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 Machine numbers, errors in computation 

 

Here we review some characteristics of computer arithmetic and investigate errors that may 
occur in the course of numerical computations.  

1.1.  Machine numbers 

In the majority of cases, machine numbers are normalized binary numbers supplied with a 
sign so that we shall deal primarily with them here. They have the form 

 
 sign,   binary digits,     exponent

   .101 01  2     2k k

t

m

↑

± ⋅ = ± ⋅…
 (1.1) 

The mantissa m , if nonzero, is supposed to begin with digit 1, such that 0.5 1,   0m m≤ < ≠ . 
If the base is not equal to 2, then the bases 10 and 16 (hexadecimal) may still appear in 
practice.  

Denote by ( , , )M t k k− +  the set of binary machine numbers, where t  is the  mantissa length, 

k
−  is the smallest and k

+  the largest exponent.. If we want to indicate that the base may be 
other than two, we can apply the notation: ( , , , )M b t k k− + , where the additional parameter b  
is supposed to denote the base of the number system. The single precision numbers in the 
ordinary PC’s have four bytes = 32 bits and the following bits are allocated to the various 
parts of machine numbers: 

1 8 23 

1 bit is for sign, 8 bits are for the exponent (observe that it is also a signed number) and the 
mantissa has 23 bits. The precision of these numbers is about 7 decimal digits: 

1023log 2 6.923≈ , such that we should multiply roughly the number of bits by 0.3 to get the 

precision in decimal. The order of magnitude is between 3810−  and 3810 . The double precision 
numbers have twice as much, 8 bytes = 64 bits: 

1 11 52 

The sign: 1 bit, exponent: 11 bits and the mantissa has: 52 bits. Now the precision is about 15 
decimal digits, and the numbers may have orders of magnitude between 30710−  and 30710 . 
There are programming languages that allow machine numbers of quadruple precision. 

One can exploit in the actual realisation of machine numbers that the first bit of the mantissa 
is always one – with the exception of number zero – that can be omitted. With this trick one 
gets an additional bit that can be exploited for improving the quality of machine arithmetic. 
There may also be very large numbers that can not be represented by machine numbers. We 
shall use the sign ∞  for such numbers. One can also find the notation NaN – „not-a-number”. 
We may get such an answer if we try to divide by zero. Using this ’value’ in subsequent 
arithmetic operations, we always get NaN for result, even if multiplying by zero. 



6 Hegedüs: Numerical Methods I. 

1.2. Special machine numbers 

The smallest positive mantissa is ½. The largest mantissa: 
-times 1

.11 1 1 2
t

t−= −
���
… . The smallest 

positive number in ( , , )M t k k− +  is: 0 .10 0  2 1/ 2  2k kε
− −

= ⋅ = ⋅… .  

The other remarkable number is 
M

ε , called the precision unit machine number. It is the 

distance between 1 and the neighbouring machine number less than one: 
0.11 11  2 1

M
ε+⋅ + =… , from here 2 t

M
ε −= . The largest machine number is: 

(.11 1  2 ) (1 2 )2k t k
M

+ +−
∞ = ⋅ = −… . Supplying this with the minus sign yields the smallest 

machine number. 

Example. Let the set of machine numbers be (5, 4,3)M − . Then the largest mantissa is 
5.11111 1 2−= − , the smallest mantissa is always equal to ½. The first positive machine 

number is 4 5
0 1/ 2 2 2ε − −= ⋅ = . The precision unit is 52 2t

M
ε − −= =  and we have the largest 

number as: 5 3(1 2 ) 2 (1 2 )2 8 1/ 4t k
M

+− −
∞ = − ⋅ = − = − . 

1.3. Conversion to machine numbers 

Now it is a natural need to give an algorithm to convert numbers into the set of machine 
numbers. The function that realizes the task will be denoted by fl  (from floating point 

number), fl :  M→ℝ . It is given by: 

 0

0

,     if    

fl( ) 0,      if    ,

 closest machine number to , if 

x M

x x

x x M

ε

ε

∞

∞

∞ >


= <
 ≤ ≤

 (1.2) 

where the closest machine number is given by rounding x  to t  binary digits. 

For instance, convert 10.87 to 8-digit binary number. Now the integer and fractional part of 
the number will need different approaches. The integer part should be divided successively by 
2, and the remainders are recorded. Then the binary digits are given in reverse order as we 
have got them. The fraction part is to be multiplied by 2 . The resulting integer ones are kept, 
they do not take part in the process any more. It is not needed to multiply for the last digit, it 
is zero if the current fraction is less than 0.5, otherwise it is equal to 1. 

 2 2

10 0 . 87

5 1 1 74
10 1010               0.87 .1101

2 0 1 48

1 1 0 96

→ = → = …  

We have got: 210.87 1010.1101= … . But this result comes from chopping, not from rounding. 

For rounding, an additional digit is necessary. If the next digit is 1, then we add 1 to the last 
digit, otherwise we leave it unchanged. At the present case the next (ninth) digit is 1, such that 
the rounded number is: 1010.1110. If we want to convert 10.87 into the set (5, 4,3)M −  of  the 

previous example with the aid of the function fl , then fl(11.87) = ∞ , because of 10.87M ∞ < . 

Now assume that x  is known exactly. Then the upper bound for the error of  fl( )x  can be 
given by: 
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 0 0

0

,         if    

fl( ) ,        if    

,  if    
M

x M

x x x

x x M

ε ε

ε ε

∞

∞

∞ >


− ≤ <
 ≤ ≤

, (1.3) 

where  2 t

M
ε −=  is the machine epsilon, giving the relative error of the numbers between 0ε  

and M ∞  when converted to machine numbers. The first line here is only the indication of not 

representable numbers. The second line is also clear, only the third line needs some 
explanation. It tells that the error of the represented number is not greater than the error in the 
t -th binary digit. We get an upper bound for the relative error by the rearrangement 

 
fl( )

M

x x

x
ε

−
≤ . (1.4) 

To justify this statement, it is enough to consider the relative error of mantissa because the 
exponent is dropped by division. The error of mantissa is at most 12 t− −  in the case of 
rounding. We get the upper bound of the relative error if we divide by the possible smallest 
mantissa ½, that leads to the result 2 t

M
ε −= . 

1.3.1 The IEEE Standard for floating point arithmetic (IEEE 754) 

The first version was released in 1985 and it got into general use from the 90s. The current 
releaase is from 2008 and it has additional features. Here the mantissa – or significand, a 
newer term for it – is normed such that 1 2m≤ <  and the first digit – number one – is omitted 
to have a hidden bit for rounding. For the integer in the exponent the two’s complement 
system is used, that is, the negative of a positive binary number is given by interchanging 0’s 
and 1’s and +1 is added. In order to distinguish between 0 and 1, the smallest negative integer 
in the exponent is chosen for the number 0. More detailed information can be found in 

https://en.wikipedia.org/wiki/Floating_point and  

https://en.wikipedia.org/wiki/IEEE_floating_point 

1.4. Anomalies in computer arithmetic 

Now having machine numbers at hand the next question is, what properties of the computer 
arithmetic will have when doing calculations with floating point numbers. We shall use 
decimal numbers in the following examples. We assume four decimal digits and use decimal 
floating point arithmetic, where the exponent can be a signed two-digit number. The set of 
such machine numbers will be denoted by M . For simplicity we also use the notation: 

20.2543 10 0.2543 02⋅ = + . 

Then we have to realize that not everything is true in computer arithmetic that is considered 
natural in the field of real numbers. Here are some examples for such differences: 

• There may exist nonzero ,a b M∈ , for which a b a+ =  in computer arithmetic. That 
may be possible because of the big difference in the order of magnitude of numbers. 
For instance, add numbers 0.3460 +02 and 0.4524 –03. The final step is rounding, 
where all digits of the small number have to be dropped. 
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0.3460 02

0.000004524 +02

0.3460 02        

+

+

 

• There may exist nonzero numbers , ,a b c M∈ , for which ( ) ( )a b c a b c+ + ≠ + + . For 
instance, 

 
0.3460 02                     0.3460 02

0.00004524 +02 0.00003872 +02
             

0.3460 02      0.3460 02      

+ +

+ +

 

But adding the small numbers first, we get a different result 

 
0.3872 -02               0.3460 02

0.4524 -02 0.00008386 +02
             

0.8386 -02 0.3461 02      

+

+

. 

That would give us a hint that summing up a lot many numbers, it is better to begin 
with small numbers (in absolute value) first.  

• There may exist nonzero , ,a b c M∈ , for which ( ) ( )ab c a bc≠ . An example is 

 (0.1245 +62 0.4314 58) 0.4362 54 .5371 +03 0.4362 54 .2343 -51,× − × − = × − =  

while choosing the second bracketing leads to zero as the product of the two last 
numbers is less then 0ε , the smallest positive number. If we have to multiply a lot 

many numbers, we have to be careful, because it may easily happen that some 
intermediate products get out the domain of nonzero machine numbers. If the result is 
too large or too small, then it is a possibility to reduce problems by computing the 
logarithm of it. 

• Adding two numbers close in magnitude but with different signs may result in the 
growth of the relative error of the result. For instance 

 
  0.4693 +02

0.4682 +02

  0.0011 02

−
+

 

That is equal to 0.1100 +00. The last two digits are uncertain, only the first two digits 
can be considered exact. This phenomenon is called cancellation error. We may 
assume that there were further digits that can not be seen here because of the length of 
the mantissa. On the other hand, if the incoming machine numbers can be considered 
exact, then the result can be taken accurate up to machine precision. Sometimes one 
can apply tricks to avoid cancellations errors. As an example, we can compute 

3472 3471−  by exploiting the fact that  the numbers under square roots are 
integers:  

 
( 3472 3471)( 3472 3471) 1

.
3472 3471 3472 3471

− +
=

+ +
 

• The safe computation of the roots of second order polynomials can be done as follows: 

 2 2
1 2 1 Roots of  2 0:   sign( ) ,     / .x px q x p p p q x q x− + = = + − =  
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• There may happen cases when an intermediate result gets larger than M ∞  (arithmetic 

overflow) although the result is in the domain of nonzero machine numbers. As an 

example, let us have 0.3265 60a = + , 0.5671 02b = +  and compute 2 2
a b+ . When 

squaring, the first number has exponent 120, that results in overflow. But if we 

compute 2 2( / ) ( / )s a s b s+ , where max( , )s a b= , then that may not happen. 

• Another example is the computation of the binomial coefficient 
n

k

 
 
 

. For not too large 

n  the computation of !n  may get larger than the largest machine number, however, 
the result can be represented as a machine number. A safer way of computation is 

 
1 2 1

1 2 3

n n n n k

k

− − − +
⋯ . 

When collecting the product, add a next fraction by multiplying with the numerator 
first and after that apply division. 

• One may find that a function does not return a value with the same relative precision 
than that of the input data. For instance, consider the sine function. If the argument is 
small, then there is no problem. But if x  has a large value, say 2356x = , then for 
computing sin(2356)  we have to take 2356 mod(2 )π . But then the remainder will 
have only one precise digit using the above arithmetic such that we may not expect 
better accuracy for the output value. 

The shown examples tell us that the undesirable phenomena of computer arithmetic happen 
primarily in cases when the numbers have very different orders of magnitude or in the case 
when difference of very close numbers is computed.  

1.5. Estimating the number of lost digits in cancellation 

Cancellation happens if two numbers are nearly the same and they are subtracted from each 
other. For example, assume a 6-digit decimal arithmetic and compute: 
126.426 126.411 0.015− = . It is seen, the first four digits are lost, and the result, if normalized, 
has the form: 10.150000 10−⋅ . Now the question is, how we can interpret the accuracy of the 
result. If there were 10 digits and the further 4 digits –  which are not seen here –  are the 
same, then the result is accurate to 6 decimals. If the missing four digits were not the same, 
then we have accuracy only for two figures. As seen, the number of accurate digits may range 
now from 2 to 6. We shall adopt the pessimistic picture now such that there is no more 
accurate digits than 2. 

Let the scalars ,α β  be nonzero and nearly the same. When subtracting, the cancellation can 
be characterized by the ratio 

 
max( , )

α β
η

α β

−
= . (1.5) 

If 0.5η >  we may say that there is no cancellation of binary digits, while in the case of 

10 ρη −< ,    where ρ  is the number of accurate decimal digits – we say that the two numbers 
are the same to computational accuracy. Although 15 decimal digits are assumed in double 
precision computation, we should take into account that usually the last 2-3 digits are 



10 Hegedüs: Numerical Methods I. 

uncertain due to rounding errors. Therefore a practical choice for ρ  is =12ρ . Then we may 
loose digits by cancellation if the condition 

 min max10 ρη η η−= ≤ <  (1.6) 

holds, where max 1/ 2η =  may be chosen.    The worst case is always assumed, therefore the 

number of lost decimals is estimated by 10log η− . This value is 4.06... in the above example. 

As a consequence, the number of accurate digits is 

 10logγ ρ η= +  (1.7) 

after cancellation and the error of the difference α β−  is 10 γ α β− − . Similarly, the error of 

η  can be given by 10 γ η− . 

1.6. Errors 

One is also interested in quality computations about the accuracy of the result. For that we 
have to consider the posssible sources of errors. We may have errors already in the initial 
data: They may be called data errors or inherited errors. When doing computations, we may 
also commit errors that should be discovered and corrected by ourselves through surveying 
our activity carefully. We may also use a mathematical formula that has error because of 
being an approximation. Such errors belong to the applied method and usually they are 
assumed to be larger than the error of the numerical computation. Rounding errors may show 
up also in the data preparation phase but characteristically we always have to face the 
presence of rounding errors in the course of computation. When analyzing errors, we have to 
recognize, which kind of errors are essential from the point of view of our problem.  There are 
many cases when data errors or formula errors give the main contribution to the error of 
computation. Many times we have to accept data errors, but formula errors may be decreased 
by using a more precise approximation. 

According to the basic model of error computation we consider all computed values subject to 
errors. We are primarily interested in the bound of errors. 

Notations. The accurate value of x  will be denoted by x
∗ , and its error is given by: 

x x x∗∆ = − , where x∆  is a signed number. The relative error  is defined by 

/ /x x x x xδ ∗= ∆ ≈ ∆ . It should be remarked at this point that other authors define the relative 
error by dividing with the accurate value x

∗ , as in the second formula here. Our choice admits 
the fact that we do not know the accurate value. The error bound 

x
∆  is a nonnegative number 

that gives an upper bound of the absolute value of the error: xx∆ ≤ ∆ . Similarly, 
x

δ  is the 

relative error bound, for which xxδ δ≤  holds. 

Remark. The difference between the two ways of defining relative errors has a magnitude of 

second order: ( )2
/ / (1 ) / (1 )x x x x x x x xδ δ δ δ δ δ∗∆ − = − − = − . 

In reality x∆  is not known, only the upper bound to that. What we know at start is that x
∗  is 

in a neighborhood of x  with radius 
x

∆ . 
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1.6.1 Error propagation 

It is important to know the error propagation formulas of the basic arithmetic operations. 
, ,*, /+ − . Below the formulas on the left refer to the errors and in the same line to the right, 

one can find the error bound relation: 

 

/2 2

( ) ,                             ,

( ) ,                             ,

( / ) ,                         .

x y x y

xy y x

x y

x y

x y x y

xy x y y x x y

y xy x x y
x y

y y

±∆ ± = ∆ ± ∆ ∆ = ∆ + ∆

∆ = ∆ + ∆ ∆ = ∆ + ∆

∆ + ∆∆ − ∆
∆ = ∆ =

 (1.8) 

The error formulas on the left are usually derived in mathematical analysis for getting the 
differentiation rules for the sum, product and ratio of functions. It is also seen from here that 
the formulas can be considered right only if the errors are really small such that the second 
order terms can be neglected. The formulas to the right are consequences of the left ones, the 
same arrangement can be seen for the relative errors below:  

 

/

( ) ,                    ,

( ) ,                              ,

( / ) ,                           .

x y

x y

xy y x

x y x y

x yx x y y
x y

x y x y

xy y x

x y x y

δ δδ δ
δ δ

δ δ δ δ δ δ

δ δ δ δ δ δ

±

+±
± = =

± ±

= + = +

= − = +

 (1.9) 

1.6.2 Error of functions 

Let :f →ℝ ℝ  be a continuously differentiable function. Then according to the mean value 

theorem of Lagrange, there exist [ , ]x xξ ∗∈ , for which 

 ( ) ( ) ( ) ,   f x f x f x x x xξ∗ ∗′= + ∆ ∆ = −  

holds. From here the error of the function value is expressible as 

 ( ) ( ) ( )f x f x f f xξ∗ ′− = ∆ = ∆ . (1.10) 

Let 1
[ , ]
max ( )

x xx x x
f x M

∈ −∆ +∆
′ = , then we get the error bound 

 1f x
M∆ ≤ ∆ , (1.11) 

where the estimate is restricted to a neighborhood of x
∗  with radius 

x
∆ . 

This relation suggests a definition to the stability of an algorithm: We attribute the mapping 
of the algorithm to a function ( )f x  and say the algorithm stable if for two input values 1x , 2x  

we have the relation 

 2 1 1 2 1 2( ) ( ) ,   ,f x f x C x x x x X− ≤ − ∈ , (1.12) 

where C  is a not very large constant. The reason is that for such an algorithm we can keep the 
error in our control. We are then able to demand a necessary precision for the input values in 
order to get an output value of specified accuracy. Observe that C  can not be arbitrarily large 
because 2 1( ) ( ) / /ff x f x C C− ≤ ∆  may not be smaller than the largest gap between two 

machine numbers in the region, where 1x , 2x   can be found.  
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It is still important to define the concept of inverse stability. A mapping – or algorithm – is 
inverse stable if the result of computation can be obtained exactly from a slightly perturbed 
input value.  

1.6.3 The condition number 

For the relative error of the function we get the relation 

 
( ) ( )

.
( ) ( ) ( )

f xf x x xf x
f x

f x f x x f x
δ δ

′ ′∆ ∆
= ≈ =  

Taking the absolute value: 

 ( , ) ,f c f x xδ δ≈  (1.13) 

where number ( , ) ( ) / ( )c f x xf x f x′=  is called the condition number of f  at point x . If this 

number is large then the function is called instabile or ill-conditioned, because a small relative 
change in the value of x  leads to a large relative change in the value of the function. If the 
condition number is too big then small rounding errors in the domain of x  may lead to 
unacceptably large errors of the output value. 

1.7. The postulate of error analysis 

Denote by �  any of the four arithmetic operations. Then the basic assumption in error analysis 
is the following: 

  ( ) (1 ),   ,   , ( , , )Mfl a b a b a b M t k kε ε ε − += + ≤ ∈� � .  (1.14) 

Seemingly ε  is the relative error. If we check the relative error bounds in (1.9), then we find 
that 0 2 Mε ε≤ ≤ holds in the case of multiplication and division. For numbers in the IEEE 

Standard the smallest mantissa is 1, therefore 2 t

M
ε −=  can be considered as a doubled value 

of the actual precision bound such that the assumption (1.14) is good.  But for the case of +, – 
we may get very far values from the assumption if a catastrophic cancellation error occurs, i.e. 
the number in the denominator is very small. However, if we restrict ourselves to machine 
numbers, and consider the machine numbers accurate then the assumption remains true if we 
still have saved an additional bit for rounding, see Sect. 1.5. But considering machine 
numbers accurate may be controversial with respect to real life situations. Therefore the 
programmer is advised to avoid cancellation errors in the program as far as possible. In case 
of serious cancellation problems one has to keep count of it and one should investigate its 
effects on the final result. 

1.8. Problems 

1.1. Let the set of machine numbers be (5, 4, 4)M − . Identify the special machine numbers!  
Map the following numbers:  1/50, 0.37, 3.67,  7.2,  21.78 into this set! 

1.2. How should we convert 10.87 into a ternary number of base 3? 

1.3. How the machine epsilon is modified, if chopping is applied instead of rounding? 



                                                                              13 

Norms, inequalitites 

 

We introduce distance functions for vectors and matrices in this section. At first some 
notational conventions will be given. 

Matrices are denoted by capital letters: , , ,A B C …  vectors with lower case letters: , , ,a b c… , 
with the exception of , , , , ,i j k l m n : they will be used for indices as a rule. We use greek lower 

case letters for scalars. If matrix A  is built of column vectors 1 2, ,a a … , then it is given by 

1 2[ ]
n

A a a a= … . Another form of giving matrices is [ ]
ij

A a= , where the ij -th element is 

given generally. The unit matrix of order n  is 1 2[ ]
n n

I e e e= … , that has columns 1 2, , ,
n

e e e… , 

the Cartesian unit vectors. The transpose  of a vector is indicated by: T
a , in the complex case 

the conjugate transpose is H
a , where complex conjugation is also done. The notation for the 

transpose or conjugate transpose of matrices is given similarly. Usually we consider real 
matrices. 

1.9. Metric space 

Let �  be a set, and introduce the function ( ):δ × →ℝ� �  between two elements of the set. 

In order that it be a distance function, it is natural to demand the following assumptions for 
,a b ∈� :  

i) ( , ) ( , )a b b aδ δ= , that is, the distance of a  from b  should be the same as the 
distance of b  from a  (symmetry). 

ii) ( , ) 0  a b a bδ = ⇔ = , the distance is zero only if the two elements are 
identical. 

iii) ( , ) ( , ) ( , )a c a b b cδ δ δ≤ + ,  the triangle inequality. It reflects the fact that the 
shortest path between two elements is along the connecting line.  

We call the pair ( , )δ �  a metric space if the above three assumptions are fulfilled. For set �  

we shall consider here the sets nℝ  and m n×ℝ  and we shall find distance functions for vectors 
and matrices.  

T2.1 Theorem on non-negativeness of a metric 

 0 ( , )a bδ≤  (2.1) 

Proof.  0 ( , ) ( , ) ( , ) 2 ( , ) a a a b b a a bδ δ δ δ= ≤ + = applying properties i), iii) and finally ii). ■ 

1.10. Vector norms, the power norm 

The vector norm :   n
x →ℝ ℝ   is a scalar valued function and it has the following 

properties: 

 

)           0    0,

)          ,

)         .

i x x

ii x x

iii x y x y

λ λ

= ⇔ =

=

+ ≤ +

 (2.2) 



14 Hegedüs: Numerical Methods I. 

 y=x p-1 

x 

y 

α 

β  

Then the choice ( , )x y x yδ = −  gives a metric, because the necessary conditions are 

fulfilled. The first two conditions are trivially satisfied by the power norm: 

 
1/

1

,      1
p

n
p

ip
i

x x p
=

 
= ≤ ≤ ∞ 
 
∑ . (2.3) 

Later on we shall see that the third condition is also fulfilled. 

1.11. Hölder’s inequality 

For power norms the Hölder inequality is 

1

1 1
,       1,

n
T

i i p q
i

y x x y x y
p q=

≤ ≤ + =∑   (2.4) 

 

 

 

 

 

 

 

 

 

Figure 1. 

that reduces to the well-known Cauchy-Bunyakovsky inequality for 2p q= = . The 
connection between p  and q  can be rearranged into the form 1 1/ ( 1)p q− = − , that should be 

kept in mind  when deriving the next inequality. The applied function is  1py x −=  and the first 
integral is the area shaded vertically in the shown figure, while the second one belongs to the 
area shaded horizontally: 

 1 1

0 0

p q
p q

x dx y dy
p q

βα α β
αβ − −≤ + = +∫ ∫ . 

Then apply the substitutions 

 i,             i i

i

p q

x y

x y
α β= =  

and summing for i  results in the right inequality of (2.4). 

The third relation of (2.2), the triangle inequality can be shown by using the relation 
/ 1p q p= −  in 

 { } 1

1 1

n n
p p p

i i i i i ip
i i

x y x y x y x y
−

= =

+ = + ≤ + +∑ ∑  

such that the Hölder inequality is applied for both terms on the right side. Now the first term 
yields the result: 
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1/

1 ( 1) /

1 1

q
n n

p p q p q

i i i i ip p p
i i

x x y x x y x x y
− −

= =

 
+ ≤ + = + 

 
∑ ∑ . 

The other term yields similar result and ordering the two leads to the desired inequality, which 
is called the Minkowski inequality for a general power c1 p≤ . 

1.12. Some properties of power norms 

We have the inequality: 

 ,    1 ,    0
p s p

x x p s
+

≤ ≤ ≤ . (2.5) 

It can be rearranged into the form 

 

/

1 1 1

,   0

s p
p s p p

n n n
i i i

k

i i ik k k

x x x
x

x x x

+

= = =

    
≤ ≠  
    

∑ ∑ ∑ . 

Choose maxk i ix x= , then the first factor on the right is greater term by term as compared to 

the sum on the left, moreover, the second factor is surely not less than 1. 

We list the frequently used power norms. The first one is: 

 
1

1

n

i

i

x x
=

=∑ . 

It is called the 1-norm, octahedron norm or sometimes Manhattan norm. The 3-dimensional 
unit sphere - vectors x  for which .

1
1x = . - will be the octahedron that has vertices 

( ) ( ) ( ){ }1,0,0 , 0, 1,0 , 0,0, 1± ± ± . The next norm 

 
1/ 2

2

2
1

n

i

i

x x
=

 
=  
 
∑  

is the 2-norm, Euclidean norm or sphere norm of vector x . The unit sphere in this norm is the 
unit ball. One gets the third important norm in the limiting case p → ∞  

 

1/

1

max lim max
max

p
p

n
i

j j j j
p

i j j

x
x x x

x
∞ →∞

=

 
 

= ⋅ = 
  

∑  

that is called the maximum norm, ∞ -norm or  Chebyshev-norm. It is seen from (2.5) that we 
have here the largest and smallest power norms moreover, the 2-norm which is invariant 
under orthogonal transformations, see Exercise 2.6. One can derive the following inequalities 
for these norms: 

 

1

2

1 2 1

,

,

1
.

x x n x

x x n x

x x x
n

∞ ∞

∞ ∞

≤ ≤

≤ ≤

≤ ≤

 (2.6) 
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1.13. Convergence in norm. The norm equivalence theorem 

The norms can be used to define the convergence of vector sequences. By writing ( )k
x x→  

we mean that ( ),   lim 0n k

k
x x x

→∞
∃ ∈ − =ℝ .  

Two norms 
(1)

x  and 
(2)

x  are called equivalent if there exist numbers 1 2, 0c c >  such that 

the inequalities   

 1 2(1) (2) (1)
c x x c x≤ ≤  

hold. From here one can easily get the other form 

 (2) (2)

(1)
2 1

x x
x

c c
≤ ≤  

indicating that norm equivalence is a symmetric relation. 

T2.2 The norm equivalence theorem 

Any two norms are equivalent in finite dimensional spaces. In other words, the norms may 
not differ from each other arbitrarily. As a consequence, it will be all the same, which norm 
we are using when investigating convergence. (Proof omitted.) 

1.14. Matrix norms 

The matrix norm :   m n
A

× →ℝ ℝ   has the following properties: 

 

)           0    0,

)          ,

)         ,

)          .

i A A

ii A A

iii A B A B

iv AB A B

λ λ

= ⇔ =

=

+ ≤ +

≤

 (2.7) 

For the last two properties we need that the two matrices have appropriate sizes such that they 
can be added and multiplied. As vectors can be considered special matrices, all matrix norms 
give a vector norm, which we call compatible with that matrix norm. But this approach can be 
followed also in the reverse direction, as all vector norms induce a matrix norm by the 
relation: 

 
0 1

sup sup
x x

Ax
A Ax

x≠ =
= = , (2.8) 

where .  denotes a vector norm. We remark at this point that in a more general definition of 

induced matrix norms, it is allowable to use different vector norms for Ax  and x . For 
induced norms a dircct consequence of the definition of  (2.8) is the inequality 

 .Ax A x≤  (2.9) 

We call the matrix norm A  and vector norm x  consistent, if for any x  (2.9) is satisfied. 

This definition has importance in the case when the matrix norm is not an induced norm from 
a vector norm. 
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T2.3 Theorem on induced norms 

The induced matrix norm satisfies the conditions of (2.7). 

Proof. Ad 1. 0 0.    0 0  re 0.A A A Ax x A= → = = → = ∀ − → =  

Ad 2. 
1 1

sup sup .
x x

A Ax Ax Aλ λ λ λ
= =

= = =  

Ad 3. { }
1 1

sup ( ) sup .
x x

A B A B x Ax Bx A B
= =

+ = + ≤ + ≤ +  

Ad 4. 0 0 0 0,  1:    .n
x x AB ABx A Bx A B∃ ∈ = = ≤ ≤ℝ   ■ 

1.15. Determination of some matrix norms 

The column norm, 1p = :   

 
1 11( ) ( )

max max .
m

j ijij j
A Ae a

=
= = ∑  (2.10) 

Choose 
1 1

1
n

jj
x x

=
= =∑ , then using norm properties, we find 

 
1 1 11 1 111

m n nT

j j j j j k j kj j j
Ax Ae e x Ae x Ae x Ae

= = =
= ≤ ≤ =∑ ∑ ∑ , 

 where 
1 1( )

max .k j
j

Ae Ae= This upper bound is reached for 
k

x e= , hence the maximum is 

found and the result is the induced 1-norm. 

The row norm, p = ∞ : 

 
11( ) ( ) ( )

max max max .
nT T

i i ijji i i
A e A A e a

∞ =∞
= = = ∑  (2.11) 

Choose 1x
∞

= , then  

 
1 1 1( ) ( ) ( )

max max max .
n n n

ij j ij j ijj j ji i i
Ax a x a x a

∞ = = =
= ≤ ≤∑ ∑ ∑  

 Assume the maximum is found for the k -th row. Then for the elements of vector 1x
∞

= , 

we can take  

 
{ / ,  if 0 

       0     ,  otherwise

kj kj kj

j

a a a
x

 ≠
= 


, 

giving the value of the just found upper bound for Ax
∞

. Here kja  denotes the complex 

conjugate of 
kj

a  such that our result is also good for complex matrices. 

The spectral norm, 2p = : 

 ( )1/ 2

2 ( )
max ( ) .T

k
k

A A Aλ=  (2.12) 

The following maximum is sought: 
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2

2 2
22

2

max max .
T T

T

Ax x A Ax
A

x xx
= =  

The quotient here is called the Rayleigh-quotient with respect to matrix TA A . If 
k

u  is an 

eigenvector of TA A  with eigenvalue 
k

λ , then applying the choice 
k

x u=  the Rayleigh-

quotient takes the value of 
k

λ . From here it is clear that the largest value of the Rayleigh-

quotient is at least max max
k k

λ λ= . We show it may not be larger. It is known from linear 

algebra that the eigenvectors of a symmetric matrix form a full orthonormal set such that any 

vector x  can be expanded in the form 
1

n

j jj
x uα

=
=∑ . If this is substituted into the  Rayleigh-

quotient, we get: 

 
2 2

max1 1
max max 2 2

1 1

( )
0

n n
T T

j j j jj j

n nT

j jj j

x A Ax

x x

λ α λ λ α
λ λ

α α
= =

= =

−
− = − = ≥

∑ ∑
∑ ∑

, 

showing that the maximum is found. Observe that all eigenvalues of TA A  is non-negative 

because of 
2 2

( ) /T

j j j
A A Au uλ = . 

Remark. For complex A  we take HA , the conjugate transpose of A  instead of TA  and we 
can proceed similarly. The nonzero eigenvalues of HA A  and HAA  are the same. This can be 
shown for the matrix product AB  in general, for let u  be an eigenvector of AB  then 

 ,  ( ) ( ),   , T m nABu u BA Bu Bu A Bλ λ= → = ∈ℝ  

follows if multiplied by matrix B  from the left. 

The Frobenius norm is defined by 

 

1/ 2
2

,

tr( ) tr( )H H

ijF
i j

A a A A AA
 

= = = 
 
∑ , (2.13) 

where 
1

trace( ) tr( )
n

iii
A A a

=
= =∑ . To show that it is also a matrix norm, introduce the vec 

function that arranges the columns of matrix [ ]1 2   nA a a a= …  into one column: 

 1 2    vec( )    
T

T T T

n
A a a a =  … . 

Then 
2

vec( )
F

A A=  holds and the first three norm conditions are automatically fulfilled. 

To show the fourth norm condition, consider the Cauchy-Bunyakovsky inequality for an 

element of the matrix product AB  in squared form: 
2 2 2

22

T T

i j i j
e ABe e A Be≤  .  Summing up 

for i  and j  gives the squared fourth condition. 

1.16. A relation between the spectral radius and matrix norms 

We define the spectral radius of matrix A  by the following number: 

 ( ) max ( ) ,k kA Aρ λ=  (2.14) 

where ( )
k

Aλ  is an eigenvalue of A .  
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T2.4 Theorem on spectral radius 

The inequality 

 ( )A Aρ ≤  (2.15) 

holds, where  A  is an arbitrary matrix norm. 

Proof. Let 
k

u  be an eigenvector, then 
k k k

Au uλ=  holds. Multiply both sides by T
u  from the 

right then there are matrices on both sides.  Applying the matrix norm properties, we get 

 ,   for T T T

k k k k k k k
u u Au u A u u kλ = ≤ ∀ . 

Dividing by T

k k
u u  on both sides yields the result as the inequality is also true for the absolute 

largest eigenvalue. ■ 

1.17. Perturbing the solutions of linear systems 

We shall consider two cases. First, the right vector b  of the linear system is perturbed by a 
small vector bδ , and in the other case, we consider the perturbation of the coefficient matrix. 

Now assume bδ  is added to vector b  such that the system Ax b=  is changed to 
( )A x x b bδ δ+ = +  from which A x bδ δ=  follows and for consistent vector and matrix norms 

we get the lower and upper bound estimate: 

 1

1

1
.

b x b
A A

b x bA A

δ δ δ−

−
≤ ≤  (2.16) 

For derivation we start from the equations and take norms as shown: 

 

1

1

,                   ,

                              

,            .

b Ax x A b

b A x x A b

δ δ

δ δ

−

−

= =

↓ ↓

≤ ≤

 

Multiplying the same sides of the inequalities and arranging terms yields the right side of 
(2.16). For the left side we start from  

 

1

1

,                   ,

                                

,            

x A b b A x

x A b b A x

δ δ

δ δ

−

−

= =

↓ ↓

≤ ≤

 

and proceed in a similar way. 

L2.1 Lemma. 

If 1B <  holds then I B+  is invertible and one has the inequality for induced norms: 

 ( ) 1 1
.

1
I B

B

−
+ ≤

−
 (2.17) 
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Proof. Applying Theorem T2.4, we see that all absolute eigenvalues of B  are less than 1, 
consequently no eigenvalues of I B+  may be zero such that I B+  is invertible. By a simple 
rearrangement, 

 ( ) ( )( ) ( )1 1 1
I B I B B I B I B I B

− − −
+ = + − + = − + . 

Taking norm of both sides and applying the triangle inequality on the right gives 

( ) ( )1 1
1I B B I B

− −
+ ≤ + +  from where the statement follows.  ■ 

Now we turn to the second case, where the coefficient matrix is perturbed by a small Aδ : 

( )( ) ( )   A A x x b A A x Axδ δ δ δ δ+ + = → + = − →  1 1 1( )x I A A A Axδ δ δ− − −= − +  and one gets 

the estimate: 

 ( ) 11 1 1

1

1
0  

1

x A A
I A A A A A A

x A A A A

δ δ δ
δ

δ

−− − −

−
≤ ≤ + ≤

−
. (2.18) 

Observe that Lemma L2.1 was used in the last step. 

1.18. The matrix condition number 

The previous estimates show that the relative change of the solution is proportional with the 

number 1cond( )A A A−= . This is called the condition number of the matrix that is 

frequently denoted also by ( )Aκ . If this number is large, then we call the linear system 
Ax b=  ill-conditioned. 

1.19. The relative residual 

The number /x xδ  does not characterize well the stability of the solution method because 

it may be large – independently of the method of solution – if cond( )A  is large. For that 
purpose the residual vector is more appropriate. Assume, we have the approximate solution 
xɶ , then the residual vector is defined by: r b Ax= − ɶ . The relative residual is given by: 

 .
r

A x
η =

ɶ
 (2.19) 

According to inverse stability,  the method of solution is backward stable if the result is the 
accurate result of a slightly perturbed initial problem: ( )A A x bδ+ =ɶ , where /A Aδ  is 

small. 

T2.5 Theorem on the relative residual 

If η  is large then /A Aδ  is also large. But if η  is small then the relative change of the 

matrix is also small in 2-norm at least. 

Proof. From the relation ( )0 b A A x r Axδ δ= − + = −ɶ ɶ  we get the estimate r A xδ≤ ɶ . 

Substitute this into η  of (2.19):  

 
r A

A x A

δ
η = ≤

ɶ
, 
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that is, if η  is large, then the relative change of the coefficient matrix may be even larger. 

On the other hand, if  η  is small then we use an explicit form of Aδ : 

 ,   because  0.
T T

T T

rx rx
A b A x b Ax r

x x x x
δ

 
= − + = − − = 

 

ɶ ɶ
ɶ ɶ

ɶ ɶ ɶ ɶ
 (2.20) 

Choosing 2-norm, 
22 2

T T
rx r x=ɶ ɶ  (see exercise 2.5), and substitution gives 

2 2

2 2 2

.
A r

A A x

δ
=

ɶ
      ■ 

Remark. If η  is large then the relative error of the solution with respect to xɶ  is also large, 

because ( )r A x x A x x A xδ= − ≤ − =ɶ ɶ  and substituting into (2.19) gives 

 .
r A x x

A x A x x

δ δ
η ≤ ≤ =

ɶ ɶ ɶ
 (2.21) 

 

1.20. Distance of the nearest singular matrix 

Assume matrix A  is invertible and B  is a nearby matrix and it is singular. Then there exists a 
nonzero vector x  such that 0Bx =  moreover, we can write 

 ( )Ax A B x A B x= − ≤ −  

and 

 1 1x A Ax A Ax− −= ≤ . 

Multiply the same sides of these inequalities, then after simplification one gets the inequality 

 11
A

A B

−≤
−

. (2.22) 

It shows that the reciprocal of the distance to the set of singular matrices gives a lower bound 
for the norm of the inverse. We may find various modifications of A  to get such estimates. 

For instance, choose T

i i
B A e e A= − , then A B−  will have only one nonzero row and taking 

the 1-norm, gives 

 1

1

1

max ij
j

A
a

−≤ , 

but we may take the row, for which the left denominator is minimal: 

 1

1

1

min max ij
i j

A
a

−≤ . (2.23) 

Another relation can be obtained by choosing T

i i
B A Ae e= −  and applying the infinity norm, 

we get: 
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 11

min max ij
j i

A
a

−

∞
≤ . (2.24) 

Similar approach can be applied when PA LU= , where P  is a permutation matrix, L  is a 
unit lower triangular matrix (it has 1’s in the diagonal) and U  is upper triangular. Then the 
permutation does not change the 1,2 and ∞  norms of A , (see Exercise 2.17). Choose 

T

n n
B LU Le e U= −  to find 

 1 11
,   1, 2,T

p p
nn

A P A p
u

− −≤ = = ∞ . (2.25) 

Such estimates help to get lower bounds for the condition number. 

1.21. Problems 

2.1. Show that for all induced norm 1I =  holds. May the Frobenius norm be an induced 

norm? 

2.2. If A  is invertible then 
A

x Ax=  is also a vector norm. 

2.3. A matrix condition number may not be less then 1 for induced norms. 

2.4. Using the 2-norm, the condition number of orthogonal or unitary matrices is equal to 1. 

2.5. 
2 22

T
ab a b= .  

11

T
ab a b

∞
= .  

1

T
ab a b

∞∞
= . 

2.6. T
U U I=  (orthogonal) 

2 2
AU A→ = . 

2.7. A B A B− ≤ ± . 

2.8. 
1 2

2 3 1
,   ?   ?  ?  

4 2 1
A A A A

∞

− 
= = = = − − 

 

2.9. 
2 1

A A A
∞

≤ . 

2.10. Check the inequality 
2 2F

Ax A x≤ . (It is consistent with the 2-norm.) 

2.11.  If TA A=  then 
2

( )A Aρ=  = spectral radius, that is, the spectral norm is the minimal 

norm for  symmetric matrices.  (
2

 . =  spectral norm.) 

2.12.  If TA A=  then 
2

,   1,
p

A A p≤ = ∞ . 

2.13. T
U U I=  (orthogonal) 

F F
AU A→ = . 

2.14. 
2 2

AB BA=  if TA A=  and TB B= . 

2.15.  2
2 2cond ( ) cond ( )T

A A A= . 

2.16.  ,   1, 2,
p p p

PA A AP p= = = ∞ , where P  is a permutation matrix. 
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Elementary transforms in numerical linear algebra 

Here we recall some elementary facts in linear algebra and review some elementary 
transforms that will be needed later. 

1.22. Multiplication of matrices 

Multiplying matrices [ ]   and  [ ]m n n l

ij jkA a B b
× ×= ∈ = ∈ℝ ℝ  results in the matrix 

[ ]ikC AB c= =  
1

n m l

ij jkj
a b

×

=
 = ∈
 ∑ ℝ . Vectors can be considered special matrices consisting 

of one row or column, their multiplication can be done according to the rules of matrix 
multiplication. We can do two kinds of vector multiplication: One is the scalar product, for 
instance  T

a b , where the result is a scalar value. The other one is the dyadic multiplication, an 
example is T

ab , the result now is a rank-one matrix or dyad. Observe that vectors should 
have the same length in the first case, while it is irrelevant in the other case.  

Next we turn to some special matrices. 

1.23. Permutation matrix 

If we permute the rows or columns of a unit matrix, we get a permutation matrix. As a result, 
this matrix has one nonzero entry 1 in each row and column, the other elements are zero. To 
give a permutation matrix, it is not necessary to use a 2-dimensional array. It is enough to 
give a vector, where the k -th element has value 

k
i . A possible interpretation is that the 

k
i -th 

row gets into the k -th row. Another interpretation may refer to columns in the same sense. 

 Assume we are interchanging rows of a matrix and we should like to record the performed 
operations in a vector that would represent a permutation matrix. Initialize that vector by 
entering k for the k -th element. Then perform the same interchanges for the elements of that 
vector as done for the rows of the matrix (as if we have attached this vector to the matrix as a 
column). Then we shall be able to identify which vector gets to what position at the end. For 
instance, if the first element is equal to 5, then the fifth row was chosen for the first row. 

1.24. Unit matrix plus a rank-one matrix 

Matrices having the simple form of a unit matrix plus a rank- one matrix play special roles in 
numerical linear algebra: 

 T
F I ab= +  (3.1) 

The vector product here is also called outer product as contrast to inner product of vectors, 
e.g. T

b a . With their help we can perform various linear algebraic transformations easily by 
choosing vectors a  and b  appropriately, according to the task that should be done.  

It is easy to find the inverse to this matrix. If we assume that the inverse is also a unit plus 
rank-one matrix, then the relation 1FF I− =  results in the form 1 T

F I abα− = + , and we 
conclude 1/(1 )Tb aα = − +  such that 

 1

1

T

T

ab
F I

b a

− = −
+

. (3.2) 

The inverse does not exist if 1 0T
b a+ = , from this fact we may conjecture that we have the 

determinant of F  in the denominator. 
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E3.1 Example 

Replace the i-th column of the unit matrix with vector a . The result can be expressed as: 

 ( ) .T

i i
F I a e e= + −  

Its inverse can be given by:  

 1 ( ) ( )

1 ( )

T T

i i i i

T T

i i i

a e e a e e
F I I

e a e e a

− − −
= − = −

+ −
. (3.3) 

Matrices of this kind have importance in algorithms for solving linear systems of equations. 

D3.1 Gauss-Jordan transform 

Matrices of the type 

 
( )

( , )
T

i i
GJ i T

i

a e e
T a e I

e a

−
= −  (3.4) 

will be called Gauss-Jordan transform unless 0T

i
e a ≠ . As it is seen in Exercise 3.3, it 

transforms vector a  into 
i

e . Observe that 
i

e  may be replaced by vector b  if it is not 

orthogonal to a , then a  will be transformed into b . 

E3.2 Example 

We do the following operations: the i -th column of matrix A  is multiplied by α  and the 
result is added to the k -th column. Find the matrix which exactly performs this task! 

Solution.   

 ( ).T T

i k i k
A Ae e A I e eα α+ = +   (3.5) 

E3.3 Example 

Show the determinant identity 1T TI ab b a+ = + ! 

Solution. Assume vectors a  and b  are not zero, otherwise the problem is trivial. Let the i -th 
element of a  be 0T

i i
e a a= ≠ ,  and consider matrix ( / ) T

i i i
I a a e e− − . This has all diagonal 

elements 1 and it still has nonzero elements in the i -th column. But these non-diagonal 
elements can be brought to zero by adding the appropriate multiple of the i -th row, 
consequently it has determinant 1. Now multiply matrix T

I ab+  by ( / ) T

i i i
I a a e e− −  from the 

left.  This will move vector a  into 
i i

a e  such that the result is: ( / ) T T

i i i i i
I a a e e a e b− − + , which 

differs from the unit matrix only in the i -th row and column. Now multiply the k -th column 
by /

k i
a a and add to the i -th ( )i k≠  column (see Example 3.6):  

 ( ) T T T T T Tk k k
i i i i k i i i i i k k i i

i i i

a a a ea
I e e a e b I e e I e e a e b a b e e

a a a

    −
− − + + = − − + +    

    
. 

As seen, the  k -th element of vector a  has turned into zero and the i -th diagonal element got 
the value 1

i i k k
a b a b+ + . After performing this operation for all k i≠ , all non-diagonal 

elements of the vector /
i

a a  are zero, the i -th diagonal element is 1 T
b a+ , and the other 
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diagonal elements are 1’s.  Using the row vectors ,  T

k
e k i≠  in the next phase, the non-

diagonal elements of T

i i
a e b  can be brought to zero without changing the value of the 

determinant. 

Remark. It is much easier to show this relation with the aid of Schur complements that will be 
seen in the next Chapter. 

1.25. Sums of rank-1 matrices, expansions  

The unit matrix of order n  can be given by the sum of rank-1 matrices of the Cartesian unit 

vectors: 
1

n T

n i ii
I e e

=
=∑ . Substituting this between two matrices in a matrix product yields a 

sum of rank-1 matrices, where the columns of A  and the rows of B  are applied: 

1

n T

i ii
AB Ae e B

=
=∑ . 

As it is known, vector x  of order n  can be expanded by the unit vectors as 
1

( )
n T

i ii
x e e x

=
=∑ . 

Similar relation exists for the system of orthonormal vectors 1{ }n

i i
q = . To see that, introduce 

matrix 1 2[ ]
n

Q q q q= … , then we have T TQ Q I QQ= =  because of the orthonormal property, 

consequently one can write 
1

( )
nT T

i ii
x QQ x q q x

=
= =∑ . Such Q  matrices are called orthogonal 

(or unitary in complex ). 

D3.2 Biorthogonal systems 

The systems of vectors 1{ }n

i i
a =  and 1{ }n

i i
b =  form a biorthogonal system of vectors, if 

,   0T

i j i ij ia b α δ α= ≠  holds for any indices, where 
ij

δ  is the Kronecker delta. If n  is the 

dimension of the vectors, then the system is said complete or full. 

T3.1 Theorem, simple product form of a matrix 

If the columns of matrix m nA ×∈ℝ  are linearly independent then A  can be given by a product 
of n  simple matrices, where a factor consists of a permutation and a Gauss-Jordan 
transformation of the type ( ) /T T

i i i i i i i i
T I Ae e e e Ae= − − , where the permutation is optional. 

Proof. The procedure will be given explicitly. Consider the first column of matrix A  at the 
first step. If the first entry is not zero, 11 1 1 0T

a e Ae= ≠ , then no interchange of rows is needed. 

If this entry is zero, then we look for a nonzero element in the first column and the row having 
that element is interchanged with the first row. If all entries in the column are zero, then the 
matrix is not invertible and contradicts our hypothesis. Denote the first permutation by 1Π  

and the row-permuted matrix by 1 1A A= Π .  

Multiply 1A  with matrix 1 1 1 1 1 1 1 1( ) /T T
T I A e e e e A e= − − . As we have seen it before, the result of 

this multiplication in the first column is vector 1e  moreover, we have 1
1 1 1 1 1( ) T

T I A e e e
− = + − . 

We bring the second column into 2e  in the next step. At first we look for a nonzero entry in 

the second column below the main diagonal and if necessary, apply row permutation 2Π  such 

that we have  nonzero at position 22 of matrix 2 2 1 1A T A= Π . Now multiplication by 
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2 2 2 2 2 2 2 2( ) /T T
T I A e e e e A e= − −  moves the second column into 2e . Observe that 2Π  and 2T  

leave the first column 1e  unchanged.  

Continuing the process in a similar way, we have 1 1i i i i
A T A− −= Π  in the i -th step, where the 

element in the ii  position is nonzero. (If in the i -th column 0,   
ji

a j i= ≥  would hold, then 

again, we should get in contradiction with the assumption that the columns are linearly  
independent.)  Multiplication with matrix  ( ) /T T

i i i i i i i i
T I Ae e e e Ae= − −  gives 

i
e  in the i -th 

column and all unit vectors are unchanged in the previous columns. After the n -th step we 
have  

 ( )1 1 1 1 2n n i n nT T T A e e e−Π Π Π =… … , 

from which we have: 

 ( )1 1 1
1 1 2 2 1 2
T T

n nT T T e e e A
− − −Π Π =… … . 

Observe that to give 1
i

T
− , it is enough to have index i  and vector 

i i i
a Ae= .        ■ 

1.26. Simple product forms of triangular matrices 

Matrix L  is said lower triangular if all elements above the main diagonal are zero. In a 
similar way, matrix U  is said upper triangular, if there are only zeros below the main 
diagonal. To give the simple product form of triangular matrices is especially simple. If 
applying the previous theorem, we get the product form of L  as: 

 ( )( ) ( )1 1 2 2( ) ( ) ( )T T T

n n
L I L I e e I L I e e I L I e e= + − + − + −… , 

where L  has size n . We can use the concise notation 

 ( )
1

( )
n

T

i i

i

L I L I e e
=

= + −∏ , 

if we add that the index of the factors should grow from left to right. This expression can also 
be shown directly by looking for the j -th column. Multiply by 

j
e  from the right, the first 

resulting column different from 
j

e  comes from the factor having index j : 
j j j j

e Le e Le+ − =  

and that is the  j -th column of L . The other factors have ,  
k

e k j<  and multiplying with 
j

Le  

gives no further contribution because 0,   T

k je Le k j= <  holds and thus the final result is 
j

Le . 

One can also write the product form with row vectors: 

 ( )
1

( )
n

T

i i

i

L I e e L I
=

= + −∏ . 

Its proof is left to the reader.  

 We have similar relations for the upper triangular matrix  U : 

 ( ) ( )
1 1

 ( 1)  ( 1)

( ) ( )T T

i i i i

i n i n

U I U I e e I e e U I
= − = −

= + − = + −∏ ∏ , 

where the factors from left to right should be read in decreasing order of indices. 
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1.27. Projection matrices  

Consider the matrix 

 T
P I ab= − , (3.6) 

where 1T
b a = . It has determinant 0, such that it has no inverse. But it has the interesting 

property that multiplying with itself results in the same matrix: 

 ( )( ) 2 .T T T T T TI ab I ab I ab ab ab I ab− − = − + = −  

D3.3 Projection matrices  

Matrices having the property 2P P=  are said projections or projection matrices. 

 

For a b=  the matrix is symmetric. Symmetric projections are also called orthogonal, because 
then the projected vectors Px  and ( )I P x−  are orthogonal to each other. If  and a b  do not 
have the same direction, then the projection is said oblique. Traditionally projections are also 
called idempotent matrices due to the fact that all positive powers of the matrix are equal. 
Notice from (3.6): 0Pa =  and 0T

b P =  hold. 

Figure 2. shows, how the projection in (3.6) is actually projecting vectors x  and y  along 
direction a  into the plane having normal vector b . If the directions of a  and b  would be the 
same, then the projection into the plane is done perpendicularly. 

1.28. Involutory matrices 

Matrix A  is said involutory, if it satisfies the equation 2A I= . All projections P  defines an 
involutory matrix of the form 2I P− : 

 ( 2 )( 2 ) 4 4I P I P I P P I− − = − + = , 

and all involutory matrices defines a projection in the form ( ) / 2I A− : 

 ( )( ) / 4 (2 2 ) / 4 ( ) / 2.I A I A I A I A− − = − = −  

From here it can be seen, that there are infinitely many square roots of the unit matrix of size 
larger than 1. 

Figure 2.  

x 

a 
y 

b 



28 Hegedüs: Numerical Methods I. 

The projection / ,  0T T Tab b a b a ≠  can be used to give the involutory matrix: 2 /T T
I ab b a− . 

We can conclude from Figure 2, that such a matrix performs an “oblique” reflection to the 
plane having normal vector b . In other words, we get along vector a  to the plane, then 
crossing it, we continue our path of the same length on the other side. The reflection is 
perpendicular to the plane if  a b= . 

1.29. Block matrices  

We can build matrices not only from scalars but also from smaller matrices. Such smaller 
matrices are called blocks. And if we form blocks in a matrix then we apply partitioning. 
Partitioning can be done as follows: The unit matrix is sliced into k  parts: 1 2[ , , , ]

k
I E E E= … . 

Similarly for the rows we can introduce 1 2[ , , , ]T

jI F F F= … . Then the ij -th block is 
T

ij i jA F AE=  and our matrix is 

 

11 12 1

21 22 2

1 2

.

k

k

j k jk

A A A

A A A
A

A A A

 
 
 =
 
 
  

…

…

⋮ ⋮ ⋱ ⋮

…

 

1.30. Diagonals of a matrix 

One can also subdivide matrices along diagonals. The element 
ij

a  is located on the k-th 

diagonal if k j i= − . Obviously with this concept the main diagonal is the 0-th diagonal. The 
codiagonal elements reside on the diagonals -1 and 1. It is easy to check that 

1 1n k n− + ≤ ≤ − . 

Sometimes it is useful to introduce the matrix functions tril and triu as it is done in Matlab. 
The function tril( )A  returns the lower triangular part of the matrix, in other words, it keeps 
the diagonals 1 0n k− + ≤ ≤  of A , the other elements are set to zero. More generally, 
tril( , )A ℓ  keeps the diagonals 1n k− + ≤ ≤ ℓ  unchanged and the other elements are turned into 
zero. 

In a similar fashion, triu( , )A ℓ  keeps the diagonals 1k n≤ ≤ −ℓ  unchanged forming an upper 
triangular part of the matrix, while the lower diagonals are set to zero.  The short form 
triu( ,0) triu( )A A=  also exists. 

1.31. Problems 

3.1. Perform a dyadic multiplication with two vectors. Explain that it should have rank 1. 
Which method is simpler to multiply by a dyad? a) Form T

A ab=  then compute Ax . b) 
Compute T

b x  first and then multiply vector a  with that scalar. 

3.2. Consider the permutation matrix 2 4 3 1[ , , , ]e e e eΠ = . Check that its transpose gives the 

inverse. Prove this fact in general! How can we store this permutation matrix in a vector? 

3.3. Check: 1
i

F a e
− =  of (3.3). 

3.4. With the aid of formula (3.5), show that the determinant of a matrix will not change if a 
scalar multiple of a column is added to another column of the matrix. Apply the theorem on 
the determinant of the product of two matrices!  
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3.5. Form the rank-1 sum of ADB , where [ ]i ijD d δ=  is a diagonal matrix, (only the diagonal 

elements are nonzero). 

3.6. Applying the scalar product and the dyadic product forms of matrix multiplication, show 
that ,tr( ) tr( ),  , T m nAB BA A B= ∈ℝ !  

3.7. Let matrix A  be invertible. Give the expansion of vector x  in terms of the columns of 
A . 

3.8. Collect the vectors of a biorthogonal system into matrices 1 2[ , , , ]
n

A a a a= …  and 

1 2[ , , , ]
n

B b b b= … . Check that TA B  is a diagonal matrix! How can we give vector x  as a 

linear combination of vectors 
i

a ? And how can we give the expansion with the aid of vectors 

i
b ? 

3.9 Check: if P  is a projection, then I P−  is also a projection. 

3.10. A plane has normal vector s  and its defining equation is T
s x σ= . Introduce the 

projection /T T
P I ss s s= − . Show that for all vectors y  the operation / TPy s s sσ+  produces 

a vector in the plane. 

3.11. Show with the previous matrix P : Py s⊥ , in other words Py  is perpendicular to s . 

Give the vector that connects / TPy s s sσ+  and y !  

3.12. Show that the backward identity 1 1[ ]
n n

J e e e−= … , where the columns of the unit matrix 

are given in reverse order, is involutory. What projection will it define for 2,3n = ? 

3.13. Show that matrix 2( )( ) /( ) ( )T TI x y x y x y x y− − − − −  will reflect vectors x  and y  into 

each other, if they are different and have the same length: T Tx x y y= . 

3.14. We have the possibility to reflect vector x  with the previous matrix into vector  

1y eσ= ± , where 2 T
x xσ = . How should we choose the sign of σ  to avoid cancellation error 

in the denominator? 

3.15. Introduce T
F I UV= + , where the unit matrix is modified by the n l×  matrices U  and 

V , that is, they have l n<  columns. If F  is invertible, show that 1 1( )T T

l
F I U I V U V

− −= − +  

(Sherman-Morrison-Woodbury formula) holds, where 
l

I  is a unit matrix of size l l× . 
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LU-decomposition of matrices,  Gauss-Jordan algorithm 

The LU-decomposition can be considered as another form of Gaussian elimination aimed to 
store intermediate results. This is done by factorizing matrix A  into the product of a lower L  
and an upper U  triangular matrix. 

1.32. The Gauss transform 

As it is known, Gasussian elimination interchanges rows if necessary and adds them up to 
achieve an upper triangular form of the linear system of equations. Having that form, it will 
be easy to solve the linear system by back substitution.  

It is possible to give an identity plus rank-1 matrix that brings the column elements 
,   

ij
a j i n< ≤  into zero, it is called the Gauss transform: 

 ( )( , ) tril( ) / T

G j jj j j
T A j I A e a e e= − − , (4.1) 

where tril( )A  is defined in Sect. 3.9. If it is applied to the j-th column, the result is: 

( , ) tril( )
G j j j jj j

T A j Ae Ae A e a e= − +  such that the diagonal element remains 
jj

a  and the other 

elements below the diagonal are zero. The other numbers above the diagonal are unchanged. 
The Gauss transformation is a simple lower triangular matrix that differs from the unit matrix 
only in the j-th row, where the vector tril( , 1) /

j jj
A e a− −  is still added. (Observe that the j-th 

element is canceling in .)  

T4.1 LU-decomposition 

If matrix n nA ×∈ℝ  is nonsingular, then its rows can be reordered by a permutation matrix P  
into TP A  such that it can be decomposed into a product of lower L  and upper U  triangular 
matrices. The decomposition of TP A  is unique if the diagonal elements of L  are chosen to be 
1’s. 

Proof. Having seen the algorithm in Sect. 3.5, it is possible to give the i-th step in general. At 
first, look for a nonzero in column i and move it with the row changing permutation T

i
P  into 

the diagonal position ii. Denote the resulting matrix by 
i

A .  Then apply Gauss transformation 

( , )
G i i

T A i A  to get zeros below the diagonal in the i-th column. We can write ( , )
G i

T A i  as 1
i

L
−  

such that  

 tril( ) / T

i i i i i i
L e A e Ae=  (4.2) 

because 1
i

L
− , as a Gauss transformation moves tril( ) / T

i i i i
A e Ae  into 

i
e . The divisor T

i i i
e Ae  is 

called the pivot and we can identify the i-th column of 
i

L  from  (4.2).  

If there are no permutations, we have the following picture after the first step: 

 

11

1
1 1

* *

0 * *

0 * *

a

L A
−

 
 
 =
 
 
 

…

…

⋮ ⋮ ⋱ ⋮

…

, (4.3) 
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where the asterisk * indicates nonzero elements. It is seen, the first column of the upper 
triangular matrix has shown up and 1 1 11 1 1( / ) T

L I Ae a e e= + −  is the first multiplier of matrix L 

in the LU-decomposition, from where we can identify the first column of L: 1 11/Ae a .  

In the second step we repeat the same procedure for the right lower ( 1) ( 1)n n− × −  block: 

 

11

2

* *

0 * *
,

0 * *

a

A

 
 
 

=  
 
 
 

…

…

⋮ ⋮ ⋱ ⋮

…

 

thus first element is 0 and second element is 1 in the second column of 2L . Continuing the 

process, we get matrices L  and U  as 

 1 1 1
1 2 1 1 2 1

* * *

* *
,          

*

n n n
L L L L U L L L A

− − −
− − −

 
 
 = = =
 
 
 

…

…
… …

⋱ ⋮
. (4.4) 

If permutations are needed to get nonzero pivots then we may assume, the necessary row 
changes are performed beforehand such that TP A  has an LU-decomposition such that 

 A PLU= . (4.5) 

■ 

If our task is to solve the linear system Ax b=  then it is practical to attach vector b  to matrix 
A : [ , ]A b , because the same transformations also act on b . For instance, let the linear system 
be: 

 

2 0 3 1

4 5 2 3 .

6 5 4 3

x

−   
   − − =   
   − −   

 

Observe that multiplying with 1
1L
−  will not change the first row of the matrix: 1

1 1 1
T T

e L e
− = . And 

the ik  element in the right lower block of order ( )1n −  will change to: 

  1 1 11
1 1 1

11 11 11

,    , 1T T i k i
i k ik ik k

a a aAe
e I e e Ae a a a k i

a a a

    
− − = − = − >     
    

. 

That shows, for the right lower block a rank-1 matrix is subtracted: 1
1

1 1

T

T

Ae
A e A

e Ae
− . Here the 

column vector is just the first column of 1L , so that the practical approach is the following:  

1. mark the pivot element, 

2. divide column elements below the pivot, 

3. and keep the row of the pivot unchanged.  
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4. Form the rank-1 matrix of the pivot column and pivot row and subtract it from the rest 
of A :  

 

2 0 3 12 0 3 1 2 0 3 1

4 5 2 3 2 5 4 1 2 5 4 1

6 5 4 3 3 5 5 0 3 1 1 1

1 2 0 3

                   2 1 ,     5 4 .

3 1 1 1

L U

−   − − 
    − − → − → −    
    − − − − − −     

   
   = − =   
   − −   

 

At the end of the process, the linear system is reduced to an upper triangular system 

 

1

1

1

Ux

− 
 =  
  

, 

that is easy to solve for vector [1 1 1]Tx = − . 

Pivoting is always done in numerical programs. In all columns the largest element in absolute 
value is found and moved to the diagonal position. It is done for a numerically more stable 
algorithm. Another variant is when the position of the pivot is recorded and no row 
interchanges are done. 

1.33.  Operation count of LU-decomposition  

There are 1n −  divisions in the first step by dividing the column elements. Subtracting the 
rank-1 matrix needs 2( 1)n −  multiplications and additions. The time count for the arithmetic 
operations are taken the same, therefore the operation count of the first step is: ( 1)(2 1)n n− −  
flops (= floating point operation). We get ( 2)(2 3)n n− −  flops in the next step and the total 

count is 
1

1
( 1)(2 1)

n

k
k k

−

=
− −∑  flops. The result is approximated by taking the integral of the 

highest order term from 0 to n : 32 / 3n . The additional terms are lower powers of n , we do 
not find them because the highest order term is the dominant. 

1.34. Block LU-decomposition 

Sometimes it may be practical to apply block form in the decomposition or inversion of the 
matrix. That is the case if one can separate an easily invertible block in the matrix, for 
instance, it is diagonal or triangular. Here we shall consider block LU -decomposition for a 
block 2 2× matrix. The pivot now is a block and it is assumed that it has an inverse. Let the 
block form of the unit matrix be 1 2[ , ]I E E= ,  T

ij i jA E AE= , then matrix L  below is the block 

counterpart of 1L  that can be seen in (4.2) (see also Exercise 3.14) 

 ( )1 1
1 11 1 1

TL I AE A E E− −= − −  (4.6) 

and one step of the block LU-decomposition is: 

 
1111

11 12 1 11 12
1 11 1

21 2 22 21 11 1221 22 21 11 12

0
,  where  ,   

0

A A I A A
L U

A A I A A A AA A A A A A
− −− −

     
  = =   −−     

. (4.7) 
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1.35. Schur-complement 

The right lower block in the decomposition is called the Schur-complement of matrix A  with 

respect to the block 11A , in notation: ( ) 1
11 22 21 11 12A A A A A A−= − . Of course, there also exists the 

Schur-complement with respect to the block 22A . Formally it can be found by interchanging 

indices 1 2↔ . 

1.36. Inversion by partitioning  

We can write in (4.7): 

 
( ) ( )

1
11 12 111 1 1 11 12

1 1
11 1121 11 2 21 11 2 2

0 0
,

0 0

A A AI I I A A
A

A A A AA A I A A I I

−

− −

        
= =        
        

 

from where 

 
( )

1
1

11 11 1 11 12
1 1

21 11 2112

0
.

0

A II A A
A

A A IA AI

−
−

−
− −

  −  
 =    −      

 (4.8) 

Changing  the product to block outer product form (see Problem 3.5) this can still be 
expanded into  

 ( )
11

11 111 1211
11 21 11 2

2

0

0 0

A AA
A A A A A I

I

−−
−− −   −
 = + −    

   
. (4.9)  

T4.2 Theorem on the Schur-complement in LU-decomposition 

The emerging right lower block in standard LU-decomposition is the Schur-complement with 
respect to the left upper block.  

Proof. An intermediate phase can be represented by the partitioning: 

 11 12 11 11 12

21 22 21 22 22

0

0

A A L U U

A A L L U

     
=     

     
. (4.10) 

For block 11A  the LU-decomposition is already done. The right lower block will lead to 22L  

and 22U , in fact, before decomposition at this stage we have 22 22L U  . After having done 

multiplication, we get 

 11 11 11 12 11 12 21 21 11,    ,   A L U A L U A L U= = =  (4.11) 

and 

 1 1 1
22 22 22 21 12 22 21 11 11 12 22 21 11 12L U A L U A A U L A A A A A

− − −= − = − = − , (4.12) 

and that is equal to the Schur-complement ( )11|A A .  ■ 

1.37. The Gauss-Jordan algorithm for linear systems 

It was shown in the previous chapter (Theorem T3.1) that an invertible matrix can be brought 
to the unit matrix by a series of Gauss-Jordan transforms. Applying the same series of  
transforms to the right hand side of the linear system of equations Ax b=  gives another way 
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of solution. However, LU-decomposition is preferred as the amount of work for factorizing is 
less in that case. But the solution phase needs the same amount of operations: 22n  flops.  

1.38. The Gauss-Jordan method for matrix inversion 

Though it is not suggested for solving linear system of equations, the Gauss-Jordan 
transforms need the same amount of operations for computing the inverse of A . Now one 
may get the idea to complement A  with the unit matrix: [ ],A A I→  and apply the series of 

transformations for the extended matrix: [ , ] [ , ]TA T I T= . Clearly, we have 1T A−= . Actually 
this type of matrix inversion can be done by using no more additional computer memory than 
a vector for recording permutations. 

Assume in the i -th step that we have matrix 
i

A  with the necessary row change already done. 

Then the i -th multiplication is: 

 
T T

Ti i i i i i i i i i
i i iT T T

i i i i i i i i i

Ae e Ae e A e e A
I e A A

e Ae e Ae e Ae

 −
− = − + 

 
. 

The first two terms on the right hand side is the rank-1 update that was already seen at LU-
decomposition. But now it should be applied for the whole matrix with the exception of the i -
th row and column. The third term shows that the i -th row should be divided by the pivot, - 
observe that the  i -th row from the first two term is zero. 

What has been said will be explained through an example. We should like to compute the 
inverse of the matrix: 

 

0 1 1

1 2 3

1 3 6

 
 
 
  

 

The first step is swapping the first two rows in the extended matrix: 

 
1

1 2
sorcsere

0 1 1 1 0 0 1 2 3 0 1 0

1 2 3 0 1 0   0 1 1 1 0 0  

1 3 6 0 0 1 1 3 6 0 0 1

Tr

↔

  
   →  
     

 

After the first transformation step the first column goes into 1e , the first row is divieded by 

the pivot and the subtraction of the rank-1 matrix is done at the other places. The further steps 
are done similarly: 

 
2 3

1 2 3 0 1 0 1 0 1 2 1 0 1 0 0 3 / 2 3 / 2 1/ 2

0 1 1 1 0 0   0 1 1 1 0 0   0 1 0 3 / 2 1/ 2 1/ 2

0 1 3 0 1 1 0 0 1 1/ 2 1/ 2 1/ 20 0 2 1 1 1

Tr Tr

   − − − 
     → → → −     
     − − −− −    

. 

After the last step the inverse can be found at the place of the starting unit matrix. 

Of course, we may modify the algorithm such that no more memory is needed. We just have 
to observe that one can collect here a unit matrix in all phases of computation that need not be 
stored.  After all transformation steps a new vector appears in the field of the right 3×3 matrix 
(initially the unit matrix) and a unit vector comes into the place of a column in the left 3×3 
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matrix field (initially the starting matrix). We proceed in the concise algorithm as follows: 
write the incoming vector on the right side into the place of the incoming unit vector at the 
left side. Then the new vector from right at the place of the i th unit vector will be 

 ( ) ( )

1/ ,     ,

/ ,   

T

i i iTi i i i i i
i i i i iT T

ji iii i i i i i

e Ae j iAe e Ae e
I e e e

a a j ie Ae e Ae

 = − − 
− = − =   − ≠  

 

Now the pivot should be replaced by its reciprocal, the other elements of the column get 
negative sign and are divided by the pivot. The rank one updating is the same as before. The 
marked element shows the pivot and that defines the row and column of the rank-1 matrix. 
Now the concise algorithm is: 

 

  1 2
row change 1 2 3

    1 2
column change

1 2 30 1 1 1 2 3 1 2 1

1 2 3   0 1 1   0 1 1   0 1 1  

1 3 6 1 3 6 1 1 3 1 1 2

3/2 -3/2 -1/2 -3/2 3/2 -1/2

 1/2 3/2 -1/2   3/2 1/2 -

-1/2 -1/2 1/2

Tr Tr Tr
↔

↔

     − 
       → → → →      
       − − −      

 
 → → 
  

1/2  .

-1/2 -1/2 1/2

 
 
 
  

 

Because of the initial row change we  have inverted matrix AΠ , where Π  is a permutation 
matrix. Its inverse is 1 TA− Π , because 1 T−Π = Π . Consequently, the result still should be 
multiplied by TΠ  from the right,  that is the  1 2↔  column change.  

1.39. Problems  

4.1. Using LU-decomposition, solve the following linear system: 

 

2 2 3 1

4 3 7 5 .

6 7 5 3

x

   
   =   
   −   

 

4.2. Find the operation count for 1 1,   ,   Ax LUx U L x− − . The factorizations given in Section 
3.11 may be applied for the last case. 

4.3. Using Problem 3.15, show that the matrix of (4.6) can be inverted by taking the negative 
of the block 21. Similar result for the upper triangular case can be found by transposition. 

4.4. Let 11L  be a lower triangular matrix, which is complemented by a block row [ ]21 22L L  

to a larger lower triangular matrix. Assuming that the diagonal blocks are invertible, apply the 
partitioned inverse to get 

 11

22 11 22

1 1
11

1 1 1
21 22 21

LL

L L L L L L

− −

− − −

  
=    −    

. 

4.5. By using the block partitioned form, check the determinant identity ( )11 11A A A A= . 

4.6. With the aid of the previous problem, check the identities 

 
1

1
T

T Tb
b a I ab

a I

 −
= + = + 

 
. 
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Compare it with the approach given in Example E3.3!  

4.7. What is the dominant term in the operation count of the Gauss-Jordan factorization? 

4.8. 

2 2 1 0 3

4 1 3 1 2
,   ,    ,   .     ?,   ?   ?

2 1 0 2 2

6 3 2 2 0

A b A LU Ax b L U x

− −   
   − − −   = = = = = = =
   − − −
   

−   
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Some properties of LU-decomposition, special inverses 

 

1.40. Symmetric positive definite matrices 

A real symmetric matrix A  is said positive definite, if 0T
x Ax >  holds for all vectors 0x ≠ . 

The matrix is positive semidefinite, if 0T
x Ax ≥  holds. The concept of negative definiteness 

and negative semidefiniteness can be introduced similarly: 0T
x Ax <  or 0T

x Ax ≤  hold 
respectively. In the case of indefiniteness the inner product may assume negative and positive 
values. 

One can give two other equivalent definitions for the property of positive definiteness. One is 
that all eigenvalues of the matrix are positive, the other has the condition that all principal 
minors (determinant of left upper symmetric blocks of increasing order) are positive. A 
semidefinite matrix has zero eigenvalue and zero principal minor. 

We say a nonsymmetric matrix positive definite, if its symmetric part is positive definite. The 
symmetrix part of a matrix is ( ) / 2T

A A A+ = +  and the anti-symmetric part is 

( ) / 2T
A A A− = − , A A A+ −= + . Observe, that the inner product of the anti-symmetric part is 

always zero: 0T
x A x− = . 

If we choose 
i

x e= , then it follows from the definition that 0
ii

a >  holds for all i  at real 

symmetric positive definite matrices and in case of 
i j

x e e= ± , it can be checked easily that 

2 0
ii jj ij

a a a+ ± >  must fulfill. Sometimes these simple conditions are useful to decide quickly 

if a matrix is positive definite at all. For instance, if all the diagonal elements are equal to 
zero, and if there are nonzero nondiagonal elements, then it can be seen at once that the matrix 
is indefinite. 

T5.1 Theorem for sufficiency for positive definiteness  

If the matrix has the form T
A V V= , where the columns of V  are linearly independent, then 

A  is positive definite. 

Proof. By definition, we must have 
2

2
0T T T

x Ax x V Vx Vx= = >  for all nonzero x , and 0Vx ≠ , 

if V  has independent columns.   ■ 

T5.2 Theorem on preserving positive definiteness in LU-decomposition 

If matrix A  is positive definite then this property is preserved in LU-decomposition, in other 
words: after each step positive definiteness is inherited in the remaining lower right block. 
The statement is also true for block LU-decomposition. 

Proof. Let a block form of A  be 

 ( )11 12 1
11 22 21 11 12

21 22

,     |
A A

A A A A A A A
A A

− 
= = − 
 
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and after one step of block LU-decomposition the remaining block is the Schur-komplement 

( )11|A A . It has to be shown that for all nonzero vectors 2x  the relation ( )2 11 2| 0T
x A A x >  

holds. To show the statement, we choose a partitioned vector ( )1 2,T T Tx x x=  such that 

( )2 11 2|T T
x Ax x A A x= . We can achieve this task by choosing 1x  to 2x  such that the first row 

gives zero: 11 1 12 2 0A x A x+ = . With this 1
1 11 12 2x A A x

−= −  and 

 1
1 2 2 22 21 11 12 2

21 1 22 2

0
0 ( )T T T T

x Ax x x x A A A A x
A x A x

− 
 < = = −   + 

 . 

 ■ 

Remarks. That positive semidefiniteness is also inherited can be shown in a similar way. 

T5.3 Theorem on decomposition of positive semidefinite matrices 

If matrix A  is positive semidefinite , then it can be decomposed in the form T TA PLL P= , 
where P  is a permutation. 

Proof. We have seen, all diagonal elements of A  may only be nonnegative. If 11 0a >  holds, 

then compute 

 1 1
2

1 1

,
T

T

Ae e A
A A

e Ae
= −  (6.1) 

which has zero first row and column. Choose 1 1 11/Le Ae a=  for the first column of L  then 

we may write 2 1 1
T

A A Le e L= − .  

If the first diagonal element is zero, then look for a nonzero in the diagonal and move it to the 
first position by interchanging rows and columns with the same indices. That makes possible 
to proceed as done in (6.1).  

Continue procedure for the remaining smaller right lower block until we can find a nonzero 
diagonal element. Thus we gain a new column in matrix L  at all steps. If we arrive to a stage 
where all diagonal elements are zero then the whole block has to be zero.  That can be seen 
from the remark just before Theorem 5.1.1 where it was stated that a symmetric matrix having 
a zero diagonal and nonzero elements at other positions should be indefinite, and that would 
contradict to the preservation of semidefiniteness.  

Observe that no interchanges of rows and columns are needed if the matrix is positive 
definite. If P  is not unity then we may write TA LL= ɶ ɶ , where L PL=ɶ .   ■ 

For symmetric, positive definite matrices, we call the decomposition TA LL=  Cholesky-

decomposition. Now the diagonal elements of L  are not 1’s, e.g. the first element of 

1 1 11/Le Ae a=  is 11a . The Cholesky-decomposition can be done similarly to LU-

decomposition, the difference is that we have to take square root and the corresponding row 
and column should be divided with it. In a computer algorithm we can exploit the fact that the 
upper triangle need not be computed hence the operation count is roughly halved. 



                                                                              39 

E5.1 Example for Cholesky-decomposition 

 

24 2 2 2 1 1 2

2 10 7 1 9 6 1 3 2 1 3 ,

2 7 21 1 6 20 1 2 16 1 2 4

2 2 1 1

                   1 3 ,     3 2 .

1 2 4 4

T
L L

     − − 
      − − → − − → − − → −      
      − − − −      

−   
   = − = −   
   −   

 

As seen, subtraction of rank-1 matrices are done similarly to LU-decomposition. 

1.41. Diagonal-dominance 

A matrix is said diagonally dominant by rows if in each row the absolute sum of nondiagonal 
row elements is less than the absolute value of the diagonal element: 

 ( diag( ))T

ii i
a e A A

∞
> − , 

where diag( )A D=  denotes the diagonal matrix formed from the diagonal elements of A . 
The matrix is said essentially diagonally dominant  if the sign ≥  is allowed in some nonzero 
rows but not in all rows. The definition of diagonal dominance with respect to columns can be 
done similarly.  

T5.4 Theorem, diagonal-dominance is inherited in LU-decomposition 

If A  is diagonally dominant by rows, then in all steps of LU -decomposition the right lower – 
still not decomposed – block will preserve diagonal dominance. In other words, the Schur-
complement inherits diagonal dominance. 

Proof. It is enough to check the first step because all subsequent steps are similar. Introduce 
the partitioned form 

 11

22

T
a b

A
c A

 
=  
 

. 

After the first step of LU-decomposition, the right lower block can be expressed as 

 22 1 11
11 22

,   -th row:  /
TT

T T

k k

bcb
A k e a b a

a A

 
− − 

 
. 

Initially the k-th row was diagonally dominant. Now the first element 1k
a  is left out from this 

row –  this still improves diagonal dominance but the row 1 11/T

k
a b a  is added.  Observe that  

 1 1 11/T

k k
a a b a

∞
>  

holds because of the diagonal dominance of the first row, that is, the absolut sum of the 
elements of b divided by 11a is less than 1. Therefore the added row has smaller absolute sum 

than the absolute value of the cancelled element 1k
a , hence the diagonal dominance still 

improves unless 1k
a  is zero. The situation is similar in the following steps.  ■ 



40 Hegedüs: Numerical Methods I. 

A consequence of the theorem is that the diagonal element can always be chosen as a pivot, 
hence no pivoting will be  needed in the LU-decomposition.  

1.42. Bi- and tridiagonal matrices 

1.42.1 Special matrices 

We have a bidiagonal matrix if there are nonzero elements only in the diagonal and one of the 
codiagonals (a diagonal next to the main diagonal): { } { }0,   0,1 ,   or  0, 1ija j i j i≠ − ∈ − ∈ − . A 

special representative is the difference matrix: 

 1

1 1

1 1 1 1
,     .

1 1 1 1 1

K K S
−

   
   −   = = =
   
   

−   

⋱ ⋱ ⋮ ⋮ ⋱

⋯

 

Its inverse is just the summation matrix. With the help of these two matrices, it is easy to give 
the inverse of the frequently used matrix  

 

2 1

1 2
    

1

1 2

T

− 
 − =
 −
 

− 

⋱

⋱ ⋱
. (6.2) 

In fact, we have:  

 ( ) ( ) ( )
11 11 1 1,

1

T
T T T T T T ee

T K K K S S K K I ee K K I K
n

−− −− − − − − 
 = + = + = + = −   + 

 (6.3) 

where e  is a vector having all elements 1. Now it is possible to give an algorithm for the 
computation of 1

T x
−  with operation count 4n  for n -dimensional problems. 

1.42.2 Diagonally dominant tridiagonal matrices 

As we have seen it before, this time pivoting is not needed in the LU-decomposition. If it is 
done in a standard way then solving a linear system of order n  has operation count essentially 
9n  flops. However, for tridiagonal matrices there exist two methods, where 8n  flops are 
enough. We give these two algorithms in the sequel. The first method may be called fast LU-

decomposition. Let us choose the form of the tridiagonal system as: 

 

1 1 1

1 2 2

1

1

.
n

n n n

d c b

a d b
Tx x

c

a d b

−

−

   
   
   = =
   
   
   

⋱

⋱ ⋱ ⋮
 (6.4) 

The first LU  step will introduce changes only in the second row: 

 [ ]1 1 2 1 1 1 2 2 1 1 1/ / 0 / .a d d a c d c x b b a d− = −…  

The result is a new tridiagonal matrix of size one less, for which the procedure may be applied 
repeatedly. Continuing, finally the pivots and  right vector elements can be given as: 
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 1 1 1 1 1

1 1 1 1 1

;  / ,    2,3, , ,

;   / ,    2,3, , .
i i i i i

i i i i i

d d d d a c d i n

b b b b a b d i n

− − −

− − −

′ ′ ′= = − =

′ ′ ′ ′= = − =

…

…
 (6.5) 

Matrix U  is upper bidiagonal and the system to solve is: 

 

1 1 1

2 2
1

1

0
,     / ;  ( ) / ,   1, 2, ,1.

0

n n n i i i i i

n

n n

d c b

d b
x x b d x b c x d i n n

c

d b

+
−

   
   ′ ′
    ′ ′ ′ ′= = = − = − −
   
   ′ ′   

⋱
…

⋱ ⋱ ⋮
 

As we see, matrix L is not needed for the solution, on the other hand, we have 1 1/
i i

a d− −′  in 

both lines of  (6.5) and that can be computed only once. The algorithm: 

        

1 1 1 1

1 1 1 1

1

Start:  ;   ;

for   2,3, ,

      : / ;    : * ;       : * ;

: / ;

for   1, 2, ,1

      : ( * ) / ;

i i i i i i i i

n n n

i i i i i

d d b b

i n

s a d d d c s b b b s

x b d

i n n

x b c x d

− − − −

+

′ ′= =

=

′ ′ ′ ′= = − = −

′ ′=

= − −

′ ′= −

…

…

 

The other way – passage method – starts from the recursion of the second phase: 

 1.i i i i
x f g x += −  

From the first row: 1 1 1 2 1( ) /x b c x d= − , from here 1 1 1/f b d=  and 1 1 1/g c d= . Substituting the 

formula for 1i
x −  into the i -th row gives 

 1 1 1 1( ) ,
i i i i i i i i i

a f g x d x c x b− − − +− + + =  

from here 

 1 1
1 1

1 1 1 1

,i i i i
i i i i i

i i i i i i

b a f c
x x f g x

d a g d a g

− −
+ +

− − − −

−
= − = −

− −
 

and that helps to identify 
i

f  and 
i

g . We have the following algorithm: 

        

1 1 1 1 1 1

1 1 1 1

1

Start:  / ;   : / ;

for   2,3, ,

      : ;    : ( ) / ;       : / ;

 : ;

 for  1, 2, ,1

      : * ;

i i i i i i i i i

n n

i i i i

f b d g c d

i n

s d a g f b a f s g c s

x f

i n n

x f g x

− − − −

+

= =

=

= − = − =

=

= − −

= −

…

…

 

1.43. Problems 

5.1. We have the Cholesky-decomposition TA LL= . Give the operation count for computing 
T

x Ax  if matrix A  is used in the computation! How can we decrease the number of operations 
if T T

x LL x  is used? 
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5..2. We can avoid square roots, if we use the form TA LDL= , where L  has unit diagonal and 
D  is a diagonal matrix. Elaborate the steps of this decomposition! This method can also be 
used for indefinite matrices if the pivot elements in D  happen to be large enough. 

5.3. Show that the row diagonal dominance is preserved if the matrix is multiplied from the 
left by a nonsingular diagonal matrix. Also, it is preserved if two rows and columns with the 
same row and column numbers are interchanged. 

5.4. Show that for the  LU-decomposition of essentially diagonally dominant matrices (by 
row): strict diagonally dominance takes place in the j th step for the k-th row, if there was 

strict diagonal dominance in the j -th row and the element ( ) ,   j

jka j k<  was not zero. 

5.5. Show that diagonal dominance by columns is also inherited in LU-decomposition. 

5.6. If we are given a new right vector b , which data should be preserved and which data 
should be recomputed in both algorithms (fast LU and passage)? 

5.7. Prove that the tridiagonal matrix in  (6.2) is positive definite, because it has a TLL -
decomposition. 

5.8. 

4 2 4 4

2 10 5 5
,  ?  

4 5 9 3

4 5 3 22

T
LL L

− − 
 − −  = =
 − −
 
− − 
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Gram-Schmidt orthogonalisation, QR-decomposition 

 

Among simple transformations of linear algebra we have already seen projection matrices in 
Chapter 3. Such matrices are capable of generating orthogonal vectors from a set of vectors. 
Arranging these vectors into columns of matrices will lead us to a newer, called QR-
decomposition of matrices.  

1.44. Gram-Schmidt orthogonalisation 

Assume we have a set of linearly independent vectors: 1{ } ,   k m

i i i
a a= ∈ℝ .  We should like to 

generate an orthogonal system by using these vectors such that they form a base for 
expanding all vectors 

i
a . Then we can proceed as follows. Denote the new orthogonal vectors 

by q . 

Choose 1 1q a=  in the first step. The next vector is prepared so that vector 2a  is 

orthogonalised to 1q  with the aid of an orthogonal projection: 

 1 1
2 2

1 1

T

T

q q
I a q

q q

 
− = 

 
. (6.1) 

It easy to check: 1 2 0T
q q = . Then the next vector 3a  is orthogonalised to 1q  és 2q : 

 2 2 1 1
3 3

2 2 1 1

T T

T T

q q q q
I I a q

q q q q

  
− − =  

  
. (6.2) 

Once again, checking orthogonality by computing the scalar product, gives the result: 1 3q q⊥  

and 2 3q q⊥  hold. Now introduce the projection matrix  

 
T

i i
i T

i i

q q
P I

q q
= −  (6.3) 

for the i -th vector. As we have seen it before, if we multiply a vector with this matrix, the 
result is a vector orthogonal to 

i
q .  

We conclude that the 1i + -st orthogonal vector can be generated from 1i
a +  by the series of 

projections: 

 1 1 1 1i i i i
PP Pa q− + +=… . (6.4) 

Observe that the order of the projection matrices here is arbitrary because of the orthogonality 
of the applied vectors. In fact, the identites 

 1 1
11

T Ti i
j j j j

i i T T
jj j j j j

q q q q
PP P I I

q q q q
−

==

 
= − = −  

 
∑∏… , (6.5) 

hold, the proof of which is left to an exercise. It shows that there are two possibilities 
numerically for performing orthogonalisation. In the first one, we use the summation formula 
of the above equation. Then all 

j
q  will form a scalar product with vector 1i

a +  and (6.4),  (6.5) 

will lead to: 
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 1 1
1 1 1 1

1 1

,      
T Ti i

j j i j j i

i i i iT T
j jj j j j

q q a q q a
q a a q

q q q q

+ +
+ + + +

= =

= − → = +∑ ∑ , (6.6) 

that is,  every 1i
a +  can be expanded with the aid of the orthogonal vectors, where the 

expansion coefficients are  

 1
, 1

T

j i

j i T

j j

q a
r

q q

+
+ = . (6.7) 

3If we apply in (6.4) the matrix product form, then we compute the following series of 
vectors: 

 1 1 2 1 1 1 1 1,   ,   ,  ,   
i j j j i i

z a z Pz z P z q z+ + + += = = =… . 

Expanding the projection matrices leads to the different formula 

 , 1

T

j j

j i T

j j

q z
r

q q
+ = . (6.8) 

The first approach with summation is called the classic Gram-Schmidt (GS) 

orthogonalisation, and the second one with the matrix product form is said the modified 

Gram-Schmidt orthogonalisation. Björck (1964) had shown the modified GS method has 
better numerical properties. According to more recent results, both methods are equally good 
if orthogonalization is done twice at all steps. Then the resulting normed vectors are 
orthogonal to machine accuracy. 

T6.1 Theorem, QR-decomposition 

Assume m nA ×∈ℝ , where the columns of A  are linearly independent. Then A  can always be 
decomposed as  

 A QR= , (6.9) 

where the columns of Q  are mutually orthogonal and R  is an upper triangular matrix. The 
columns of Q  and R  can be built up recursively beginning with the first columns. 

Proof. The condition n m≤  is necessary, otherwise the columns of A  may not be linearly 
independent. Assume matrix A  is composed of the column vectors 1 2, , ,

n
a a a…  and apply the 

GS orthogonalisation given in the previous Section. Comparing (6.6) and  (6.7), we find that: 

 
1

1 , 1 1, 1
1

,   where  1
i

i j j i i i

j

a q r r
+

+ + + +
=

= =∑ . 

Having matrices 1 2 1 2[ , , , ],   [ , , , ]
n n

A a a a Q q q q= =… …  this is nothing else than the i+1-st 

column of (6.9), where [ ]
ij

R r= . In GS orthogonalisation the elements ,   
ij

r i j>  were not 

defined. They are not needed anyway, such that taking them zero, (6.9) holds exactly.   ■ 

E6.1 Example for  QR-decomposition 

The non-normalized version of QR-decomposition will be done for 
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 [ ]1 2 3

1 1 1

2 1 3

1 1 2

2 1 1

A a a a

− 
 
 = =
 −
 
 

. 

At start 1 1q a=  and 1 1 10T
q q = . For the next vector 1 2 6T

q a =  and 

 1 2
2 2 1

1 1

1 1 2

1 2 16 1

1 1 210 5

1 2 1

T

T

q a
q a q

q q

     
     −     = − = − =
     
     

−     

. 

The next divisor is 2 2

10 2

25 5
T

q q = = , but this result can also be computed observing that 

( )2

1 21 2 1 2
2 2 2 1 2 1 2 2

1 1 1 1 1 1

36 2
4 .

10 5

TT T
T T T T

T T T

q aq a q a
q q a q a q a a

q q q q q q

  
= − − = − = − =  
  

 For the third vector 

1 3 5T
q a =  and 2 3 2T

q a = − , with these the third vector and the QR -decomposition are: 

 1 3 2 3
3 3 1 2

1 1 2 2

1 1 2 1

3 2 1 21 2 5 1

2 1 2 12 2 5 2

1 2 1 2

T T

T T

q a q a
q a q q

q q q q

−       
       −⋅       = − − = − + =
       − −⋅
       

− −       

, 

 

1 2 / 5 1/ 2 1 2 1
1 3 / 5 1/ 2 1 3 / 5 1/ 2

2 1/ 5 1 2 1 2
0 1 5 0 1/ 5 1

1 2 / 5 1/ 2 1 2 1
0 0 1 0 0 1/ 2

2 1/ 5 1 2 1 2

A

   
      − −      = − = −      − −         − − − −   

. 

 

1.45. The Arnoldi method 

It is GS orthogonalisation for the vectors of the Krylov-base. The vectors of the Krylov-base 
are  2, , ,x Ax A x… , where 0x ≠ , otherwise arbitrary starting vector. Then the first vector in 

the Arnoldi method is 1 2
/q x x= , and the next vector 2q  is generated by orthogonalizing 

1Aq  to 1q . In general, 1i
q +  comes from the orthogonalisation of 

i
Aq  to vectors 

, 1,2, ,
j

q j i= … , finally the result is normed to 1. It can be shown that vectors 
j

q  will span the 

same subspace than that of the vectors in the Krylov-base. This procedure will lead to the 
QR -decomposition: 

 [ ] [ ]1 1 2 1 2 1i iq Aq Aq Aq q q q R+=… … , (6.10) 

where R  is an upper triangular matrix. Usually the first 1q  vector is omitted in this scheme on 

the left side. That means to leave out the first column of R  on the right side. But in order to  
have a square matrix in place of R , its last row will be written separately. Denote the 
remainder matrix by H . Then after collecting vectors 

j
q  into matrix Q , we get 
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 [ ]1 2 1, 1,    T

i i i i iQ q q q AQ QH h q e+ += = +… , (6.11) 

where H  is called an upper Hessenberg matrix. Such matrices are close to triangular  
matrices with the difference that subdiagonal elements are also not zeros. Multiplying the 
system by 

i
e  from the right, we get a recursion for the computation of 1i

q + : 

 1, 1
1

,    
i

T

i ji j i i i ji j i

j

Aq h q h q h q Aq+ +
=

= + =∑ , (6.12) 

where 1,i i
h +  comes from the condition that 1i

q +  is normed. If 1, 0
i i

h + =  holds, then the recursion 

breaks down. In case of i n< , the columns of Q  will then give an invariant subspace of A . 

1.46. QR -decomposition of A  with Householder reflections 

We have seen in Problems 3.13 and 3.14 that elementary reflections can be used to reflect two 
vectors of the same length into each other. It will be shown here that QR -decomposition can 
also be realized by the series of orthogonal reflections. Such an elementary reflection can be 
given by the matrix 

 
2

2

( )( ) ( )( )
( ) 2

( ) ( )

T T

T T

r s r s r s r s
R r s I I

r s r s r r s

− − − −
− = − = −

− − −
  (6.13) 

where 
2 2

r s= , ( )R r s s r− =  and ( )R r s r s− = . According to Householder’s idea, the first 

column 1a  of A  is reflected into 1 1eσ  in the first step, where 1 1 2
aσ = . In order to avoid 

cancellation, the sign of 1σ  is chosen such that in the denominator of 1 1 1( )R a eσ− , the 

number 1 1 1 1 11
T

e a aσ σ− = −  be larger, that is, 1 11 1 2
sign( )a aσ = −  holds. If eventually 1a  is 

zero then there is no reflection. 

The algorithm: The first column of 2 1 1 1( )A R Ae e Aσ= −  after the first step is 1 1eσ . Next 

reflect 2 2tril( )A e  into – 2 2eσ  in a similar way. In other words, we do the same as in the first 

step, but for the right lower block only. The tril function was introduced in Sect. 3.9. Now the 
first two columns of the upper triangular matrix is ready. Generally in the i -th step the 
reflection for 

i
A  can be given by  

 ( )1 tril( ) ,i i i i i iA R A e e Aσ+ = −  (6.14) 

where tril( )
i i

A e  is reflected into 
i i
eσ . Denote by TQ  the product of the elementary reflections 

– the product of orthogonal matrices is also orthogonal – then one gets  

 TQ A R= . (6.15) 

Now ,n kR ∈ℝ  is an upper triangular matrix, where the diagonal elements are not necessarily 
positive, moreover, in case of k n< , there is a zero block below the upper triangular part. 
Observe that now ,n nQ ∈ℝ , that is, the columns of Q  form a base . 

1.47. QR -decomposition with 2 2×  rotations 

It is known that the counterclockwise rotation in the plane with an angle α  can be given by 
the matrix 
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cos sin

sin cos

α α

α α

− 
 
 

, 

which is also orthogonal. Now all vectors in the plane can be rotated into the direction of the 

x -axis, in other words, in the direction of vector [ ]1 0
T

. If we have vector 1 2[ ]T
x x x= , 

then 

 

1 2 2 1

2 2 2
2 1 2 11 2 2 1

1 2

2
1 21 2

1 /1 1
/ 11 ( / )

/ 11
1 /1 ( / )

x x x x
F

x x x xx x x x

x x

x xx x

   
= =   − −+ +   

 
=  −+  

 (6.16) 

Is such a matrix. We have given more options. The first one is the simplest for checking that 
the rotation is right. The other two options can be applied in numerical computations. The 
choice is that the ratio in the formulae be less that 1 There exist arrangements in numerical 
algorithms, where square root multipliers are collected in a diagonal matrix in order to have a 
better operation count. 

Applying more 2 2× -es rotations, it is possible to bring an n -dimensional vector into the 
scalar multiple of 1e . Now the 2 2×  rotation matrix is imbedded in a unit matrix of order n . 

Let ( , )F i j  be such that the elements in the positions ,  ,  ,  ii ij ji jj  are overwritten by the 
elements of the 2 2×  rotation matrix. Then the series of rotations can be given so that 

 12
(1,2) (1,3) (1, )F F F n x x e=…  (6.17) 

holds. In this way it is possible to bring n kA ×∈ℝ  into an upper triangular matrix as it was 
seen for Householder reflections. 

1.48. Problems  

6.1. Prove formula (6.5)! 

6.2. Show that , 1j i
r + ’s of  (6.7) and (6.8) are equal! 

6.3. Collect the orthogonal vectors into matrix 1 2[ ]
i

Q q q q= … . Derive the formula: 

1 1i i
PP P− =…  ( ) 1

.T TI Q Q Q Q
−

= −  

6.4. Let matrix m nA ×∈ℝ  have linearly independent columns. Check that ( ) 1
T TI A A A A

−
−  is 

also a projection and applying it to a vector, the resulting vector will be orthogonal to all 
columns of A . 

6.5. One can elaborate the variant of GS orthogonalisation, when the 
j

q ’s are normed 

vectors, 
2

1
j

q = . Rewrite formulas for that case! 

6.6. Having a QR -decomposition of A , how can we solve the linear system Ax b= ? 

6.7. Make the QR -decomposition of   

2 6 5

1 4 1

1 2 3

 
 − − 
 − − − 

. 
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6.8. Let the starting vector x  be the sum of three eigenvectors of A  having different 
eigenvalues. How many new vectors can be generated by the Arnoldi method? 

 



                                                                              49 

The eigenproblem of matrices 

 

In this problem we are looking for an eigentriple ( , , )y xλ , for which 

 ,         T TAx x y A yλ λ= =  (7.1) 

hold, where λ  is the eigenvalue of matrix n nA ×∈ℝ , x  is the  right and y  is the left 

eigenvector. The eigenvalues are the roots of the characteristic polynomial I Aλ −  and 

I Aλ −  is singular if λ  is an eigenvalue. It can be seen from the determinant that the 
similarity transform of the matrix has the same characteristic polynomial: 

1 1 1( )I S AS S I A S S I A S I Aλ λ λ λ− − −− = − = − = − , therefore the eigenvalues are 

invariant under the similarity transform. 

We usually consider real matrices. But real matrices may also have complex eigenvalues and 
eigenvectors, so that complex cases should also be considered. 

1.49. Some properties 

Below we recall some basic knowledge on eigenproblems. 

T7.1 Existence of eigenvectors 

To each eigenvalue 
i

λ , there exist at least one left and one right eigenverctor. 

It is because the null spaces of 
i
I Aλ −  and T

i
I Aλ −  have at least dimension 1 due to 

singularity of the matrices.  ■ 

T7.2 Linear independence 

The eigenvectors belonging to different eigenvalues are linearly independent. 

If having an eigenvector u , the Rayleigh quotient  

 ( )
H

H

u Au
H u

u u
λ= =  (7.2) 

returns the belonging eigenvalue. Observe that multiplying the eigenvector with a nonzero 
scalar does  not change the eigenvalue. Now assume indirectly that there are two different 
eigenvalues and they have eigenvectors which are linearly dependent. But then they have the 
same direction such that the Rayleigh quotient should return the same eigenvalue and that is 
contradiction. Having one eigenvector, now one concludes that it is linearly independent from 
all other eigenvectors of different eigenvalues and that is true for all eigenvectors.   ■ 

T7.3 Orthogonality of left and right eigenvectors 

Let 
i

v  be the left eigenvector to 
i

λ  and let 
j

u  be the right eigenvector to 
j

λ , i j≠ . Then 

0T

i jv u =  holds. 
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Proof. Consider the following equations: T T T

i j i i j j i jv Au v u v uλ λ= = , where the left and right 

eigenvector relations were applied. As a consequence ( ) 0T

i j i jv uλ λ− =  holds, and the 

statement follows because of 
i j

λ λ≠ .       ■ 

C7.1 Corollary 

If all eigenvalues are different, then arranging the eigenvectors into matrices as 

1 2[ ]
n

X x x x= …  and 1 2[ ]
n

Y y y y= … , we have the following relations:  

 ,     H HAX X Y A Y= Λ = Λ . (7.3) 

Because of linear independence of the columns, X  and Y  are invertible, and 
1 H HX AX Y AY− −= Λ =  hold, where the inverse of the adjungate is denoted by H−  in the 

exponent. We have 1HDY X −= , where D  is a nonsingular diagonal matrix for scaling the 
length of the 

i
y  vectors. Without restriction of generality, we may write: 1TY X −= , as the 

length of the eigenvectors is arbitrary. The form given in (7.3) shows that now the matrix can 
be brought to diagonal form by similarity transformation. 

T7.4 Schur’s theorem 

Square matrices can be brought to upper triangular forms by unitary similarity transform. 

Proof. Denote by ( ) 2 /H HR u I uu u u= −  a Householder reflection matrix. Let 1x e≠  be a 

normed eigenvector: 
2

1x = , that can be scaled so that the first element is a real non-positive 

number. (It can always be done if the vector is multiplied with the nonzero number 1 1/x x− .) 

Then 1e  and x  are reflected into each other: 1 1( )R x e e x− =  and 1 1( )R x e x e− = . Assuming 

Ax xλ= , we get 

 1 1 1 1 1 1( ) ( ) ( ) ( ) .R x e AR x e e R x e Ax R x e x eλ λ− − = − = − =  

The matrix 1( )R x e−  is involutory (its inverse is the same), hence a unitary similarity 

transform was done, where the first column went into 1eλ . In other words, the upper 

triangular form appeared in the first row and column. Continuing the procedure for the right 
lower blocks, finally we end up with the desired triangular form.  ■ 

Remarks. If 1x e= , then the first column of A  already has the 1eλ  form. The scaling applied 

for x  ensures that the reflection matrix exists. Having an eigenvector at hand, the above 
method also serves as a method of deflation, because we get a matrix of size 1 less in the right 
lower corner, that has the remaining eigenvalues of the starting matrix. 

With the help of Schur’s theorem, some further important statements can be proved. 

T7.5 Theorem, diagonalisability with unitary similarity transform 

Matrix A  is normal ⇔  A  can be diagonalised by a unitary similarity transform. 

Proof.  Recall that n nA ×∈ℂ  is said normal, if H HAA A A=  holds. 

⇐  : Assume H
A U U= Λ , then H H H H H H H

AA U U U U U U U U U U A A= Λ Λ = ΛΛ = Λ Λ = . 
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⇒  : It is easy to check: if A  is normal, then any unitary similarity transform of it is also 
normal. From Schur’s theorem let H

B U AU=  be upper triangular, then normality is 
preserved: H HBB B B= . Now consider here the element in the 1,1 position: 

 
2 2 2 2

1 1 1 1 1 1 1 1122
1

n
T H H T H

j

j

e BB e B e b e B Be Be b
=

= = = = =∑ , 

That is, the 2-norms of the first row and first column in matrix B  are equal. But this is 
possible only if 1 0,   2, ,

j
b j n= = …  hold. Continuing the procedure for the one less right 

lower block, we arrive to a diagonal matrix B .    ■ 

A corollary of the theorem is that real symmetric and complex Hermitian matrices can be 
diagonalized by orthogonal or unitary similarity transform respectively. It is straightforward 
by taking the complex conjugate of the Rayleigh quotient to check that the eigenvalues of 
such matrices are always real. 

T7.6 Theorem 

Let y  and x  be the left and right eigenvectors belonging to a single eigenvalue. Then their 

scalar product must be nonzero: 0Hy x ≠ . 

Proof. Bring the matrix by unitary similarity transform to upper triangular form: H
B U AU= . 

Then the eigenvectors go into vectors Hy U y→  and H
x U x→ , from where it is seen that 

their scalar product remains the same. Without restricting generality, assume that B  has the 
form 

 
0

T
b

B
C

λ 
=  
 

, 

where λ  is the eigenvalue to eigenvectors x  and y . After having been transformed, x  goes 

into 1e , and for the left eigenvector choose the form 2
H Hy U yη =   . If multiplying B  with 

this from the left, then the eigenvalue equation is 

 2 2 2
0

T

H T H Hb
y b y C y

C

λ
η ηλ η λ η

 
     = + =      

 
, 

from where 2 2
T H H

b y C yη λ+ = . If Hy xη =  would be zero, then the right lower block C  

would have λ  as an eigenvalue. And that contradicts the fact that λ  is a single eigenvalue.
   ■ 

D7.1 Jordan-blocks 

The matrix of the form  

 

1

( )
1

k k
J

µ

µ
µ

µ

×

 
 
 = ∈
 
 
 

⋱
ℂ

⋱
 (7.4) 
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is called a Jordan block. It is the protptype of matrices that is not diagonalizable by similarity 
transform. Its characteristic polynomial can easily be found as ( ) ( )k

I Jλ µ λ µ− = − , that is, 

λ µ=  is a root of multiplicity k . The characteristic matrix ( )I Jλ µ−  has rank loss only 1 at 
λ µ= , because the subdeterminant belonging to the left lower corner element is just the 
product of 1− ’s in the superdiagonal, therefore there exist a full rank submatrix of order 1k − . 
As a consequence, there exists only one right and left eigenvector 1e  and T

k
e , such that their 

scalar product is 0, if  1k > .  

The multiplicity of the eigenvalue in the characteristic polynomial is said algebraic 

multiplicity and it is denoted by 
A

m . The eigenvectors belonging to an eigenvalue form a 

subspace. That subspace is called the eigenspace and its dimension is said the geometric 

multiplicity 
G

m  of the eigenvalue.  The Jordan block above has 
A

m k=  and 1
G

m = . 

It is mentioned here without proof that every matrix can be brought to Jordan canonical form 

by similarity transform, where one or more Jordan blocks belong to each eigenvalue and these 
Jordan blocks are in the diagonal. A Jordan block may have size 1, for instance, single 
eigenvalues have 1 1×  blocks. Now it is easy to see that the characteristic matrix has rank loss 

G
m  for an eigenvalue and it is equal to the number of Jordan blocks. But the algebraic 

multiplicity 
A

m  is equal to the sum of the belonging Jordan block sizes. 

1.50. Localization of eigenvalaues 

Even real matrices may have complex eigenvalues. Because of that one has to give domains 
in the complex plane, where eigenvalues may be located. We have already seen such an 
estimate in Sec. 2.8 with respect to matrix norms. According to that the spectral radius may 
not be larger than any norm of the matrix. So that no eigenvalue may be larger in absolute 
evalue than 

1
A  vagy A

∞
. But even more accurate estimate is possible with the aid of 

T7.7 Gershgorin’s theorem 

Let 
i

K  denote the i -th Gershgorin circle. Its center is located in the complex plane at 
ii

a  

having radius ( )T

i i ii
r e A a I

∞
= − , that is the absolute sum of the i -th row elements with the 

exception of the diagonal element. According to Gershgorin’s theorem, the eigenvalues of 
matrix A  lie in the united set of Gershgorin circles. 

Proof. Consider the i -th row of equation Ax xλ= , where x  is an eigenvector with 
eigenvalue λ  and ix x

∞
= .  After rearrangement 

 
1,

n
ij j

ii

j j i i

a x
a

x
λ

= ≠

− = ∑ , 

from where  

 
1, 1,

n n
ij j

ii ij i

j j i j j ii

a x
a a r

x
λ

= ≠ = ≠

− ≤ ≤ =∑ ∑ . 

We can write similar relations for each eigenvalue and that gives the statement. ■ 
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T7.8 Gershgorin’s second theorem 

If there exists a disjunct subset of the Gershgorin circles, then one can find as many 
eigenvalues in this subset as is the number of Gershgorin circles. 

Proof. We apply the fact here that the eigenvalues of the matrix are continouos functions of 
the matrix elements. Now split matrix into two parts and define matrix 1( )A D Aε ε= + , where 

D  is the diagonal part of A  and 1A  is the nondiagonal part. If 0ε = , then all circles have 

zero radius. If ε  is tending to 1, then all eigenvalues may leave the center, but because of 
continuity, they may not jump out of their own circle.  ■ 

C7.2 Corollary 

The transposed matrix TA  has the same eigenvalues and Gershgorin’s theorems can also be 
applied. Then we get a new set of circles. If we take the intersection of this set with the 
Gershgorin circles of A , then all eigenvalues should lie in this common part of circle sets. 

E7.1 Example 

Gershgorin’s theorems may be combined with diagonal similarity transformations. With this 
trick we can change the radius of the circles and we can do a purposed estimate. For instance, 
show that matrix 

 

8 5 3

1 4 1

1 2 5

A

 
 =  
  

 

has no zero eigenvalue!  

The first Gershgorin’s circle has center 8, radius 8, such that it contains zero. The other circles 
not. Apply the diagonal similarity transform 1D AD− , where diag(2 1 1)D = : 

 1

8 5 / 2 3 / 2

2 4 1

2 2 5

D AD
−

 
 =  
  

. 

Now the radius of the first circle is diminished to 4 and the other two circles still do not 
contain zero so that our aim is achieved. Observe the change in row and column if only one 
element is different from 1 in the diagonal matrix! 

1.51. Computation of the characteristic polynomial  

Consider the so-called Frobenius companion matrix: 

 

0

1

2

1

0 0 0

1 0 0

1

0

1
n

n

a

a

F

a

a

−

−

− 
 − 
 =
 

− 
 − 

…

…

⋱ ⋮ ⋮

⋱

. (7.5) 
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If expanding along the last column, one can show the formula: ( ) 1

0
det

nn i

ii
I F aλ λ λ

−

=
− = +∑ . 

Therefore it is easy to compute the coefficients of the characteristic polynomial if we can 
apply a similarity transform that brings matrix A  to this form. Danilevsky suggested Gauss-
Jordan transform such that the first column of the matrix is transformed not into 1e , but into 

2e . Thererfore we choose the first matrix as 1 1 2 2( ) T
T I Ae e e= + −  and the result of the 

similarity transform  1
2 1 1A T AT

−=  will be 2e  in the first column: 

 ( )1 1 2 2 1 2 2
2 1 1 1 1 1 2 2 1 1 2

2 1 2 1

( ) ( )
( )

T T
T

T T

Ae e e Ae e e
A e T AT e I A I Ae e e e I Ae e

e Ae e Ae

−    − −
= = − + − = − =   

   
. 

Generally we apply 1 1( ) T

k k k k k
T I A e e e+ += + −  in the k -th step, and the former unit vectors will 

not be affected because of 

 ( )1 1
1 1 1

1

( )
( ) ,    

T
Tk k k k

k k k k kT

k k k

A e e e
I A I A e e e e e k

e A e

+ +
+ + +

+

 −
− + − = ≤ 

 
ℓ ℓ ℓ . 

The condition for performing a step is that the subdiagonal element is not zero. Otherwise 
interchange the same rows and columns to move a nonzero into that position. If we find 
nonzeros in all steps, then we arrive to the form of  (7.5) in the 1n − -st step. If we can not find 
a nonzero in a column, then we turn to the next column and start a new Frobenius block. This 
time the result is an upper block tridiagonal matrix having Frobenius blocks in the diagonal. 

If the matrix  is tridiagonal, a simple recursion can be found to get the characteristic 
polynomial. For instance, the recursion of the determinant 

 

1 1

1 2

1

1

n

n n

d c

a d

c

a d

λ

λ

λ
−

−

− −

− −

−

− −

⋱

⋱ ⋱
 

is 

 1 1 1 0 1 1( ) ( ) ( ) ( ),   1,   
i i i i i i

p d p a c p p p dλ λ λ λ λ+ + −= − − = = − , (7.6) 

where ( )
i

p λ  is the determinant of the left upper block of order i . The determinant of 1i + -st 

order can be found by expanding along the 1i + -st column and the resulting recursion can be 
seen in (7.6). This recursion can also be used to compute the numerical value of the 
polynomial at various places. 

Similar recursion can also be given for upper Hessenberg matrices. For example, choose 

3 1p =  and solve the following system from below: 

 
1

2

3

2 1 3 ( )

2 1 2 0

0 2 1 0

p p

p

p

λ λ

λ

λ

−     
     + =     
     −     

. 

From the last row we get 2 ( ) (1 ) / 2p λ λ= − , the second row gives 

( )1 22 ( ) ( 1) 2 0p pλ λ λ+ + + = , from where 1p  can be expressed. With these ( )p λ  can be 

found from the first row. The determinant of the matrix is zero if ( )p λ  is zero, therefore the 
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roots of ( )p λ  are equal to the eigevalues of the matrix. Observe that in case of ( ) 0p λ = , the 

triple 1 2 3( ), ( ), ( )p p pλ λ λ  gives the elements of the eigenvector belonging to the eigenvalue 

λ . 

T7.9 Theorem 

Every matrix can be brought to an upper Hessenberg form by a unitary similarity transform. 

Proof. Choose 1 1 1 12
tril( , 1) ,   u A e u σ= − =  in the first step, that is, the diagonal element is 

cancelled from the first column of A . The similarity transform will be done with the 
reflection matrix 1 1 2( )R u eσ− , where the sign of 1σ  is chosen such that the real part in the 

second element of 1 1/u σ  is negative. Then 1 1 2( )R u e Aσ−  maps the first column into 

11 1 1 2a e eσ+ , (first entry is unchanged, the other column elements were reflected into 1 2eσ ). 

Applying the same reflection from the right will not change the first column any more, 
because  the first row and column of 1 1 2( )R u eσ−  are 1

T
e  and 1e . Now the first column of 

2 1 1 2 1 1 2( ) ( )A R u e AR u eσ σ= − −  already shows the Hessenberg form. In the next step we apply 

the same approach for the right lower block of 2A  that has size one less. Continuing the 

process, finally we arrive to the Hessenberg form of the whole matrix.  ■ 

1.52. Iteration methods 

1.52.1 Power iteration 

This method is based on the observation, that with increasing k  the component belonging to 
the eigenvector of the largest eigenvalue will grow up in 0

k
A x . Convergence is stated in the 

next theorem: 

Let A  be a real or complex matrix of order n  and its eigenvalues can be ordered as 

 1 2 3 nλ λ λ λ> ≥ ≥ ≥… . 

Moreover, the matrix has simple structure that is, the number of eigenvectors is n  and the 

spectral decomposition is 
1

n T

k k ki
A u vλ

=
=∑ , where ,

k k
v u  are the left and right eigenvectors 

and vector 0x  can be expanded as 0 1

n

k kk
x uα

=
=∑ . Then 

 0 1 1
1

1
lim m

mm
A x uα

λ→∞
= . (7.7) 

Proof. According to the method, we compute vectors 1
1

n
m

m m k k k

k

x Ax uα λ−
=

= =∑  from where we 

have 0

11 1

m
m n

k
k km

k

A x
u

λ
α

λ λ=

 
=  

 
∑ . The statement follows by taking the limit m → ∞ , as the 

multiplier of the other vectors tend to zero.    ■ 

It is seen, the speed of convergence is essentially given by the ratio 2 1/λ λ  in case of 1 0α ≠ . 

The algorithm is: 
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 1

1
1

1

1, 2, :

,

.

m m

m
m

m

m re

y Ax

y
x

y

+

+
+

+

= −

=

=

…

 

A practical choice for the norm is the infinity norm. The  eigenvalue can be estimated by the 
Rayleigh-quotient as 

 ( ) 1
1

T T
m m m m m

T T

m m m m

x y x Ax

x x x x
λ += = . 

The power iteration is applicable for finding eigenvalues at the ends of the spectrum (= the set 
of eigenvalues). But we can also find eigenvalues within the spectrum by inverse power 

iteration. This time the vector 

 1
1 ( )

m m
x I A xλ −

+ = −  

is computed in one step of the iteration. The eigenvalues of 1( )I Aλ −−  are  

1/( ),   1, ,
k

k kλ λ− = … . As seen, we have another power iteration that converges to the closest 

eigenvalue to λ  and the belonging eigenvector. 

1.52.2 The QR-algorithm 

For solving eigenproblems, one of the best methods is considered to be the QR-algorithm. It 
begins with forming a QR-decomposition of 1 1A Q R= . The next matrix is 2 1 1 1 1

T
A R Q Q AQ= = , 

that is the result of an orthogonal similarity transform and in general the k -th matrix is 

1 1k k k
A R Q− −= . If the matrix has a simple structure (all eigenvalues are simple) and the modal 

matrix (the matrix of eigenvectors) has an LU -decomposition, then it can be shown that the  
QR -algorithm converges to an upper triangular matrix. The convergence can further be 
accelerated if the decompositions are combined with a shift by Iκ− , where κ  is an estimate 
of an eigenvalue. In that case the QR -algorithm has convergence of second order and it is 
even faster – of third order – for symmetric matrices. 

1.53. Some inequalities related to eigenproblems 

We have already seen such relations when discussing Gershgorin-discs. Here we continue our 
investigations and we are interested in characterizing the goodness of an approximate 
eigenpair ( , )uλ . Another problem is to give the variation of an eigenpair if the matrix 
elements are changed a little – i.e. perturbed. 

We shall apply the following notations: 
( )( )

max ( ) ,    min ( )
i i

ii
M A m Aλ λ= =  and assume that 

the matrix is invertible. Always induced matrix norms will be used here. 

From Theorem T2.4 on the spectral radius, the relations 1,   1/M A m A−≤ ≤  hold and 

multiplying the same sides gives: 

 1cond( )
M

A A A
m

−≤ = . (7.8) 

This relation shows that the condition number of the matrix is large if the ratio of the absolute 
largest and smallest eigenvalues is large. 
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L7.1 Lemma 

Let 1diag( , , )
n

D d d= …  be a diagonal matrix, then 
( )

max ,   1
ip i

D d p= ≤ ≤ ∞ . 

Proof. Assume k id d≥  for all i -s. From the definition of induced norms it follows that 

1 1

( 0) ( 0)
1 1

/
sup sup

n np p

p p pi i i i ki i
k kn np pp

x x
i ii i

d x x d d
D d d

x x

= =

≠ ≠
= =

= = =
∑ ∑
∑ ∑

, 

because the denominator is larger than the numerator if there exists a nonzero 
i

x , for which 

/ 1i kd d < .  ■ 

T7.10 Theorem on the goodness of the eigenpair 

Assume A  has simple structure: AU U= Λ , where U  is the matrix of eigenvectors and the 
diagonal matrix Λ  has the eigenvalues, moreover ( , )xλ  is an approximate eigenpair. Then 
using the notation r Ax xλ= − , we have the inequality 

 
( )

min cond( ),    .   -norm
i

i

r
U p

x
λ λ− ≤  (7.9) 

Proof. If 
i

λ λ=  holds for some i , then the statement is true. Now choose 
i

λ λ≠  such that 

A Iλ−  is invertible then we may write ( ) ( )1 1 1
x A I r U I U rλ λ

− − −= − = Λ − . After taking the 

norms and applying the previous lemma, we have  

 
cond( )

min
i

i

U
x r

λ λ
≤

−
 

that leads to the statement by reordering.    ■ 

C7.3 Corollary 

In the case of Hermitian matrices U  is unitary, hence 2cond ( ) 1U =  and 

2 2( )
min /

i
i

r xλ λ− ≤  follows, an easily computable quantity. 

T7.11 Theorem, lower bounds for cond(U) 

If A  is invertible and has simple structure, we have 

 1 cond( )
cond( ),    cond( ),   cond( )

cond( )

A A
U A m U U

M

−≤ ≤ ≤
Λ

. (7.10) 

Proof. The third relation comes by multiplying the corresponding sides of the first two. The 
first inequality comes by taking the norm of 1

A U U
−= Λ , and the second one follows from 

1 1 1
A U U

− − −= Λ similarly.  ■ 

T7.12 Theorem, (Bauer, Fike) 

Let A  have simple structure and let E  be a square matrix of the same size. If µ  is an 

eigenvalue of  n nA E ×+ ∈ℂ  and AU U= Λ  then  
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( )

min cond ( )
i ppi

E Uλ µ− ≤ . (7.11) 

Proof. Suppose { ( )}
i

Aµ λ∉ , otherwise the statement is true. As µ  is an eigenvalue, it follows 

that 1 1( )U A E I U I U EUµ µ− −+ − = Λ − +  is singular, which can still be reordered into 

( ) 1 1
I I U EUµ

− −+ Λ − . But this last matrix may be singular only if ( ) 1 1
I U EUµ

− −Λ −  has an 

eigenvalue with absolute value 1. Applying  Theorem T2.4 on the spectral radius results in the 

inequality ( ) ( )1 111 cond ( )
pp

p p

I U EU I E Uµ µ
− −−≤ Λ − ≤ Λ − . The statement follows 

from here by using Lemma L7.1 and moving the eigenvalue multiplier on the other side.  ■ 

T7.13 Theorem, inverse perturbation 

Let ( , )xλ  be an approximate eigenpair and introduce r Ax xλ= − . Then adding matrix 

2 2

2

,   ,   2,
H

p

p

rrx
E E p F

xx
= − = =  (F indicates Frobenius-norm) to A , the eigenpair ( , )xλ  is 

an accurate solution: 

 ( )A E x xλ+ = . (7.12) 

Proof. 
H

H

rx
A x Ax r x

x x
λ

 
− = − = 

 
.  ■ 

For instance, if 9

2 2
/ 10r x

−≈  holds and A  has elements around 1, then ( , )xλ  is an 

accurate solution of a problem, where the matrix differs from A  only in the ninth figure. If A  
has elements accurate for 7 figures, then there is no point to continue iteration for a more 
accurate solution. 

T7.14 Theorem, perturbation of a single eigenvalue  

Let ( , , )x yλ  be an eigentriple that belongs to A  and λ  is a single eigenvalue. Then the first 
order change in the eigenvalue of A E+  is 

 
2

2
( )

T

T

y Ex
E

y x
λ λ= + +ɶ � . (7.13) 

Consequently, we have 

 
22 2

2 2
( )

T

y x
E E

y x
λ λ− ≤ +ɶ � . (7.14) 

Proof. The second relation follows form the first one by taking norms. To prove the first one, 
let µ  denote the change in the eigenvalue, and h  in the eigenvector: 

 ( ) ( ) ( ) ( )A E x h x hλ µ+ + = + + . 

Assume that in case of 0E →  the change will also tend to zero: 0µ →  és 0h → . After 
performing multiplications, omit second order terms: 

 Ah Ex h xλ µ+ ≈ + . 

If multiplying with the left eigenvector T
y  from the left, the contribution of the first vectors 

will cancel from both sides of the equation and the first statement follows: 
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T

T

y Ex

y x
µ ≈ . (7.15) 

Here the divisor may not be zero because of Theorem T7.6.   The multiplier of 
2

E  in (7.14) 

is nothing else then the reciprocal cosine of the included angle between vectors x  and y : 

2 2
sec ( , ) / Tx y x y y x y∠ = . This value is usually said the condition number of the 

eigenvalue λ .  ■ 

1.54. Singular value decomposition 

T7.14 Theorem, singular value decomposition of matrices 

Let m nA ×∈ℂ . Then there exist unitary matrices n n
U

×∈ℂ  and m m
V

×∈ℂ , for which 

 1

0
,    diag( ,..., )

0 0
H

r
V AU σ σ

Σ 
= Σ = 
 

 (7.16) 

holds, where 1 2 0
r

σ σ σ≥ ≥ ≥ >…  are the nonzero singular values of the matrix, ( H
V  denotes 

the conjugate transpose of the matrix). 

Proof. Matrix HA A  is positive semidefinite that is, all eigenvalues are nonnegative. Let the 
nonzero eigenvalues be ordered as 2 2 2

1 2 0
r

σ σ σ≥ ≥ ≥ >… . Then there exist unitary matrix U , 

such that 

 
2 0

0 0
H H

U A AU
 Σ

=  
 

. 

The columns of matrix U  are the eigenvectors. Partition U  into two parts: ( )1 2U U U= , 

where 1U  has the columns with nonzero eigenvalues and the columns of 2U  have zero 

eigenvalues. Then 2 0AU =  and 

 2 1 1
1 1 1 1  H H H H

U A AU U A AU I
− −= Σ → Σ Σ = . 

Now if introducing matrix 1
1 1V AU

−= Σ , the last equality here shows 1 1
H

V V I=  that is, the 

columns of 1V  are orthonormal vectors. Complement 1V  with matrix 2V  such that 

( )1 2V V V= is unitary: H
V V I= , then 

 1 1 1 2 1 1

2 1 2 2 2 1

00

0 00

H H H

H

H H H

V AU V AU V V
V AU

V AU V AU V V

Σ   Σ  
= = =     Σ     

, 

where we have used the facts that 2 0AU =  and 2 1 0H
V V = .         ■     

1.55. Problems 

7.1. Let A  be an upper Hessenberg matrix such that all subdiagonal elements are nonzero. 
Show that there is only one Jordan block to each eigenvalue. 

7.2. Show if  the eigenvalues of A  are 
i

λ ’s, then 1A−  has eigenvalues 1/
i

λ ’s. 
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7.3. Check: 12
A σ= .       

1/2

2

1

r

iF
i

A σ
=

 
=  
 
∑ . 

7.4. The matrix is diagonally dominant, if the Gershgorin disks do not have zero. 

7.5. Diagonally dominant matrices are invertible. 

7.6. Interchanging the i -th and j -th rows and columns will  not affect diagonal dominance. 

7.7. The rank of the matrix is at least as large as the number of those Gershgorin disks, which 
do not contain zero. 

7.8. Gershgorin disks can also be found with respect to columns if using left eigenvectors in 
the derivation . 

7.9. By using Gershgorin’s theorem and diagonal similarity transform, decide if matrix A  is 

invertible: 

7 6 3

1 5 1

4 2 6

A

− 
 =  
 − 

. 

7.10. Show that the eigenvalues of a 2 2×  matrix A  are: 
2

11 22 11 22
1,2 12 212 2

a a a a
a aλ

+ − = ± + 
 

. 

Prove that 

7.11. /U AU m≤ , where AU U= Λ . 

7.12. 1 1 1U U A M− − −≤ . 

7.13. cond( ) cond( ) cond( )U AU≤ Λ . 
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Linear least squares 

 

1.56. A practical problem of fitting functions to data.  

Many times in pactice, a typical problem is the following: Given the pairs of data ( ),i it y , 

0,1, ,i n= … , where 
i

y  is a measured value  at 
i

t . The measured values are subject to random 

errors. We would like to approximate this series of points – or a part of it – with a function of 

the form 
0

( ) ( )
n

j jj
f t c tϕ

=
=∑  (e.g. ( ) j

j t tϕ = ): 

 
0

( )
i

n

j j ij
c t yϕ

=
≈∑ . (8.1) 

To find the unknown parameters 
i

c , it seems reasonable to look for the minimum of the sum 

of squares of the deviations: 

 2

0 0
( ) min

i

m n j

j ii j
y c t

= =
− =∑ ∑  (8.2) 

that is, the linear combination coefficients 
j

c  in (8.1) are sought  by this minimization 

condition.  

We may reformulate problem (8.1) for the unknowns 
j

c  with the aid of a linear system of 

equations, so that consider 

 ,, , ,m n n mAx b A x b= ∈ ∈ ∈ℝ ℝ ℝ ,  (8.3) 

where the coefficient matrix is rectangular - not a square matrix - and one may not take it for 
sure that the system has a solution. To find the least squares solution is equivalent  to finding 

a solution for which 
2

2
minb Ax− =  is fulfilled. To achieve this goal, we consider projection 

matrices first. 

1.57. Projection matrices 

We have already introduced projection matrices P   in Ch. 3. They have the property 2P P= . 
That means: the second application of P leaves vector x  unchanged: ( )P Px Px= and it is the 
case at repeated applications of P , exactly what we have in our mind about projections. As 
any power of P  is equal to itself, it is also called an idempotent matrix. 

A projection example: Let , ,,  ,  m n m nA B n m∈ ∈ <ℝ ℝ  and denote by  T  the transpose and let 
TB A  be invertible. Then 

1( , ) ( )T TP P A B A B A B−= =  

is a  projection into the range space of A  (the subspace of columns vectors of A ): 

 ( , ) :  Im( )mP A B A→ℝ  

and from ( ) 0I P P− =  one has { ( , )} Im( )TI P A B z A− ⊥  for any vector z . 
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T8.1 Theorem on least angle  

Let ( )� �  be the set of projections into subspace m⊂ ℝ� . Then for any vector 
,   0x Px∉ ≠�  

T

2( )
2

max
s

P

x Px
P x

Px∈
=

� �� �

, 

where 
s

P  is the symmetric (orthogonal) projection into � . 

Proof. This theorem suggests the following picture: the angle of vector x  with a vector from 

�  is minimal for 
s

P x (or for a vector in the same direction). For, let , ( ),
s

P P∈� �  then 

 
s

P P P=  

because the columns of P  are in � , and they are left unchanged by any projection onto the 
same subspace. Applying Cauchy’s inequality yields 

 
TT

2 2
2

2 2 2

ss
s

P x Pxx P Pxx Px
P x

Px Px Px
= ≤ = , (8.4) 

where maximum is still attained for projections Pɶ  satisfying , 0
s

Px P xλ λ= >ɶ .      ■ 

T8.2 Theorem on uniqueness of orthogonal projections 

Among projections onto the same subspace, the orthogonal (symmetric) projection is unique. 

Proof. Indirect. Assume 1P  and 2P  are two different orthogonal projections onto the same 

subspace, then 
T T T

1 2 2 2 2 2 1 2 1 1PP P P P P P P P P= ⇒ = = = =  

that is a contradiction.     ■ 

T8.3 Theorem on distance from a subspace in two-norm 

The distance of vector x  from subspace �  in two-norm can be given by: 

 2 2
dist ( , ) ( ) ,   ( )s sx I P x P= − ∈� � � . 

Proof. As 
s

P x  has the smallest angle with x , the nearest point of �  can be found along the 

direction
s

P x . Therefore we look for a λ , for which 
s

x P xλ−  has minimal norm:  

 
2 T T 2 T

2
2

s s s
x P x x x x P x x P xλ λ λ− = − + . 

The derivative is zero at 1λ =  and after substitution, it leads to the statement.  

 ■ 

Remark 1. We have for the distance vector: ( )
s

I P x− ⊥� . 

Remark 2. One can also find the answer by taking the distance of x  from a general vector 

s
P x y+ ∈� , y ∈� . The result is 

2 2 2

2 2 2
( )

s s
x P x y I P x y− − = − +  because of the 

orthogonality of  ( )
s

I P x−  and y . This expression has minimum for 0y = . 
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1.58. Generalized inverses, pseudoinverse 

Generalized inverse to a matrix is introduced if ordinary inverse does not exist. Among 
generalized inverses the pseudoinverse has the special property that it returns a solution for 
the linear system for which the deviate vector – in other word: residual vector r b Ax= −  has 
minimal two-norm. If there are many minimal residual norm solutions, it returns the solution 
vector of smallest two-norm. We recall at first two simple facts of linear algebra. 

L8.1 Lemma 

Let the columns of matrix L  be linearly independent. Then from LB LC=  the equality B C=  
follows. 

Proof. After rearranging one gets ( ) 0L B C− = . Because of the linear independence of the 
columns in L , all columns of B C−  has to be zero.  ■ 

L8.2 Lemma  

Let ,m nA∈ℝ . Then TA A  is positive semidefinite. If A  has linearly independent columns, i.e. 
A  is of column rank, then TA A  is positive definite. 

Proof. Let y Ax= , then 0T T T
x A Ax y y= ≥ . If A  is of column rank, from 0y =  follows 0x =  

by the previous lemma such that TA A  is positive definite. ■ 

1.58.1 The pseudoinverse 

We show in the following that there exists pseudoniverse or Moore-Penrose generalized 
inverse A+  to every matrix A , which is the ordinary inverse if it exists. It returns the minimal 
residual solution (in two-norm) for the general case. Such a matrix is defined by the four 
Penrose conditions (complex numbers are supposed): 

 
1.  ,               2.  ,

3.   is Hermitian,   4.    is Hermitian.

AA A A A AA A

AA A A

+ + + +

+ +

= =
 

As we are dealing here with real matrices, we shall demand symmetricity for the last two 
conditions. 

One can make at once simple observations. Multiply first equation by A+  from the right or 
from the left and observe conditions 3 and 4. Then it follows that AA+  and A A+  are 
symmetric projections. AA+  projects into Im( )A , and we see from ( ) 0A I A A+− =  that 

I A A+−  is the symmetric projection into Null( )A , the null space of A . 

D8.1 Definition, rank factorization 

We say  A LU=  is a rank factorization if rank( ) rank( ) rank( )r A L U= = = , 
, ,,   m r r nL U∈ ∈ℝ ℝ .  

Having a rank factorization LU at hand makes it possible to give the pseudoinverse. 

T8.4 Theorem, construction of pseudoinverse 

Let A LU=  be a rank factorizátion. Then the pseudoinverse is given by A U L
+ + +=  and it is 

unique, where 1( )T TL L L L+ −=   and  1( )T TU U UU+ −= . 



64 Hegedüs: Numerical Methods I. 

Proof. Uniqueness can be proven indirectly. Assume there are two: 1A
+  and 2A

+ . Then because 

of the uniqueness of symmetric projections follows 1 2A A A A
+ +=  and 1 2AA AA

+ += . Further 

applying the Penrose conditions 

1 1 1 2 1 2 2 2A A AA A AA A AA A
+ + + + + + + += = = =  

that is a contradiction. Next we construct the pseudoinverse.  

Observe that Im( ) Im( )A L= , hence the unique symmetric projection into this subspace is 
1( )T TAA LL L L L L+ + −= =  and 1( )T TL L L L+ −=  follows from Lemma L 8.1. Similarly, the 

unique symmetric projection into Im( ) Im( )T TA U=  can be given by 

( ) ( )T T T TA A A A U U+ + += =  1( )T TU U U UU U+ −= = , from where 1( )T TU U UU+ −= . Now it 

follows that 
r

L L UU I
+ += = , the unit matrix of order r  and we can write the relations 

   és  AA LL LUU L A A U U U L LU
+ + + + + + + += = = = . 

Both relations are true for A U L
+ + += .           ■ 

Remarks 

If A  is of column rank then L A=  and  
n

U I=  is an appropriate choice and 
1( )T TA A A A+ −= follows. For such a matrix having A QR= , the pseudoinverse formula is 

1 TA R Q+ −= . If A is of row rank, then choosing 
m

L I=  and U A=  yields the formula 
T T 1( )A A AA+ −= . If now TA QR= , then T 1( )A Q R+ −= . Finally, if the rank is less than the 

smaller size of A  that is, there are linearly dependent rows or columns, then applying  
orthogonalisation for both sides leads to the form 1 2A Q BQ= , where 1Q  has orthonormal 

columns, 2Q  has orthonormal rows and B  is full rank upper diagonal, then 
T 1 T
2 1( )A Q B Q

+ −= is the result. To determine rank of matrices can be a very  delicate task 

sometimes. 

T8.5 Theorem, solvability of a linear system 

Let P  be a projection onto Im( )A . Then the linear sytem Ax b=  is solvable if and only if 
Pb b= . 

Proof. Necessity. If the system is solvable, then Im ( )b A∈  and Pb b=  must hold. For 

sufficiency choose the projection AA+  onto Im ( )A , for which AA b b
+ =  holds. But then 

x A b
+=  is a solution.  ■ 

T8.6 Theorem, properties of the solution with pseudoinverse 

The general solution of the linear system Ax b=  with the pseudoinverse can be given by: 

 ( ) ,    ,n

p hx x x A b I A A t t
+ += + = + − ∈ℝ  (8.5) 

where 
p

x  is a particular solution and 
h

x  is the general solution of the homogenous system.  

If the system is solvable, then A b
+  is a particular solution and ( )I A A t+−  is the general 

solution of the homogenous system. If the system is inconsistent, then A b
+  is that least 
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squares solution, for which the two-norm of b AA b
+−  is minimal. In every case A b

+  is a least 
squares solution. 

Proof. 2 2
dist ( , Im( ))b A b AA b

+= −  according to Theorem T8.2, hence A b
+  is a least squares 

solution. Moreover, observe that the two vectors in (8.5) are orthogonal to each other, because 
A A+  leaves the first vector unchanged due to the pseudoinverse conditions, while it brings 

the second one into zero. One may write then: 
2 22

2 2 2
( )x A b I A A t

+ += + − , that has the 

smallest value, if 0t = , or 0I A A
+− = . In this latter case the pseudosolution is unique. ■ 

  

1.59. Problems 

8.1. Let A LU=  be a rank-factorisation. What is the orthogonal projection to Im( )A ? 

8.2. What is the orthogonal projection to the null space of A ? Give the distance of x  to 
Nul( )A in two-norm! 

8.3. A line passes points 0 1  and  r r . Give the distance of vector x  from this line! 

8.4. Show that if a matrix is invertible then its inverse and pseudoinverse are equal. 

8.5. 
2 4 6

0 5 5
T

A
− 

=  − 
. Give the orthogonal projection into Im( )A ! 

8.6. The row vectors of TA  in Problem 8.5 are the normal vectors of two planes. Give the 
orthogonal projection into the intersection of the two planes! 

8.7. [1 1 1]Tr = − .  What is the distance of vector r  from the intersection of the two planes 
in the previous problem? 

8.8. 

2 0 3

4 5 2

6 5 5

A

 
 = − − 
 − 

, rank( ) 2.  ?A A+= =  (Use LU-decomposition!) 

8.9. What is the pseudosolution of Ax b=  if [1 1 1]Tb = −  and matrix A  comes from 
Problem 8.8. 

8.10. Show 0I A A
+− = , if the columns of A  are linearly independent. 

8.11. Derive the relation ( ) ( )T TA A+ +=  from the four Pendrose conditions. 

8.12. Matrix A  has an approximate eigenvector x . Find the belonging approximate 
eigenvalue λ  from the condition that 

2
Ax xλ−  is minimal. Give formula for λ ! 
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Orthogonal polynomials 

 

Many times least squares fitting is needed for polynomials. A feasible way of solving such 
problems is using orthogonal polynomials. Later on such polynomials will be needed in 
quadrature methods such that a short introduction is given here. 

1.60. Scalar product of functions  

The salar product of functions f  and g  is defined by 

 ( ), ( ) ( ) ( ) ,    w( ) 0
b

a

f g f x g x w x dx x= >∫  (9.1) 

where ( )w x  is called the weight function and assume that the integral exists. But we shall use 
a simpler scalar product now in connection with orthogonal polynomials, namely: 

 ( )
1

, ( ) ( )
m

i i i

i

f g f x g x w
=

=∑  (9.2) 

where ,   0,1, ,
i

x i m= …  are the base points of the fitting problem moreover, 
i

w  are the 

belonging weights. Frequently 1
i

w =  for all i . 

The reader is asked here to check the properties of the scalar products given. It is true of 
course, that these scalar products define a norm: 

 ( )2
,f f f= . (9.3) 

Now there is no difficulty in applying Gram-Schmidt orthogonalization to generate an 
orthogonal system from the set of linearly independent functions ,   0,1,ix i = … . This process 
leads us orthogonal polynomials. 

D9.1 Definition 

We say a polynomial monic if the coefficient of the largest power is equal to 1. 

T9.1 Theorem   

Let the polynomials ( ),   0,1,
i

p x i = …  be monic and of degree i . Then any polynomial ( )q x  

can be given uniquely as the linear combination of polynomials 
i

p : 

 
0

( ) ( )
n

j j

j

q x b p x
=

=∑ . (9.4) 

Proof. Let the polynomial be given as 1
. 1 ,0( ) i i

i i i ip x x p x p
−

−= + + +… , then the coefficients 
j

b  

are determined by the linear system:  
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0 010 20 0

1 121 1

1

1

1

1

n

n

n n

b ap p p

b ap p

b a

    
    
    
     =
    
    
         

…

…

⋮ ⋮… ⋮

⋮ ⋮○ ⋱ ⋮

 (9.5) 

. 

than can be solved from the bottom to upward.  ■   

C9.1 Corollary 

Let 
i

p -s be orthogonal polynomials. Then 1n
p +  is orthogonal to every polynomial having 

degree smaller than n , as it can be expanded by lower degree orthogonal polynomials. 

1.61. Recursion for orthogonal polynomials 

The monic orthogonal polynomials can be generated recursively starting with 0 ( )p x  and 

1( )p x  by using the formula: 

 1 1 1( ) .
n n n n n

p x p pα β+ + −= − −  (9.6) 

To prove the statement, consider the scalar product 

 ( ) ( ), ,k n k nxp p p xp= . 

The result is zero, if 

 1   és  1k n n k+ < + <  

because of Corollary C 9.1. It is nonzero, if 

 1 1,n k n− ≤ ≤ +  

hence only the polynomials 1 1, ,
n n n

p p p− +  will have nonzero expansion coefficients for 
n

xp : 

 1 1 1n n n n n n
xp p p pα β+ + −= + + . 

Now expressing for 1n
p +  gives (9.6).                                                     ■ 

T9.2 Theorem 

We have for the expansion coefficients 1n
α +  and 

n
β   

 
( )
( )1

,
,

,
n n

n

n n

xp p

p p
α + =  (9.7) 

 
( )
( )

( )
( )

1

1 1 1 1

, ,
.

, ,
n n n n

n

n n n n

xp p p p

p p p p
β −

− − − −

= =  (9.8) 

Proof. Express 
n

xp  from (9.6) and take the scalar product with 
n

p . Because of orthogonality 

1n
α +  follows. To find the expression for 

n
β , the procedure is similar. We move x  to 1n

p −  at 

first, then substitute the recursion for 1n − : 1 1 1 2n n n n n n
xp p p pα β− − − −= + + : 
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( )
( )

( )
( )

( )
( )

1 1

1 1 1 1 1 1

, , ,
.

, , ,
n n n n n n

n

n n n n n n

xp p p xp p p

p p p p p p
β − −

− − − − − −

= = =  ■ 

1.62. Polynomial least squares 

We apply the scalar product in  (9.2) where 1
i

w =  is chosen for all i  and the first starting 

polynomial is 

 
2

0 0
0

1,    1 1.
m

j

p p m
=

≡ = = +∑  (9.9) 

The next polynomial 1p  is sought in the form of 1x α− . Because of orthogonality, we have  

 ( ) ( ) ( ) ( )0 1 0 1 0 1 0 0, 0 ,   , , ,p p p x p x p pα α= = − → =  

yielding 

 1
0

1

1

m

j

j

x
m

α
=

=
+ ∑ , (9.10) 

and 0β  may be taken zero. 

The other polynomials can be computed from the recursion. A function given by the function 
values ,  0,1, ,

i
y i m= …  at base points 

i
x can be approximated in the least squares sense as 

follows: 

 
( )
( ) ( )

0 0

,
( ) ,    , ( )

,

k m
j

j j j i i

j ij j

p y
y p x p y p x y

p p= =

≈ =∑ ∑ . (9.11) 

This form looks like the expansion of vector y  in linear algebra with respect to an orthogonal 

system { }
j

q : 

 
1

Tk
j j

T
j j j

q q y
y

q q=

=∑ . (9.12) 

The expression ( )
0

( ) ( ) / ,
k

k j j j j

j

P p x p t p p
=

=∑  in  (9.11) is a symmetric projection, thus (9.11) 

shows the least squares property: ( )kI P y−  is the distance of y  from the subspace spanned 

by the polynomials ,  0, ,
j

p j k= … . 

E9.1 Example 

Using orthogonal polynomials, find the first degree polynomial that approximates the series 
of points in the least squares sense: 

i
x  -1 0 1 2 

i
y  1 2 2 4 
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Solution. First we find the orthogonal polynomials. 0 ( ) 1p x = , such that ( )0 0, 4p p = . It 

follows that 1 1( )p x x α= − , where ( ) ( ) ( )
3

1 0 0 0 0 0 0
0

, / , / , 1 / 2
j

j

xp p p p x p pα
=

= = =∑ . Yet we 

have to compute the square norm of  1( )p x : ( )
3

2
1 1 1

0

1
, ( ) (9 1 1 9) 5

4j

j

p p x α
=

= − = + + + =∑ . Now 

the first degree least squares polynomial is given by: 

 
( )
( )

( )
( )

0 1
1 0 1

0 0 1 1

, , 9 1 1 1 9 9 1
( ) ( 3 2 2 12)( ) ( ).

, , 4 5 2 2 4 10 2

p y p y
P x p p x x

p p p p
= + = + ⋅ − − + + − = + −  

1.63. Problems 

9.1. Check if the base points are located symmetrically to 0x = , then 0,   1,2,
j

iα = = …  hold 

and the polynomials are alternating even and odd functions. 

9.2. Find the orthogonal polynomials 0 1 2, ,p p p  for the base points { 2, 1,0,1,2}− − ! 

9.3. The Chebyshev polynomials are also orthogonal and they can be generated by the 
following recursion: 0 1 1 11,   ,   2

n n n
T T x T xT T+ −= = = − . Although  they are not monic now, yet 

it is the familiar form. Expand 24 3 2x x− +  with Chebyshev polynomials! 

9.4. 
0

( ) (2 1) ( )
k

j

j

P x j T x
=

= +∑ . Give a skillful way of computing the sum at the point 0x ! 

9.5. Show that 0 1 2( , )
i i i

p p µ β β β= … , where 0 0 0( , ) ( )
b

a
p p x dxµ α = =

  ∫  is the 0-th moment. 

9.6. Show that the principal minors of the tridiagonal matrix 

 

1 1

1 2

1

1

n

n n

x

x

x

α β

β α

β

β α
−

−

− − 
 − − 
 −
 

− − 

⋱

⋱ ⋱
 

have the same recursions as orthogonal polynomials with parameters 
i

α  and 2
i

β . 
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Iterative solution of linear systems 

 

It is not always straightforward to solve linear systems with direct methods such as LU-
decomposition. If the matrix is very large and sparse – that is, there are only few nonzero 
elements in rows or columns – then it is a disadvantage of LU-decomposition that when 
performing decomposition, the number of nonzero elements will grow up – the decomposed 
matrices get dense – and that may cause storage problems on one hand, on the other, the 
operation count will grow because of the increasing number of nonzeroes. Such problems will 
not arise in iteration methods but slow convergence may be a problem. 

1.64. Fix point iteration 

Let 

 A M N= −  (10.1) 

be a splitting of matrix n nA ×∈ℝ . If M  is invertible, then we may start the following 
iteration: ( )   Ax M N x b= − = →  1( )x M b Nx−= + , that is 

 ( 1) 1 ( ) 1 ( ) ,k k kx M Nx M b Bx c+ − −= + = +  (10.2) 

where k  denotes the iteration number in the upper index. We call matrix B  an iteration 

matrix. Then it is an important question, when will such a fix point iteration converge and 
how fast convergence may be expected? 

1.64.1 Convergence of fix point iteration 

The mapping :  n n
F →ℝ ℝ  is said a contraction, if there exists a number 0 1q≤ < , such that 

for all , nx y∀ ∈ℝ  the inequality 

 ( ) ( )F x F y q x y− ≤ −  (10.3) 

holds. Here q  is the contraction number. Observe that the mapped vectors get closer to each 
other because of 1q < . 

1.64.2  Banach’s fix point theorem 

Let :  n n
F →ℝ ℝ  be mapping with contraction number 1q < . Then 

1) * * *:   ( )nx x F x∃ ∈ =ℝ , that is, there exists a fix point of the iterations an it is unique. 

2) For all initial vectors (0) n
x ∈ℝ  the series ( 1) ( )( )k kx F x+ =  is convergent and ( ) *lim k

k
x x

→∞
→ . 

3) We have the error estimate: ( ) * (1) (0)

1

k
k q

x x x x
q

− ≤ −
−

. 

Proof. The series ( 1) ( )( )k kx F x+ =  is a Cauchy series: ( 1) ( ) ( ) ( 1)( ) ( )k k k kx x F x F x+ −− = − ≤  

( ) ( 1) 2 ( 1) ( 2) (1) (0)k k k k kq x x q x x q x x− − −≤ − ≤ − ≤ ≤ −… . Thus the subsequent elements in the 

series are getting closer to each other such that there exists a limit. Assume that 1m k≥ ≥ . 
Then forming the telescopic sum and tending with m → ∞  leads to statement 3): 



                                                                              71 

 

( ) ( ) ( ) ( 1) ( 1) ( 2) ( 1) ( ) 1 2 (1) (0)

(1) (0) (1) (0)

( )

.
1 1

m k m m m m k k m m k

k m k

x x x x x x x x q q q x x

q q q
x x x x

q q

− − − + − −− = − + − + + − ≤ + + + − =

−
= − < −

− −

… …

 

To prove uniquness, assume indirectly that there exist two fix points: 1 2 and  x x
∗ ∗ . But then 

using the contraction property, we get contradiction because 

1 2 1 2 1 2( ) ( ) ,  1x x F x F x q x x q∗ ∗ ∗ ∗ ∗ ∗− = − ≤ − <  follows. Here the right hand side is definitely 

smaller whereas larger or equal would follow. ■ 

Applying the theorem for the iteration ( 1) ( )k k
x Bx c

+ = + , it is convergent if the mapping 
( )F x Bx c= +  is contractive:  

 ( ) ( ) ( )F x F y Bx c By c B x y B x y− = + − − = − ≤ − . 

There is contraction if we find a norm for which 1B <  holds. We remark without proof: the 

spectral radius is the infimum of  induced norms, such that we may say: Bx c+  is convergent, 
if the spectral radius of B  is less than 1: ( ) 1Bρ < . We say the splitting in (10.1) regular, if 

M  is invertible and 1( ) 1M Nρ − <  holds. 

1.65. Jacobi iteration  

Define the splitting of A  as A L D U= + + , where diag( )D A= , tril( , 1)L A= −  and 
triu( ,1)U A=  that is, they are strictly lower and upper triangular parts of  A . 

The choice for  Jacobi iteration is   and  M D N L U= = − − , thus  

 1 1( ),   .
J J

B D L U c D b
− −= − + =  (10.4) 

The component-wise form is ( 1) ( )

1

1 n
k k

i ij j i

jii
j i

x a x b
a

+

=
≠

 
 = − −
  
 

∑ . 

Storage is needed for ( ) ( 1), , ,k kA b x x + . A practical starting vector  may be: (0)
J

x c= . 

1.65.1 Theorem 

If A  is diagonally dominant by rows, then the Jacobi iteration is convergent. 

Proof. 
1

( ) ( )
max ( ) max 1kjT

J k
k k

j k kk

a
B e D L U

a

−

∞ ∞
≠

= + = <∑ , that shows contraction. 

1.66. Gauss-Seidel iteration 

For Gauss-Seidel iteration the splitting is given by ,   M L D N U= + = − , such that 

 1 1( ) ,   ( ) .
GS GS

B L D U c L D b
− −= − + = +  (10.5) 

The component-wise form of Gauss-Seidel iteration is found from the i -th row of 
( 1) ( )( ) k kL D x Ux b++ = − + : 
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1

( 1) ( 1) ( )

1 1

1
,   1, 2, , .

i n
k k k

i ij j ij j i

j j iii

x a x a x b i n
a

−
+ +

= = +

 
= − + − = 

 
∑ ∑ …  (10.6) 

Now the order of operations make it possible that the value of ( )k

i
x  can be overwritten by 

( 1)k

i
x

+ . Therefore it is necessary to store only , ,A b x , it is better as compared to Jacobi 

iteration. Suggested starting vector if there is no any better: (0)
GS

x c= . 

1.66.1 Theorem. Norm estimate for splitting 

Let 1 2, ,A A D  be n n×  real matrices, where D  is diagonal: T

i i i
e De d=  and 1

T

i i
e A d

∞
<  ∀  i . 

Then one has the estimate: 

 
21

1 2
( )

1

( ) max
T

i

Ti
i i

e A
A D A

d e A

− ∞

∞

∞

+ ≤
−

, (10.7) 

 

where maximum search should be done only for nonzero numerators. 

Proof. As 1A D+  is diagonally dominant, it is invertible. According to the definition of 

induced norms: 1 1
1 2 1 2

1
( ) max ( )

x
A D A A D A x

∞

− −

∞ ∞=
+ = + . Introduce vector 1

1 2( )y A D A x
−= +  

and assume that the maximum takes its value at the i -th index: iy y
∞

= . After reordering 

2 1 2 1( )   A x A D y Dy A x A y= + → = − , from where 2 1
T T T

i i i i i i
e Dy d y e A x e A y

∞∞ ∞ ∞
= ≤ +  

follows for the i -th row. Observing 1x
∞

=  gives the rerquired inequality. As it is not 

known, which i  index gives y
∞

, therefore the maximum is chosen. If the i -th row of 2A  is 

zero, then 1
T

i i i i
d y e A y≤  follows, that is contradicting for  nonzero iy , so that such rows 

should be omitted.   ■ 

1.66.2 Theorem 

Let A  be diagonally dominant by rows. Let diag( )D A=  and choose the elements of 1A  and 

2A  arbitrarily from the off-diagonal part of A  such that 1 2A A D A= + + . Then the choice 

1M A D= + , 2N A= −  gives a regular splitting.  

Proof. We apply the previous theorem, where T

i i i ii
d e De a= = . Introduce 

 1 2

1 1
,   and   T T

i i i i

ii ii

e A e A
a a

α β
∞ ∞

= =  (10.8) 

Then we have the estimate from (10.7): 

 1
1 2

( )
( ) max

1
i

i
i

A D A
β

α
−

∞
+ ≤

−
, (10.9) 

where 1
i i

α β+ <  because of diagonal dominance. Now 1
i i

β α< −  follows so that the norm 

estimate above gives a value less than 1.     ■ 
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A consequence of this theorem that Gauss-Seidel iteration is convergent for diagonally 
dominant matrices. For Jacobi iteration the similar result is max ( )

i i i
α β+  such that Gauss-

Seidel iteration may have even faster convergence. 

1.67. Gauss-Seidel (GS-) relaxation 

In hoping acceleration of convergence, we share the role of D  between  and L U : 

 
( )             / multiply by 

                    / multiply by (1 )

L D x Ux b

Dx Dx

ω

ω

+ = − +

= −
 

Adding the equations gives: 

 ( 1) ( ) ( )( ) (1 )k k kD L x Dx Ux bω ω ω ω++ = − − +  (10.10) 

 [ ]( 1) 1 ( ) 1( ) (1 ) ( ) .k k
x D L D U x D L bω ω ω ω ω+ − −= + − − + +  

Now the iteration mtrix is 

 [ ]1( ) ( ) (1 ) .GSB D L D Uω ω ω ω−= + − −  (10.11) 

If 1ω = , then we have the Gauss-Seidel iteration. The i -th row of (10.10) gives: 

 
1

( 1) ( 1) ( ) ( )

1 1

(1 ) ,   1,2, , .
i n

k k k k

i ij j ij j i i

j j iii

x a x a x b x i n
a

ω
ω

−
+ +

= = +

 
= − + − + − = 

 
∑ ∑ …  (10.12) 

Now we have the following picture: The next result of a Gauss-Seidel step is multiplied by ω  
and the (1 )ω− -multiple of  the k -th vector is added. 

1.68. Some theorems on relaxation methods 

1. If A  has nonzero diagonal elements, otherwise it is arbitrary, then ( ( )) 1GSBρ ω ω≥ − , 

therefore convergence may be expected only if ω  falls between 0 and 2. 

2. Let n nA ×∈ℝ  be symmetric, positive definite and let 0 2ω< <  hold. Then ( ( )) 1
GS

Bρ ω < , 

that is, GS-relaxation is convergent for all such ω . 

The next two theorems refer to block-tridiagonal matrices. Of course, in case of 1×1-es 
blocks, we get back simple tridiagonal matrices. 

3. Let n nA ×∈ℝ  be block-tridiagonal matrix. Then for the corresponding matrices of block 
Jacobi (J) and block GS-iteration 

 
2

( ) ( )b b

GS J
B Bρ ρ =   . 

That means,  the two are convergent or divergent at the same time and in case of 
convergence  GS- iteration is twice as fast. 

4. Let A  be block-tridiagonal, symmetric and positive definite. Then the block Jacobi 
iteration, and block GS relaxation at 0 2ω< <  are convergent. The optimal relaxation 
parameter for the latter is 

 ( )2

0 2 / 1 1 ( ) (0, 2)b

JBω ρ = + − ∈ 
 

 

       and for this optimal parameter the spectral radius is 
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 ( )2

0 0( ( )) 1 ( ) ( ) .b b b

GS GS J
B B Bρ ω ω ρ ρ= − < =  

1.69. Optimal ω  for one step 

We have seen in  (10.12) that starting from 
k

x  the vector 

 1 1 1(1 ) ( )
k k k k k k

x x x x x x
ω ω ω ω+ + += + − = + −  (10.13) 

is computed instead of 1k
x +  of the Gauss-Seidel method. We modify the relaxation method a 

little and introduce notations 1k k k
y x x+= − , 

k k
r b Ax= −  and determine parameter ω  

generally for the splitting A M N= − . We get from  (10.13): 

 1 1k k k k
r b Ax r Ay

ω ω+ += − = − . (10.14) 

In the next step we get 
k

ω  of the k -th step from the condition that 1 2kr +  is minimal. For that 

we have to do no more than solve the “equation” 
k k

Ay rω =  with the pseudo-inverse for ω : 

 ( ) 2 2

2 2

T T T

k k k k
k k k

k k

y A r r Ay
Ay r

Ay Ay
ω

+
= = = . (10.15) 

In order that 1k
x +  should not be computed explicitly, 

k
y  is expressed from the non relaxed 

form: 

 ( )1 1 1
1 ( ) ( )k k k k k kx M Nx b x M b M N x x M r

− − −
+ = + = + − − = + . (10.16) 

From here 

 1
k k

y M r
−= . (10.17) 

We introduce a newer vector  for the determination of 
k

ω : 

 1( )
k k k k k

c Ay M N M r r Ny
−= = − = −  (10.18) 

and then we arrive at the following algorithm: 

0 0

1

1

1 1

Start:  ;

For 1, 2,3, ,  compute

       ;

       ;

       ;

        ;

          ( );

k k

k k k

T

k k
k T

k k

k k k k

k k k k k

r b Ax

k

y M r

c r Ny

r c

c c

x x y

r r c b Ax

ω

ω

ω

−

+

+ +

= −

=

=

= −

=

= + ∗

= − ∗ = −

…

 

There are here two possibilities for computing 1k
r + . The first one is cheaper, of course. But 

with the advance of iteration, it may happen that the second method will substantially differ 
from the first one. Then it is suggested to improve the value of 1k

r +  with the aid of the second 

method. The vectors were indexed in the algorithm, although it is not necessary because the 
new vectors may overwrite the previous ones. 
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1.70. Richardson iteration 

If the eigenvalues of the matrix are real, positive numbers, then we may start iteration 
according to the following observation: 

 1 1 1( ) ( ) ,   
i i i i i i i i

I pA r r b A x pr b Ax x x pr+ + +− = = − + = − = + , (10.19) 

where number p  is chosen so that the spectral radius of I pA−  be as small as possible. Now 

the eigenvalues of I pA−  are 1
i

pλ− -s. Now the eigenvalues are mapped by the linear 

function 1 px− . It intersects the point (0,l) on the horizontal axis and for positive p ’s it has a 
negative slope. Let the smallest eigenvalue be m  and let the largest be M . In the Richardson 
iteration the optimal p  is chosen from the condition that the smallest and largest eigenvalue 
should be mapped into numbers of the same absolute value: 

 1 (1 )    2 / ( ).pm pM p m M− = − − → = +  (10.20) 

With this choice the spectral radius of I pA−  will be ( ) / ( )M m M m− + .  

If the eigenvalues of the matrix are not known, but we know that the eigenvalues are positive, 
e.g. because A  is symmetric, positive definite, the number p  can be found from the 

condition that 1 2ir+  be minimal. Then the pseudo-solution of the equation 
i i

r pAr=  is 

 2 2

2 2

T T T

i i i i

i i

r A r r Ar
p

Ar Ar
= = . (10.21) 

It will be enough to compute p  for a few times in the course of the iteration, because it will 
oscillate around the previously stated optimal value. 

1.71. Problems 

10.1. How should we modify Jacobi iteration, if the matrix is diagonally dominant with 
respect to columns? 

10.2.  Show that Theorem 10.3.1 can be reformulated for the case when the matrix is 
diagonally dominant with respect to columns. 

10.3. Elaborate estimate (10.9) for the GS-iteration! What happens to Jacobi and GS iteration 
if instead of diagonal dominance we have equality in some equations? And if equality takes 
place in the last row? 

10.4. 

5 1 2 1

3 7 2 0
.  ?   ?

3 0 5 1

0 2 4 6

J GS
A B B

∞ ∞

− 
 − − = = ≤
 −
 

− 

 

10.5. Applying Theorem 10.3.1 show:  1 1
max

(1 )i
ii i i

A
a α β

−

∞
≤

− −
, see also (10.8), if A  is 

strictly diagonally dominant by rows. How can we modify statement for diagonal dominance 
with respect to columns? 
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10.6. Assuming D Lω+  is diagonally dominant by rows, prove 
( )

1
( ) max

1
j

GS
j

j

B
ω ωβ

ω
ωα∞

− +
≤

−
 

by applying Theorem 10.3.1. 

10.7. If 1
1 1D A− <  holds, then we can derive an inequality similar to that of Theorem 10.3.1 

by using (2.15), because of the equality 1 1 1 1
1 2 1 2( ) ( )A D A I D A D A

− − − −+ = + . Show that 
1

21
1 2 1

1

( )
1

D A
A D A

D A

−

−

−
+ ≤

−
 holds for induced norms. Is that necessary that D  be a diagonal 

matrix? For the matrix of Example 4 which method gives a better estimate? 

 


