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Abstract: We prove the asymptotic global stability of the de Sitter solution in the Friedmann-Robertson-Walker
conservative and dissipative cosmology. In the proof we construct a Lyapunov function in an exact form and establish
its relationship with the first integral of dynamical system determining evolution of the flat Universe. Our result is
that de-Sitter solution is asymptotically stable solution for general form of equation of state p D p.�;H/, where
dependence on the Hubble function H means that the effect of dissipation are included.
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1 Introduction

We assume a cosmological model with topology R�M3 where M3 is maximally symmetric 3-space; the metric of
spacetime is Lorenzian .�;C;C;C/ and assumes the following form

ds2 D �dt2 D a.t/2
dr2

1 � 1
4
kr2
C r2d�2 C r2 sin2 �d�2

!
(1)

where .t; r; �; �/ are the pseudo-spherical coordinates [1], a.t/ > 0 is the function of the time coordinate which is
called the scale factor, and k D �1; 0; 1 is the spacial curvature. The 3-space of constant curvature is spatially open
for k D �1, spatially closed for k D 1 and spatially flat for k D 0.

The dynamics of metric tensor g�� W ds2 D g��dx�dx� is determined from the Einstein field equation

R�� �
1

2
Rg�� Cƒg�� D T�� (2)

where R�� is the Ricci tensor, R D g��R�� , (x1; x2; x3; x4/ D .t; r; �; �), is the Ricci scalar; we use natural
units such that 8�G D c D 1.

Matter is assumed to be in the form of perfect fluid

T�� D pg�� C .�C p/u�u� (3)

where u� D .�1; 0; 0; 0/ denotes the four-velocity of an observer comoving with the fluid. The functions p.t/, �.t/
are pressure and energy density of the matter fluid, respectively.
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Tensor energy-momentum can be generalised for non-perfect, viscous fluid [2], which for metric (1) assumes
the form

T 00 D ��; T ik D

(
p � 3� Pa

a
for i D k

0 for i ¤ k
(4)

where i; k D f1; 2; 3g, � is the viscosity coefficient and H � Pa
a

is the Hubble parameter. Formally inclusion of
viscous fluid is equivalent to replace pressure p by p � 3� Pa

a
in the energy-momentum tensor.

Such a cosmological model with the imperfect fluid (� D const) has been considered since Heller et al. [3] and
Belinskii et al. [4]. The Einstein field equation (2) for this model reduces to [5]

� D �ƒC
k

a2
C 3
Pa2

a2
(5)

p D ƒ � 2
Ra

a
�
Pa2

a2
�
k

a2
(6)

whereƒ is the cosmological constant parameter. The dependence of pressure p onH D Pa
a

means that we considered
viscous effects with the viscosity coefficient � D �1

3
@p
@H

.
Equations (5)-(6) can be rewritten to the form of three-dimensional autonomous dynamical system

PH D �H2 �
1

6
.�C 3p/C

ƒ

3
(7)

P� D �3H.�C p/ (8)

Pa D Ha (9)

where p D p.H; �/ is the general form of assumed equation of state.
The dynamical system (7)-(9) is analyzed in the present paper. Let us study the asymptotic stability of the

solution (H0 D
q
ƒ
3
; �0 D 0) (future de Sitter solution).

Definition 1.1. A critical point x0 of the system Px D f.x/, is a (Lyapunov) stable point if for all neighbourhoods U
of x0 there exists a neighbourhood U� of x0 such that if x0 2 U� at t D t0 then �t .x0/ 2 U for all t > t0, where
�t is the flow of a dynamical system. If the critical point x0 is stable for all x 2 U�, limt!1 jj�t .x � x0jj D 0.

To determine the asymptotic stability of a solution of the dynamical system considered we construct the Lyapunov
function [6].

2 Lyapunov function

Let us consider shortly some basic definitions of first integrals [7].
Let M � Kn be an open subset in Kn where the field K is R or C. We denote by X .M/ and F.M/ the algebra

of vector fields and functions onM , respectively. For simplicity, we assume that all objects are of the class C1. Let
us consider a system of ordinary differential equations on M

dx

dt
D XF .x/ D F.x/; x D .x1; : : : ; xn/ 2M � Kn (10)

where the vector field XF D X .M/ is given by

XF D

nX
iD1

f i .x/
@

@xi
D

nX
iD1

f i .x/@i D f
i .x/@i (11)

where .f 1.x/; : : : ; f n.x// are components of the vector field XF .
We are looking for a solution or a class of solutions of system (10). This is the motivation of the following

definition.
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Definition 2.1. We say that subsetW �M is invariant with respect to system (10) ifW consists only of the system’s
phase curves.

It seems that it is extremely difficult to check if a given set W is invariant with respect to (10) because, in general,
we do not know its solutions. However, for checking the invariance, it is enough to know if, for all x 2 W , the vector
of phase velocity in this point is tangent to M , i.e. if F.x/ 2 TxW for all x 2 W .

The most important invariant sets are those allowing to reduce the dimension of the system. For this purpose
one invariant set is not enough, we need a one parameter family Wc of .n � 1/-dimensional invariant sets that gives
a foliation of M . Such a foliation arises naturally when we know a first integral.

Definition 2.2. Function G 2 F.M/ is called the first integral of system (10) if it is constant on all solutions of the
system. It is equivalent to the condition

XF .G/.x/ D @iG.x/f
i .x/ D 0; for x 2M: (12)

It is well known that a levelWc D fx 2M jG.x/ D cg of a first integral is invariant, and c ! Wc gives the foliation
mentioned earlier.

When we cannot find a first integral of the system, it is sometimes possible to find a function whose one level is
invariant.

Definition 2.3 (Lyapunov function). Let Px D f.x/ with x 2 X � Rn be a smooth autonomous system of equations
with fixed point x0. Let V WRn ! R be a continuous function in a neighbourhood U of x0 , the V is called a
Lyapunov function for the point x0 if

1. V is differentiable in U n fx0g
2. V.x/ > V.x0/
3. PV � 0 8x 2 U n fx0g.

Theorem 2.4 (Lyapunov stability). Let x0 be a critical point of the system Px D f.x/, and let U be a domain
containing x0. If there exists a Lyapunov function V.x/ for which PV � 0, then x0 is a stable fixed point. If there
exists a Lyapunov function V.x/ for which PV < 0, then x0 is a asymptotically stable fixed point.

Furthermore, if jjxjj ! 1 and V.x/ ! 1 for all x, then x0 is said to be globally stable or globally
asymptotically stable, respectively.

Let us return to our system (7)-(9).

Theorem 2.5. The system (7)-(9) has first integral in the form

� � 3H2 Cƒ D 3
k

a2
: (13)

Proof. After differentiation of both sides of .13/ over time t and substitution of right-hand sides of (7)-(9) we obtain
the form (13) of the first integral.

In the three-dimensional phase space the first integral (13) defines surfaces for different values of the parameter ƒ.
The dimension of the dynamical system (7)-(9) can be lowered over one due to this first integral

PH D �H2 �
1

6
.�C 3p/C

ƒ

3
(14)

P� D �3H.�C p/ (15)

where p D p.H; �/ in generally.
For the de Sitter fixed point of (14)-(15), we have p D ��, from equation (15). Then from equation (14) and

using the first integral (13) we obtain that k D 0. It means that fixed point is an intersection of the trajectory of the
flat model and the line �C p.H; �/ D 0 in the phase space .H; �/.
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Theorem 2.6. The de Sitter solutionH0 D ˙
q
ƒ
3

is asymptotically stable forH0 > 0 and asymptotically unstable
for H0 < 0.

Proof. Let us propose the following Lyapunov function

V.H; �/ �

(
� � 3H2 Cƒ for k D 0; 1

�
�
� � 3H2 Cƒ

�
for k D �1

(16)

which can be obtained from (13) by putting k D 0. The surface f.H; �/W �� 3H2Cƒ D 0g divides the phase space
into two domains occupied by the trajectories with k D 1 and k D �1, respectively.

Let us consider the first case of non-negative Lyapunov function V.t/ for k D 0; 1 in (16).

PV .t/ D P� � 6H PH D �3H.�C p/ � 6H

�
�H2 �

1

6
.�C 3p/C

ƒ

3

�
D �3H

�
�C p C 2

�
�H2 �

1

6
.�C 3p/C

ƒ

3

��
D �2H

�
� � 3H2 Cƒ

�
D �2H

3k

a2
� 0; if H > 0:

(17)

Analogously, we choose the second case of Lyapunov function V.t/ for k D �1 in (16) to have the function V.t/ to
be non-negative.

Finally, we obtain that at both critical points (H D ˙
q
ƒ
3
; �0 D 0) the Lyapunov function (16) vanishes. So,

the conditions of Lyapunov stability Theorem 2.4 are satisfied.

We conclude that while the stable de Sitter solution is asymptotically stable, the unstable de Sitter solution is unstable.
This result was obtained by using global methods of dynamics investigations instead of the standard local stability
analysis.

The choice of the Lyapunov function in the form of a first integral is suitable for proving the asymptotic stability
of the stable de Sitter solution of the model. This methodological result has also the clear cosmological interpretation:
the stable de Sitter universe has no hair like a black hole.

3 Dynamics of standard cosmological model

Let us consider a homogeneous and isotropic Friedmann-Robertson-Walker model with metric (1) and matter with
energy density � and the cosmological constant ƒ. We choose two phase space variables: the Hubble parameter
H D x and energy density � D y and define the dynamical system

Px D �x2 �
1

6
y C

ƒ

3
(18)

Py D �3xy (19)

where the dot denotes derivative with respect to time t and ƒ > 0 is the cosmological constant. It is a special case
of system (14)-(15).

Let us apply the local stability analysis for system (18)-(19).

Remark 3.1. System (18)-(19) has three critical points: stable node (x D �
q
ƒ
3
; y D 0), unstable node (x Dq

ƒ
3
; y D 0), and a saddle (x D 0; y D 2ƒ).

From the characteristic equation det.A � �I/ D 0, where the linearization matrix of system (18)-(19) is

A D

"
�2x0

1
6

�3y0 �3x0

#
(20)
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we have that the determinant and the trace of the linearization matrix A and the discriminant of the characteristic
equation are detA D 6x2

0
�
1
2
y0, trA D �5x0 and � D x2

0
C 2y0, respectively, where .x0; y0/ is a critical point.

Therefore,

1. the critical point (x0 D �
q
ƒ
3
; y0 D 0) is an unstable node as detA D 2ƒ > 0, trA D 5

3

p
ƒ > 0, and

� D ƒ
3
> 0;

2. the critical point (x0 D
q
ƒ
3
; y0 D 0) is a stable node as detA D �ƒ < 0, trA D �5

3

p
ƒ < 0, and� D ƒ

3
> 0;

3. the critical point (x0 D 0; y0 D 2ƒ) is a saddle as detA D 2ƒ > 0, trA D 0, and � D 4ƒ > 0.
The phase portrait of system (18)-(19) is presented in Figure 1.

Fig. 1. The phase portrait of system (18)-(19). There three critical points: point A represents the unstable de Sitter universe, point B

represents the stable de Sitter universe, and point C represents the Einstein-de Sitter universe. The red and blue trajectories lie on
unstable and stable invariant manifolds, respectively. It is assumed ƒ is positive (for illustration ƒ D 1).
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