoldi method? 

Let the starting vector be 1 1 2 2 3 3x u u uα α α= + +  , where 
j

α ’s  are nonzero scalars and 
j

u ’s are 

the eigenvectors with eigenvalues 
j

λ .  Introduce matrix [ ]1 1 2 2 3 3U u u uα α α= . With these 

the Krylov vectors can be arranged in a matrix as 

 

2
1 1

2 2
2 2

2
3 3

1

1

1

x Ax A x U

λ λ

λ λ

λ λ

 
 

  =   
 
 

 . 

Adding a next column to the transposed Vandermonde matrix would not increase rank, 
therefore the maximal possible number of linearly independent vectors is 3. 
 
Problems in Chapter 7 
 
7.1. Let A  be an upper Hessenberg matrix such that all subdiagonal elements are nonzero. 
Show that there is only one Jordan block to each eigenvalue. 
Consider I Hλ − , where λ   is an eigenvalue. Then the rank loss may be no more than 1, 
because the subdeterminant by deleting first row, last column is nonzero. The rank loss shows 
the number of Jordan blocks to an eigenvalue. 
 
7.2. Show if  the eigenvalues of A  are 

i
λ ’s, then 1A−  has eigenvalues 1/

i
λ ’s. 

1 1    Au u A u uλ λ− −= → = . 

7.3. Check: 12
A σ= .       

1/2

2

1

r

iF
i

A σ
=

 
=  
 
∑ . 

Let A  have the singular value decomposition H
A V U= Σ , where ,U V   are unitary. Then 2

1σ   

is the maximal eigenvalue of 2H H H H
A A U V V U U U= Σ Σ = Σ , such that 1σ  gives the 2-norm. 

Further 
2 2 2 2tr( ) tr( ) tr( ) tr( ) tr( )H H H H H

F
A A A U V V U U U U U= = Σ Σ = Σ = Σ = Σ . 

 

7.4. The matrix is diagonally dominant, if the Gershgorin disks do not have zero. 

In that case all radii are less than the belonging absolute diagonal element and that is just the 
condition for diagonal dominance. 



7.5. Diagonally dominant matrices are invertible. 

Yes, because no Gershgorin disk contains zero eigenvalue. 

 

7.6. The rank of the matrix is at least as large as the number of those Gershgorin disks, which 
do not contain zero. 

These disks belong to diagonally dominant rows. Then it is possible to find a submatrix from 
these rows that is nonsingular, therefore the rank is at least equals to the number of such rows. 

 

7.7. Gershgorin disks can also be found with respect to columns if using left eigenvectors in 
the derivation . 

Equivalently, consider the transposed matrix. 

 

7.8. By using Gershgorin’s theorem and diagonal similarity transform, decide if matrix A  is 

invertible: 

7 6 3

1 5 1

4 2 6

A

− 
 =  
 − 

. 

Choose [ ]diag 1 2 1D = , then 1DAD−  is diagonally dominant. 

 
7.9. Show that the eigenvalues of a 2 2×  matrix A  are: 

2

11 22 11 22
1,2 12 212 2

a a a a
a aλ

+ − 
= ± + 

 
. 

It is the root formula of the characteristic polynomial ( )2
11 22 11 22 12 21 0a a a a a aλ − + + − = .  

 
Prove that 
7.10. /U AU m≤ , where AU U= Λ . 

1
U AU

−= Λ  and taking norms gives the result, where m  is the  smallest absolute eigenvalue. 
 

7.10. 1 1 1U U A M− − −≤ . 
1 1 1

U U A
− − −= Λ  and if M   is the largest absolute eigenvalue, the result follows by taking 

norms.  
 
7.12. cond( ) cond( ) cond( )U AU≤ Λ . 
Multiplying the same sides of the previous inequalities give the result. 
 
 
Problems in Chapter 8 
 
8.1. Let A LU=  be a rank-factorisation. What is the orthogonal projection to Im( )A ? 
 



Im( )A  is the subspace spanned by the columns of L  such that the orthogonal projection to it 

is given by 1( )T TLL L L L L+ −=  . 
 
8.2. What is the orthogonal projection to the null space of A ? Give the distance of x  to 
Nul( )A in two-norm! 

The null space of A is given by the orthogonal projection I AA+− . Applying the distance 

theorem: 2 2 2
dist (Nul( ), ) ( )A x I I AA x AA x

+ += − − =   

 
8.3. A line passes points 0 1  and  r r . Give the distance of vector x  from this line! 

The direction vector of the line is: 1 0d r r= −  . Vector 1r x−   is a distance of x  from a point of 

the line such that is has a component parallel to d  and an other one, perpendicular to d . The 
length of the perpendicular component gives the distance from the line: 

( )2 1
2

dist ( , ) / ( )T T
line x I dd d d r x= − −  . 

 
8.4. Show that if a matrix is invertible then its inverse and pseudoinverse are equal. 
It comes from the first Penrose condition: A AA A+=   and multiplying by the inverse of A  
gives: I AA+=  . 
 

8.5. 
2 4 6

0 5 5
T

A
− 

=  − 
. Give the orthogonal projection into Im( )A ! 

1
2 0 2 0

2 4 6 2 4 6
4 5 4 5

0 5 5 0 5 5
6 5 6 5

P AA

−

+

    
− −       = = − −       − −       − −    

 . 

 
8.6. The row vectors of TA  in Problem 8.5 are the normal vectors of two planes. Give the 
orthogonal projection into the intersection of the two planes! 
Vector x  is in the intersection of the two planes if 0T

A x = . The orthogonal projection into 

the intersection of planes is given by ( )
1

T TP I A A A A I AA
−

+= − = −  because 0T
A Pz =  for 

an arbitrary vector. 
 
8.7. [1 1 1]Tr = − .  What is the distance of vector r  from the intersection of the two planes 
in the previous problem? 

( ) ( )
1

2 2
2

dist (intersection, ) T T
r I P r A A A A r

−

= − =  . 

 

8.8. 

2 0 3

4 5 2

6 5 5

A

 
 = − − 
 − 

, rank( ) 2.  ?A A+= =  (Use LU-decomposition!) 



LU-decomposition gives: 

1
2 0 3

2 1
5 4

3 1

A LU

 
  

= − =  
  − 

. It is a rank factorization if both L   

and U  have rank two, such that two columns in L  and two rows in U  are needed. For the 

pseudoinverse ( ) ( )
1 1

T T TA U L U UU L L L
− −

+ + + += =   needs to be computed. 

 
8.9. What is the pseudosolution of Ax b=  if [1 1 1]Tb = −  and matrix A  comes from 
Problem 8.8. 
 
8.10. Show 0I A A

+− = , if the columns of A  are linearly independent. 
 
8.11. Derive the relation ( ) ( )T TA A+ +=  from the four Pendrose conditions. 
 
8.12. Matrix A  has an approximate eigenvector x . Find the belonging approximate 
eigenvalue λ  from the condition that 

2
Ax xλ−  is minimal. Give formula for λ ! 

 
 
Problems in Chapter 9 
 

9.1. Check if the base points are located symmetrically to 0x = , then 0,   1,2,
j

iα = = …  hold 

and the polynomials are alternating even and odd functions. 

 

9.2. Find the orthogonal polynomials 0 1 2, ,p p p  for the base points { 2, 1,0,1,2}− − ! 

 

9.3. The Chebyshev polynomials are also orthogonal and they can be generated by the 
following recursion: 0 1 1 11,   ,   2

n n n
T T x T xT T+ −= = = − . Although  they are not monic now, yet 

it is the familiar form. Expand 24 3 2x x− +  with Chebyshev polynomials! 

 

9.4. 
0

( ) (2 1) ( )
k

j

j

P x j T x
=

= +∑ . Give a skillful way of computing the sum at the point 0x ! 

 

9.5. Show that 0 1 2( , )
i i i

p p µ β β β= … , where 0 0 0( , ) ( )
b

a
p p x dxµ α = =

  ∫  is the 0-th moment. 

 

9.6. Show that the principal minors of the tridiagonal matrix 

 

1 1

1 2

1

1

n

n n

x

x

x

α β

β α

β

β α
−

−

− − 
 

− − 
 −
 

− − 

⋱

⋱ ⋱
 



have the same recursions as orthogonal polynomials with parameters 
i

α  and 2
i

β . 

 
Problems in Chapter 10 
 
10.1. How should we modify Jacobi iteration, if the matrix is diagonally dominant with 
respect to columns? 
 
10.2.  Show that Theorem 10.3.1 can be reformulated for the case when the matrix is 
diagonally dominant with respect to columns. 
 
10.3. Elaborate estimate Hiba! A hivatkozási forrás nem található. for the GS-iteration! 
What happens to Jacobi and GS iteration if instead of diagonal dominance we have equality in 
some equations? And if equality takes place in the last row? 
 

10.4. 

5 1 2 1

3 7 2 0
.  ?   ?

3 0 5 1

0 2 4 6

J GS
A B B

∞ ∞

− 
 

− − = = ≤
 −
 

− 

 

 

10.5. Applying Theorem 10.3.1 show:  1 1
max

(1 )i
ii i i

A
a α β

−

∞
≤

− −
, see also 

Hiba! A hivatkozási forrás nem található., if A  is strictly diagonally dominant by rows. 
How can we modify statement for diagonal dominance with respect to columns? 
 

10.6. Assuming D Lω+  is diagonally dominant by rows, prove 
( )

1
( ) max

1
j

GS
j

j

B
ω ωβ

ω
ωα∞

− +
≤

−
 

by applying Theorem 10.3.1. 
 

10.7. If 1
1 1D A− <  holds, then we can derive an inequality similar to that of Theorem 10.3.1 

by using (2.15), because of the equality 1 1 1 1
1 2 1 2( ) ( )A D A I D A D A

− − − −+ = + . Show that 
1

21
1 2 1

1

( )
1

D A
A D A

D A

−

−

−
+ ≤

−
 holds for induced norms. Is that necessary that D  be a diagonal 

matrix? For the matrix of Example 4 which method gives a better estimate? 
 


