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We show that the standard Skyrme model without pion mass term can be expressed as a sum of two BPS 
submodels, i.e., of two models whose static field equations, independently, can be reduced to first order 
equations. Further, these first order (BPS) equations have nontrivial solutions, at least locally. These two 
submodels, however, cannot have common solutions. Our findings also shed some light on the rational 
map approximation. Finally, we consider certain generalisations of the BPS submodels.
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1. Introduction

The Skyrme model [1] is a nonlinear field theory supporting 
topological soliton solutions (“Skyrmions”), which finds its main 
application as a low-energy effective theory for QCD [2]. In the 
analysis of Skyrme models (and related theories supporting topo-
logical solitons), two important concepts are topological energy 
bounds and the related notion of Bogomolnyi equations [3,4]. In-
deed, sometimes it is possible to reduce the static field equations 
to first-order equations (“Bogomolnyi equations”) such that the 
corresponding solutions saturate the bound. Within the set of gen-
eralised Skyrme models (but all based on the same Skyrme field 
U ∈ SU(2)), two cases of BPS Skyrme models satisfying a Bogomol-
nyi equation are known. The first one is the “BPS Skyrme model” 
consisting of a term sextic in first derivatives and a potential [5]. In 
this model, Bogomolnyi solutions exist for arbitrary topological de-
gree (“baryon number”) B . The second one consists of the Skyrme 
term (quartic in first derivatives) and a particular potential [6]. 
In this second case, however, only the |B| = 1 solutions (and, of 
course, the trivial vacuum solution) saturate the bound and obey 
the corresponding Bogomolnyi equation. Higher B configurations 
are unbound in this model and turn into lightly bound Skyrmions 
once further terms are added with sufficiently small coupling con-
stants [7–9]. Both these BPS models are genuine Skyrme models 
in the sense that they can be found within the set of generalised 
Skyrme model by an appropriate choice of coupling constants.

In the present paper we want to consider a slightly different 
type of BPS submodels. We will find that the standard Skyrme 
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model (consisting of the sigma model term and the Skyrme term), 
too, may be written as a sum of two BPS submodels, where each 
of the two submodels separately leads to a Bogomolnyi equation 
and nontrivial solutions (at least, locally). These submodels, how-
ever, are not Skyrme models on their own, i.e., it is not possible to 
get just one of these submodels by a choice of coupling constants 
within the set of generalised Skyrme models. In other words, the 
two submodels are multiplied by the same coupling constants, and 
eliminating one automatically eliminates the other. Further, the 
two submodels have no common solutions (except for the trivial 
vacuum solution). This must, of course, be expected, because it 
is known that, although the standard Skyrme model has a topo-
logical energy bound (the Skyrme–Faddeev bound [1,10]) and a 
corresponding Bogomolnyi equation, this first-order equation is too 
restrictive and only allows for the trivial solution. Despite these 
impediments, nevertheless, the existence of further BPS submod-
els is of interest and sheds new light on several issues within the 
Skyrme model.

The generalised Skyrme model we want to consider consists of 
four terms. The sigma model (Dirichlet) term

L2 = 1

2
Tr (LμLμ), (1.1)

the Skyrme (quartic) term

L4 = 1

16
Tr ([Lμ, Lν ]2), (1.2)

and the sextic term, which is just the baryonic current squared 
term

L6 = λ2π4BμBμ, Bμ = 1
2
εμνρσ Tr Lν Lρ Lσ , (1.3)
24π
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where Lμ ≡ U †∂μU is the left invariant current. The last term, 
without derivatives, is the potential L0(U ) = −μ2U(tr U ) which 
provides a mass for pionic excitations. Here, we assume that units 
of energy and length have been chosen such that the coupling con-
stants of the Dirichlet and Skyrme term are scaled away (Skyrme 
units). λ and μ are, thus, dimensionless coupling constants con-
trolling the relative strengths of the corresponding terms.

The original matrix SU (2) Skyrme field U can be decomposed 
into a real scalar ξ and complex scalar u by

U = exp(iξ �τ · �n) = cos ξ 1 + i sin ξ �τ · �n (1.4)

�n = 1

1 + |u|2
(
(u + u∗),−i(u − u∗),1 − |u|2

)
. (1.5)

For topologically nontrivial configurations the full target space S3

has to be covered, which means that ξ should take values in the 
full interval [0, π ] and u should take values in the full complex 
plane C. Each term of the generalized Skyrme model can then be 
rewritten in this new target space coordinates as

L2 = L(1)
2 +L(2)

2 , L(1)
2 ≡ 4 sin2 ξ

uμūμ

(1 + |u|2)2
, L(2)

2 ≡ ξμξμ

(1.6)

L4 = L(1)
4 +L(2)

4 ,

L(1)
4 ≡ 4 sin2 ξ

(
ξμξμ uμūμ

(1 + |u|2)2
− ξμūμ ξμuν

(1 + |u|2)2

)

L(2)
4 ≡ 4 sin4 ξ

(uμūμ)2 − u2
μū2

ν

(1 + |u|2)4
(1.7)

L6 = λ2 sin4 ξ

(1 + |u|2)4

(
iεμνρσ ξνuρ ūσ

)2
, L0 = −μ2U(ξ). (1.8)

For later convenience we have divided the quadratic and quartic 
terms into two parts. Obviously, within the Skyrme model context, 
it is not possible to eliminate, e.g., L(1)

2 without eliminating, at the 
same time, also L(2)

2 .
A well-known example of a Skyrme theory with the BPS prop-

erty is the BPS Skyrme model [5], and it will be useful to review it 
briefly. It is defined as

LB P S = L6 +L0 (1.9)

which after the field decomposition reads

LB P S = λ2 sin4 ξ

(1 + |u|2)4

(
iεμνρσ ξνuρ ūσ

)2 − μ2U(ξ). (1.10)

The Bogomolnyi equation for static field configurations is

λ
sin2 ξ

(1 + |u|2)2
iε i jkξiu j ūk = ±μ

√
U . (1.11)

It is straightforward to notice that there are other possibilities to 
distribute the derivatives of the fields and their contractions with 
the epsilon symbol to form new first order equations with the 
same field content. Therefore, they can be treated as new Bogo-
molnyi equations for the pertinent Skyrme-like models. This will 
be analyzed in the rest of the paper.

2. The first BPS submodel

L(1)
2 and L(1)

4 can be combined into the following expression

L(1) = 4 sin2 ξ

(
uμūμ

(1 + |u|2)2
+ (ξμuμ)(ξν ūν) − ξ2

μ(uν ūν)

(1 + |u|2)2

)
.

(2.1)
The energy of the static case reads

E(1) = 4
∫

d3x
sin2 ξ

(1 + |u|2)2

[
uiūi + (iεi jkξ juk)(−iεimnξmūn)

]
(2.2)

= 4
∫

d3x
sin2 ξ

(1 + |u|2)2
(ui ± iεi jkξ juk)(ūi ∓ iεimnξmūn)

∓ 8
∫

d3x
i sin2 ξ

(1 + |u|2)2
εi jkξiu j ūk

≥ 8

∣∣∣∣∣
∫

d3x
i sin2 ξ

(1 + |u|2)2
εi jkξiu j ūk

∣∣∣∣∣ = 8π2
∣∣∣∣
∫

d3xB0

∣∣∣∣ = 8π2|B|

where the bound is saturated for solutions of the following Bogo-
molnyi equation

ui ± iεi jkξ juk = 0 (2.3)

and its complex conjugation. Note that this equation implies some 
constraints for the fields, namely

uiξi = ūiξi = 0, u2
i = ū2

j = 0. (2.4)

It is interesting to consider the particular solutions provided by 
the ansatz in spherical polar coordinates ξ = ξ(r), u = u(θ, ϕ). This 
ansatz automatically satisfies the first constraint uiξi = 0. To sim-
plify the second constraint, it is useful to use the stereographic 
projection from the unit sphere spanned by (θ, ϕ) to the plane 
spanned by (x, y), say, where z ≡ x + iy = tan(θ/2)eiϕ , because the 
metric on the unit sphere is conformally flat in the coordinates 
(x, y), such that the constraint u2

i = 0 simplifies to uzuz̄ = 0, i.e., 
u must be either holomorphic or anti-holomorphic in the complex 
coordinate z. The sign choice in the Bogomolnyi equation (together 
with the boundary conditions imposed on ξ ) determine whether u
is holomorphic or anti-holomorphic.

It is instructive to insert the ansatz in spherical polar coordi-
nates directly into the energy functional. In a first step we get 
εi jkξ jukεimnξmūn = ξ2

j ui ūi , such that both terms are proportional 
to ui ūi . Next, using the metric in these coordinates

ds2 = dr2 + r2ds2
S2 , ds2

S2 = 4

1 + x2 + y2
(dx2 + dy2) (2.5)

we get for the volume element

d
R3 = drr2d
S2 , d
S2 = 2i

(1 + zz̄)2
dzdz̄ (2.6)

and, further,

uiūi ≡ gijui ū j = (1 + zz̄)2

2r2
(uzūz̄ + uz̄ūz). (2.7)

As a result, the energy functional factorises,

E(1) = 2E(1)
ξ E(1)

u (2.8)

where

E(1)
u =

∫
d
S2

(1 + zz̄)2

(1 + uū)2
(uzūz̄ + uz̄ūz) (2.9)

is just the CP(1) (non-linear sigma) model on S2. Its finite en-
ergy solutions are provided by all holomorphic (positive wind-
ing number) and anti-holomorphic (negative winding number) ra-
tional functions. These solutions saturate the Bogomolnyi bound 
E(1)

u ≥ 4π |N|, where the winding number N is given by the degree 
of the rational map.
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The second energy functional is

E(1)
ξ =

∫
dr sin2 ξ(1 + ξ ′ 2) (2.10)

and allows for an almost trivial Bogomolnyi bound,

E(1)
ξ =

∫
dr sin2 ξ

(
(1 ∓ ξ ′)2 ∓ 2ξ ′) ≥ 2

∣∣∣∣
∫

dr sin2 ξξ ′
∣∣∣∣

= 2

π∫
0

sin2 ξdξ = π (2.11)

where we used the boundary conditions ξ(0) = π , ξ(∞) = 0. The 
corresponding Bogomolnyi equation is

sin2 ξ(ξ ′ 2 ± 1)2 = 0, (2.12)

and the solution with the right boundary conditions is the com-
pacton

ξ(r) =
{

π − r for 0 ≤ r ≤ π
0 for r > π.

(2.13)

The first derivative of the compacton is not continuous at the com-
pacton boundary r = π , but the energy density is continuous, and 
both the Bogomolnyi equation and the full second-order Euler–
Lagrange (EL) equation hold everywhere in space for this solution, 
owing to the presence of the factor sin2 ξ . It may be checked eas-
ily that the baryon number B is equal to the winding number N
for this ansatz. Finally, the energy is E(1) = 2 · π · 4π |N| = 8π2|B|, 
as it must be.

In particular, it follows that this submodel has BPS solutions 
for arbitrary rational maps u = R(z) = p(z)/q(z) (where p and q
are polynomials without common divisor). This is interesting, be-
cause rational maps have been employed to construct approximate 
solutions for the full standard Skyrme model L2 +L4 [11]. Ratio-
nal maps cannot be genuine solutions of this model, because the 
rational map ansatz is incompatible with the EL equation result-
ing from the term L(2)

4 (except for |B| ≤ 1). Inserting the rational 
map ansatz directly into the corresponding energy functional, nev-
ertheless, defines a restricted variational problem. The energy now 
depends on the particular rational map, and minimisation leads to 
rational maps with interesting discrete symmetries (e.g. the sym-
metries of platonic solids) for |B| ≥ 3. Further, these symmetries 
agree with the symmetries of the full numerical solutions [12], and 
also the energies of the corresponding rational map approxima-
tions are rather close to the energies of the numerically calculated 
Skyrmions. Here we may conclude that the rather good quality of 
the rational map approximation may be understood from the fact 
the model has a BPS submodel which is exactly solved by rational 
maps, and there is only one term (L(2)

4 ) which prevents rational 
maps from being exact solutions.

3. The second BPS submodel

L(2)
2 and L(2)

4 can be combined into the expression

L(2) = ξμξμ + 4 sin4 ξ
(uμūμ)2 − u2

μū2
ν

(1 + |u|2)4
. (3.1)

The energy functional for static configurations reads

E(2) =
∫

d3x

(
ξ2

i + 4 sin4 ξ
1

2 4
(iεi jku j ūk)

2
)

(3.2)

(1 + |u| )
=
∫

d3x

(
ξi ∓ 2i sin2 ξ

(1 + |u|)2
εi jku j ūk

)2

± 4
∫

d3x
i sin2 ξ

(1 + |u|)2
εi jkξiu j ūk

≥ 4

∣∣∣∣∣
∫

d3x
i sin2 ξ

(1 + |u|)2
εi jkξiu j ūk

∣∣∣∣∣ = 4π2
∣∣∣∣
∫

d3xB0

∣∣∣∣ = 4π2|B|.

The bound is saturated for solutions of the Bogomolnyi equations

ξi ∓ 2i sin2 ξ

(1 + |u|)2
εi jku j ūk = 0. (3.3)

Observe that the Bogomolnyi equations lead to some constrains for 
the fields,

uiξi = ūiξi = 0. (3.4)

Assuming the ansatz ξ = ξ(r), u = g(θ)eimϕ , we get for u the solu-
tion

u = tan
θ

2
eimϕ, (3.5)

which, for |m| > 1, has a conical singularity along the z axis. The 
energy density and winding number density, on the other hand, 
are smooth. Further, m is equal to the baryon number, B = m, for 
genuine Skyrmion configurations (i.e., where ξ obeys the corre-
sponding boundary conditions). It is interesting to note that the 
BPS Skyrme model leads to the same solution for u this ansatz. 
The two BPS equations (1.11) and (3.3) are, in fact, very similar for 
this ansatz (identical for u, different for ξ(r)). The resulting equa-
tion for ξ reads

dξ

dr
= ±m

r2
sin2 ξ . (3.6)

Choosing the minus sign (a negative slope for ξ(r)), the solution is

ξ = arccot m

(
s0 − 1

r

)
(3.7)

where s0 is an integration constant. At r → 0 we have cot ξ →
−∞, i.e., ξ → π , as desired. In the limit r → ∞, however, cot ξ
does not approach ∞, i.e., ξ does not approach 0. Instead, the 
profile function ξ takes values only in the interval π ≥ ξ(r) ≥
arccot ms0 > 0. The local solution of the BPS equation, therefore, 
cannot be extended to a solution on the full target space, i.e., to a 
Skyrmion. Instead, it leads to a “fractional” Skyrmion, where both 
the baryon number and the BPS energy may take arbitrary frac-
tional values, defined by the choice of the integration constant s0.

4. Some generalisations

We now want to consider some generalisations of the two BPS 
submodels, by multiplying each term by a certain coupling func-
tion.

4.1. The dilaton-YM like model

We consider the following model

L̃(2) = h2(ξ, uū)

(
ξμξμ + g2

2(ξ, uū) sin4 ξ
(uμūμ)2 − u2

μū2
ν

(1 + |u|2)4

)
.

(4.1)

The energy integral for static configurations reads
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Ẽ(2) =
∫

d3xh2

(
ξ2

i + g2
2 sin4 ξ

1

(1 + |u|2)4
(iεi jku j ūk)

2
)

(4.2)

=
∫

d3xh2

(
ξi ∓ ig2 sin2 ξ

(1 + |u|)2
εi jku j ūk

)2

± 2
∫

d3x
ig2h2 sin2 ξ

(1 + |u|)2
εi jkξiu j ūk

≥ 2

∣∣∣∣∣
∫

d3x
ig2h2 sin2 ξ

(1 + |u|)2
εi jkξiu j ūk

∣∣∣∣∣
= 2π2

∣∣∣∣
∫

d3xg2h2 B0

∣∣∣∣ = 2π2|B|〈g2h2〉S3

where 〈·〉S3 is the target space average of the target space function 
inserted between the brackets. The bound is saturated for solutions 
of the Bogomolnyi equations

ξi ∓ ig2 sin2 ξ

(1 + |u|)2
εi jku j ūk = 0. (4.3)

Note, that this Bogomolnyi equation is identical to the one in the 
dilaton – SU (2) Yang–Mills model describing a magnetic monopole 
[13–16]. Further, it leads to the constraints (3.4), again.

An example can be provided by a particular choice of g2 and h2,

g2 = 1

cos2 ξ
2

, h2 = 1. (4.4)

Then, using the ansatz in spherical polar coordinates, again, the 
topologically nontrivial solutions are again (3.5) for u, whereas ξ =
ξ(r) obeys

dξ

dr
= ±2m

r2
sin2 ξ

2
. (4.5)

Imposing the following boundary conditions: ξ(r = 0) = 0 and 
ξ(r = ∞) = π , the pertinent solution is

cot
ξ

2
= m

r
⇒ ξ = 2 arccot

m

r
. (4.6)

Here,

〈g2h2〉S3 = 2

π

π∫
0

dξ sin2 ξ · 1

cos2 ξ
2

= 4 (4.7)

and the energy and topological charge are

Ẽ(2) = 8π2m, B = m. (4.8)

4.2. The holomorphic map like model

Now, we define the model

L̃(1) = h1

(
uμūμ

(1 + |u|2)2
+ g2

1 sin4 ξ
(ξμuμ)(ξν ūν) − ξ2

μ(uν ūν)

(1 + |u|2)2

)
.

(4.9)

The energy of the static case reads

Ẽ(1) =
∫

d3xh1

(
uiūi

(1 + |u|2)2

+ g2
1

sin4 ξ

2 2
(iεi jkξ juk)(−iεimnξmūn)

)
(4.10)
(1 + |u| )
=
∫

d3x
h1

(1 + |u|2)2
(ui ± ig1 sin2 ξεi jkξ juk)

× (ūi ∓ ig1 sin2 ξεimnξmūn)

∓ 2
∫

d3x
ig1h1 sin2 ξ

(1 + |u|2)2
εi jkξiu j ūk

≥ 2

∣∣∣∣∣
∫

d3x
ig1h1 sin2 ξ

(1 + |u|2)2
εi jkξiu j ūk

∣∣∣∣∣
= 4π2

∣∣∣∣
∫

d3xg1h1 B0

∣∣∣∣ = 4π2|B| 〈g1h1〉S3

where the bound is saturated for solutions of the following Bogo-
molnyi equation

ui ± ig1 sin2 ξεi jkξ juk = 0 (4.11)

and its complex conjugation. Note that this formula implies the 
constraints (2.4) for the complex and real fields. An example of 
BPS Skyrmions of this type can be found for

h1 = sin2 ξ, g1 = 1

sin3 ξ
. (4.12)

We assume that ξ = ξ(z) and u = u(x, y) in cartesian coordinates 
(x, y, z). Then, the scalar obeys

g2 sin2 ξξz = −1 ⇒ ξz = − sin ξ (4.13)

which is the sine-Gordon kink equation and therefore

ξ = 2 arctan e−z. (4.14)

This means that the complex scalar obeys

ui ∓ iεi ju j = 0 (4.15)

where (i, j) ∈ {1, 2} and therefore it is just a holomorphic (anti-
holomorphic) function in x + iy. For example, u = ρmeimϕ , when 
cylindrical coordinates (ρ, ϕ, z) are used. So, finally we get holo-
morphic 2-dimensional solitons located on a sine-Gordon brane 
with co-dimension one, and

Ẽ(1) = 4π2|B|
〈

1

sin ξ

〉
S3

= 16π |B|, B = m. (4.16)

5. Summary

We found the interesting result that the generalized Skyrme 
model can, in fact, be expressed as a sum of three BPS submod-
els,

LSk = L2 +L4 +L6 +L0

=
(
L(1)

2 +L(1)
4

)
+

(
L(2)

2 +L(2)
4

)
+ (L6 +L0)

≡ L(1)
B P S +L(2)

B P S +LB P S . (5.1)

In comparison with the BPS Skyrme model, however, the new BPS 
submodels reveal some important differences.

1. The new BPS submodels cannot be obtained as a certain limit 
(particular values of the model parameters) of the full Skyrme 
model. Each of them consists of two terms – one emerging 
from the Dirichlet part and one from the Skyrme part.

2. The new BPS submodels are completely independent of the 
pion mass. The potential part of the generalized Skyrme model 
only contributes to the BPS Skyrme model.
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3. While the BPS Skyrme model possesses well-behaved topolog-
ically nontrivial solutions i.e., BPS Skyrmions, whose compact 
or non-compact nature depends on the potential, the other 
BPS submodels provide solutions with different characteris-
tics. The second BPS submodel leads to fractional Skyrmions, 
i.e., to solutions with a non-integer baryon number. The first 
BPS submodel has compact Skyrmions as solutions. Obviously, 
the two submodels cannot have common solutions, because 
this would lead to a BPS solution for the full standard Skyrme 
model L2 +L4, which are known not to exist.

4. One characteristic feature of the solutions of the two submod-
els is the opposing effect which they have on the Skyrmion 
size. Indeed, the model L(1) leads to finite size Skyrmions 
(compactons) whose size, in addition, is independent of the 
baryon number. The model L(2) , on the other hand, leads to 
fractional Skyrmions, i.e., “Skyrmions” of “more than infinite 
size” which do not even fit in the infinite interval r ∈ [0, ∞]. 
The size of the Skyrmions of the full model L2 + L4 is a 
compromise between these two extremes, i.e., Skyrmions with 
infinite size, which decay algebraically for r → ∞.

5. The submodel L(1) leads to Skyrmions with a shell-like struc-
ture, where the energy density is zero both at the centre r = 0
and outside the compacton boundary and takes its maximum 
value at some nonzero radius. This reflects a known behaviour 
of the Skyrmions of the full model L2 + L4, which have a 
shell-like structure, as well [12].

As mentioned already, the submodel L(1) is solved by arbitrary 
rational maps u(z) for an ansatz ξ(r) and u(z) in spherical polar 
coordinates, and the same “ansatz” provides rather good approxi-
mations for solutions of the full standard Skyrme model L2 +L4. 
Here we just want to remark that inserting the rational map ansatz 
into the static energy functional of the generalised Skyrme model 
(5.1) leads exactly to the same restricted variational problem for 
the rational map u = R(z). That is to say, the restricted energy 
functional is

Egen = 4π

∫
dr

[
r2ξ ′ 2 + μ2r2U(ξ) + 2B sin2 ξ(ξ ′ 2 + 1)

+ I
sin4 ξ

r2

(
1 + λ2

4
ξ2

)]
(5.2)

where the rational map R(z) must minimize the functional [11]

I = 1

4π

∫
d
S2

(
1 + zz̄

1 + R R̄

)4 (
Rz R̄ z̄

)2
(5.3)

exactly as in the rational map approximation for the model 
L2 + L4. This fact was pointed out recently in [9] and used there 
for a detailed study of the B = 4 Skyrmion (the helium nucleus) 
within the generalised Skyrme model.

In addition to introducing the proper BPS submodels of the 
standard (massless) Skyrme model, we also considered some gen-
eralisations, where each term in the submodels is multiplied by 
a field-dependent coupling function. If the coupling functions only 
depend on the profile function ξ , then the generalisations based on 
L(1) continue to be of the holomorphic type, i.e., the u field has 
a CP(1)-model energy density in a separation-of-variable ansatz. 
The second model, L(2) , generalises to a field theory which shares 
its Bogomolnyi equations with the ones in the dilaton – SU (2)

Yang–Mills model for a magnetic monopole [13–16], where ξ plays 
the role of the dilaton. Both generalised models lead to genuine 
topological solitons obeying the required boundary conditions for 
appropriate choices of the coupling functions.
There exists a lower dimensional counterpart of the Skyrme 
model, the baby Skyrme model [17] (here in the complex field for-
mulation)

Lbaby = λ2L2 + λ4L4 + λ0L0

= λ2
uμūμ

(1 + |u|2)2
− λ4

(uμūμ)2 − u2
μū2

ν

(1 + |u|2)4
− λ0U (5.4)

where one can distinguish two BPS submodels. The C P 1 (sigma) 
model

LC P 1 ≡ L2 = uμūμ

(1 + |u|2)2
(5.5)

and the baby BPS Skyrme model [18]

LB P S ≡ L4 + λ0L0 = (uμūμ)2 − u2
μū2

ν

(1 + |u|2)4
− λ0U . (5.6)

Both BPS submodels are genuine baby Skyrme models. Further, 
they are true BPS theories, i.e., there exist Bogomolnyi equations 
and solutions which saturate a topological bound involving a topo-
logical index. These equations are

ui ± iεi ju j = 0 (5.7)

for the CP(1) model and

iεi jui ū j

(1 + |u|2)2
± √

λ0U = 0 (5.8)

for the BPS baby Skyrme model. Hence, we recognize a similar 
pattern to the one found in the (3 +1)-dimensional Skyrme model.

Let us remark that there exist further possibilities to find BPS 
versions of the Skyrme model. One particular example, based on 
the same field contents but a different Lagrangian was constructed 
in [19]. If the topology of the base space manifold is changed 
and allows to define additional topological indices, then further 
BPS sectors of the Skyrme model related to these new topological 
indices may be found [20,21]. Another option which requires, how-
ever, to change the field contents by adding an infinite number of 
vector mesons was proposed and developed in [22,23].

Finally, the hidden BPS structure of the standard Skyrme model 
revealed here might be related to possible supersymmetric ver-
sions of the theory [24,25], because there is a close relation be-
tween BPS sectors and supersymmetry, in general (see [26] for the 
baby Skyrme model).
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