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ABSTRACT
We apply keyquery-based taxonomy composition to compute a
classification system for the CORE dataset, a shared crawl of about
850 000 scientific papers. Keyquery-based taxonomy composition
can be understood as a two-phase hierarchical document clustering
technique that utilizes search queries as cluster labels: In a first
phase, the document collection is indexed by a reference search
engine, and the documents are tagged with the search queries they
are relevant for—their so-called keyqueries. In a second phase,
a hierarchical clustering is formed from the keyqueries within an
iterative process.

We use the explicit topic model ESA as document retrieval model
in order to index the CORE dataset in the reference search engine.
Under the ESA retrieval model, documents are represented as vec-
tors of similarities to Wikipedia articles; a methodology proven to
be advantageous for text categorization tasks. Our paper presents
the generated taxonomy and reports on quantitative properties such
as document coverage and processing requirements.

Categories and Subject Descriptors: H.3.3 [Information Search
and Retrieval]: Retrieval Models, Query Formulation
General Terms: Algorithms, Experimentation, Performance
Keywords: dynamic taxonomy composition, keyquery, classifica-
tion systems, reverted index, big data problem

1. INTRODUCTION
AND RELATED WORK

Classification systems form the heart of any library information
system. For library maintainers, classification systems provide an
effective means to overview a library’s inventory. For library users,
classification systems facilitate the structured exploration of large
document sets. The manual development and maintenance of a
classification system is a complex and time consuming task, raising
the question whether and at which quality this task can be auto-
mated. In this paper we demonstrate how to compute a taxonomic
classification system for a digital library (or a subset thereof) us-
ing keyquery-based taxonomy composition, a document clustering
technique recently proposed by Gollub et al. [8]. Specifically, we
present a classification system that we computed for CORE (a crawl

This publication has previously appeared in the November/December 2014
issue of D-Lib Magazine (http://www.dlib.org)
.

of 850 000 scientific papers), which serves as a shared dataset for
the Third International Workshop on Mining Scientific Publications,
and which currently lacks subject-oriented classification.

In the following, we briefly introduce the concepts behind
keyquery-based taxonomy composition and give pointers to related
work where appropriate. Section 2 describes the technical details of
our data processing pipeline, and explains various design decisions.
Section 3 presents an excerpt of the computed CORE classification
system along with informative statistics.

A taxonomic classification system, like any taxonomy, is an ar-
rangement of terms in a tree-like structure, where parent-child rela-
tionships indicate that the parent term semantically subsumes the
child term. A taxonomy can hence be defined as a pair (T,≤), where
T is a terminology (the set of terms), and ≤ is a reflexive and tran-
sitive binary relation over T called subsumption (the parent-child
relationships) [11]. The idea of keyquery-based taxonomy composi-
tion is to treat the inverted index µ : V → 2D of a reference search
engine as a model from which a taxonomy can be inferred (we use
the notation 2X to denote the powerset of X). For the terminology
T, a subset of all queries that can be formulated using µ’s vocabulary
V is taken. The subsumption ≤ is inferred from µ’s postlists, each
holding a subset of the indexed document collection D. Specifically,
a term t1 ∈ T is assumed to subsume a term t2 ∈ T , t2 ≤ t1 if the
result listDt2 is a subset ofDt1 , Dt2 ⊂ Dt1 . Further, it is assumed
that the reference search engine captures semantic subsumptions
only roughly, and that a tolerance level must be introduced that
allows to infer a subsumption relationship already if the subset rela-
tionship holds only to a certain extent. To this end, keyquery-based
taxonomy composition introduces a two-phase document clustering
algorithm that determines, for a given parent term, a collection of
child terms which are (1) largely subsumed by the parent term, and
(2) together maximize the recall with respect to the parent term’s
post-list. Applied to each term in T, the clustering algorithm eventu-
ally finds all subsumptions induced by the reference search engine.

In the light of the classification of document clustering algorithms
by Carpineto et al. [4], this two-phase clustering algorithm can be
termed a description-centered clustering algorithm. Clustering al-
gorithms of this type follow the intuition that meaningful cluster
descriptions are essential for a clustering from a user perspective,
and hence, their formation should be the driving force of the cluster
analysis. Within keyquery-based taxonomy composition, the no-
tion of meaningful is defined as follows: A term is a meaningful
description of a cluster if a reference search engine queried with that
term will retrieve the cluster’s documents. This definition implies
that the potential clusters of a document are given by the queries
for which it is retrieved. These queries are called the keyqueries
of a document, and they are determined and stored in a keyquery
acquisition phase preceding the actual cluster formation process.
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Figure 1: Conceptual overview for composing classification sys-
tems for arbitrary library subsets. The upper part of the figure
shows the offline keyquery acquisition and assignment compo-
nent, which both determines all keyqueries for the library doc-
uments and stores them in the reverted index. The lower part
of the figure shows the online cluster formation component,
which iteratively composes sublevels Qc for a user provided li-
brary subset Du. The composition of sublevels is controlled by
the user, who selects a query Qu from the current taxonomy
levelQc.

This two-phase approach is illustrated in Figure 1. The upper part
of the figure shows the process of keyquery acquisition, whereas the
lower part illustrates the cluster formation.
Keyquery Acquisition. To determine the keyqueries for a document
collection D, a reference search engine that indexes the documents
has to be set up (left column of Figure 1). The reference search
engine employs the inverted index µ in order to retrieve the relevant
documents Du for a query Qu. For the documents D of a digital
library, a search engine may probably exist and can be directly
applied for our purposes. For the CORE dataset, we set up a new
reference search engine that employs explicit semantic analysis,
ESA, as retrieval model [7]; see Section 2.1 for details.

From the inverted index µ, the reverted index µ−1 can be com-
puted, which lists every document of D in its keyset and stores the
document’s keyqueries as postlists [10] (right column of Figure 1).
To compute the keyqueries for the documents in D, the vocabu-
lary V of the inverted index is used to formulate search queries that
consist of terms from V . Together, these queries form the termi-
nology for our taxonomy: the query spaceQ. During the reverted
indexing process each query inQ is submitted to the search engine,
and the returned documents are stored in the respective postlists of
the reverted index. Note that this procedure can be seen as a general
framework for automated tagging, and actually, depending on the
specific reference search engine used, existing approaches to this
task may be approximated under this framework (cf. [13, 6]).
Cluster Formation. The cluster formation process is illustrated in

the lower part of Figure 1; it is initiated by providing a document
set Du. For our task of composing a classification for the CORE
dataset, Du corresponds to the entire CORE collection D. However,
a powerful feature of keyquery-based taxonomy composition is
that it can dynamically compose tailored classification systems for
arbitrary subsets of D. Especially, Du could be the search results
for a query submitted to the reference search engine, giving rise to
an interesting application in exploratory search settings [14].

To form a clustering for the given documents Du, a set of k
queries Qc is sought whose search results cover Du with high re-
call, and which are subsumed by Du with high precision. For each
queryQ, its recall with respect toDu is defined as |DQ∩Du|/|Du|,
whereas its precision is defined as |DQ∩Du|/|DQ|. The variable k
controls the maximum number of clusters in the clustering and is set
to twelve in our application as suggested in the original paper. To
find the best clustering forDu, the reverted index could be exploited
in different ways. First, the whole set Du can be submitted to the
reverted index, which in turn responds with a list of all keyqueriesQ
that appear in any of the postlists for Du, ranked according to their
frequency of appearance (= |DQ∩Du|). This approach is employed
by the greedy set cover algorithm DocumentCover, which we use
to compose the CORE classification system. DocumentCover is
described in Section 2.2. Alternatively, the reverted index could be
queried one document at a time to construct a keyquery-document
matrix for Du. This matrix could then form the basis of an agglom-
erative cluster formation process (cf. [2, 3]). Since, independent
from the cluster formation approach, a clustering is defined to be a
set of queries, it is ensured that only clusteringsQc with meaningful
cluster labels are formed. This implication can be phrased also as a
query constraint within constraint clustering terminology [1]: Two
documents cannot link if they do not share a common keyquery.

Given the clusteringQc for the initial Du, a hierarchical cluster-
ing (i.e., a classification system) can be achieved by submitting each
keyquery ofQc to the reference search engine, which in turn triggers
the generation of clusterings for the next sublevel. For the CORE
dataset, we repeat this iterative process until the hierarchy is three
levels deep. The resulting clustering is used as the classification
system for CORE in the next section.

2. APPLICATION TO CORE
The CORE dataset provides a convenient real-world testbed for

keyquery-based taxonomy composition. Out of the 850 000 total
articles in the data dump, we limit our analysis to articles where
English full-text is available. To further improve the quality of the
dataset, we try to filter out articles with parsing errors by discarding
those whose average word length is more than two standard devia-
tions from the mean of 6.5 characters. These filtering steps result in
a set of about 450 000 articles, which form the foundation for the
experiment presented below.

2.1 Keyquery Acquisition
The major design decision that has to be made in the keyquery

acquisition phase is the selection of a retrieval model for the refer-
ence search engine. Our retrieval model of choice for CORE is the
explicit topic model ESA [7], because it possesses, in comparison
to bag-of-words or latent topic models, outstanding properties for
our task.
Domain Knowledge. ESA represents documents via their similarity
to a set of Wikipedia articles. Since we know that the CORE dataset
consists of academic papers from various disciplines, we can incor-
porate this domain knowledge by choosing the Wikipedia articles for
ESA accordingly. We select all articles referenced on Wikipedia’s
“List of Academic Disciplines” page, and we further enrich the set
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by articles whose titles appear in more than 100 CORE papers. In
total, we extract 4 830 articles from the English Wikipedia dump for
February 2, 2014.
Query Representation. The titles of the selected articles also form the
vocabulary V , i.e. the query spaceQ is set equal to the topic space
of ESA, which has an interesting effect when it comes to answering
queries. Typically, to answer queries under a topic model, queries
are treated as (tiny) documents in the vocabulary space. To identify
relevant documents, the query is transferred from the vocabulary
space to the topic space first, and its similarity to documents in the
topic space is then used as relevance metric. The explicit topics of
ESA allow us to pursue an alternative relevance assessment strategy
which aligns well with the idea of queries as higher level concepts:
Queries are treated as documents that already reside in the topic
space, and relevance scores can be computed directly. This works
since all query terms have—by vocabulary design—a well-defined
representation in the topic space of ESA.
Implicit Relevance. As a final argument for the use of ESA, un-
like bag-of-words models like TfIdf, ESA is capable of finding
relevant documents that do not contain the query terms explicitly.
Especially for general terms—like those one would expect on the
first level of a taxonomy—this is an important property, since they
are known to appear rarely explicitly in relevant documents [11].
With ESA, to be relevant for a query term, a document only needs
to be similar to the respective Wikipedia article. To compute the
similarity between documents and Wikipedia articles, we represent
each document and each Wikipedia article under a BM25 retrieval
model, and compute the dot product for each document-article pair.
Given 450 000 CORE documents and 4 830 Wikipedia articles, this
yields an 450 000-by-4 830 similarity matrix, where each of the col-
umn vectors contains the similarity distribution for one Wikipedia
topic. Since these document-topic similarity distributions tend to be
long-tailed, with many documents achieving a low similarity score,
we apply the sparsification criterion from [9], setting similarities
which are not significantly above a computed expected similarity
score to zero. For every CORE document, we consider the set of
Wikipedia articles with non-zero similarity scores to be its key-
queries. We store the mapping µ from each keyquery to documents
in an inverted index. The mapping µ−1 from each document to its
keyqueries is stored in a reverted index for efficient access during
cluster formation.

Figure 2 shows the frequency distribution of keyqueries in the
reverted index. Given a fan-out parameter k = 12 and a target depth
of three for the taxonomy, keyquery-based taxonomy composition
proceeds in a level-wise manner, first splitting the entire collection
into 12 top-level classes, then incrementally subdividing subclasses
up to the leaf level. For the chosen taxonomy parameters, the over-
laid vertical bars in Figure 2 show the optimal result set sizes for
the leaf, middle and top level, from left to right. The horizontal
cross bars superimposed on each level show the minimum number
of queries needed at a given depth. Note that the “Academic Disci-
plines” topics alone suffice to fill out the top level of the taxonomy,
whereas the lower levels require additional articles selected from
document keyphrases. As noted, the full set of Wikipedia topics
forms the query spaceQ for the cluster-formation process.

2.2 Cluster Formation
The cluster formation step can be stated as an iterative optimiza-

tion problem. Given a document set Du to subdivide, the objective
is to find the k-subset of the query space Q that maximizes recall
with respect to Du, subject to the constraint that the maximum
fan-out of k is never exceeded.

We employ Greedy Document Cover to approximate the solution
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Figure 2: Distribution of query result set sizes in the reverted
index for the CORE dataset. The overlaid vertical lines show
the optimal result set sizes for the generated taxonomy of depth
3; horizontal crossbars show the minimum number of queries
needed at a given level.

to this optimization problem (cf. [8]). The algorithm subdivides a
single document set Du into k subclasses using keyqueries from the
reverted index; it is applied iteratively to the resulting subclasses
until the leaf level of the taxonomy is reached. Next toDu and k, the
algorithm receives as input the target class size t, which is computed
as |Du| /k, and a slack parameterm = 50% which allows the result
set size of the keyqueries to deviate by some margin.

In order to subdivide a document set Du, the algorithm retrieves
from the reverted index the set of candidate queriesQu that return
documents from Du. In order to select keyqueries on each taxon-
omy level that are subsumptions of their parents, we restrict the set
of candidate queries to those with a precision greater than 0.8 with
respect toDu (as in [12]). In up to k iterations, the algorithm selects
the candidate query that maximizes recall—with respect to those
documents inDu that have not yet been assigned to a subclass—as a
child term in the taxonomy. The algorithm terminates when the max-
imum fan-out of k is reached, or when no further candidate queries
meeting the constraints are available. Any remaining documents
in Du are assigned to a “Miscellaneous” class.

We implement Greedy Document Cover as a series of MapReduce
jobs, and store the query space Q and the document sets in the
distributed file system of our Hadoop cluster. Each Map job filters
its input queries with respect to the constraints given by t and m,
and emits the results with appropriate keys. The intersection of
the documents retrieved by each candidate query with the not-yet
retrieved subset of Du is processed by a corresponding Reduce
operation. The latter then computes each candidate query’s precision
and recall, and a subsequent MapReduce stage selects the candidate
query to use in the current taxonomy branch. For managing the
data flow between the different job stages, we employ the Scalding
distributed processing framework.

Generating the classification system for the entire CORE dataset
on our 40-node cluster takes about 48 hours of wall-clock time.
Taxonomy generation for an entire digital library taking a long
time is not a major issue—the classification system can be updated
periodically by a nightly batch job. However, processing time is
problematic in a live retrieval setting, where the document set re-
turned by a user’s query is to be subdivided in real-time. As outlined
in [8], we propose an on-demand generation of taxonomy levels as a
possible solution: compute only those branches of the classification

http://dumps.wikimedia.org/enwiki/20140502
http://dumps.wikimedia.org/enwiki/20140502
http://www.cascading.org/projects/scalding
https://www.researchgate.net/publication/225919431_Unsupervised_Sparsification_of_Similarity_Graphs?el=1_x_8&enrichId=rgreq-72599652d2e435c0bbe86a4087ca9bc0-XXX&enrichSource=Y292ZXJQYWdlOzI4MDMyNjI3MjtBUzo0NTM2MDc5NzY5MDI2NThAMTQ4NTE1OTk3Nzk5Nw==
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Figure 3: Excerpt of a partial keyquery-based taxonomy generated for the CORE dataset. For each non-leaf class, the percentage of
documents covered by its subtree is shown in brackets next to the class label.

system that the user explores while surveying her search results.

3. RESULTS & CONCLUSIONS
Figure 3 shows an excerpt of our classification system for the

CORE dataset. The top level classes, subdivide the collection with
respect to the academic disciplines given as input with an average
pairwise overlap of 12%. Through the use of tailored Wikipedia
articles, the top level of our taxonomy meets the common expecta-
tions of a library classification system. The subclasses for two of the
top-level and mid-level categories are shown in the middle and on
the right of the figure, respectively. For the second and third level
classes, we observe a clear semantic connection to the respective

parent classes. However, our approach does not produce an obvious
semantic connection between sibling classes; it’s not possible to
guess the tenth sibling from studying the first nine. The percentage
of documents covered by a given taxonomy subtree is shown in
brackets next to each non-leaf label. Our keyquery-based classifica-
tion system covers a total of 58% of the CORE subset considered in
our experiment; the average coverage across all non-leaf taxonomy
classes is 26%, indicating that despite the use of ESA as retrieval
model, finding a classification at a high level of abstraction is a
major challenge.

In conclusion, while our results so far are very promising, our
taxonomy composition approach could benefit from a more in-depth
evaluation. A comprehensive study of digital library users perform-



ing real-world retrieval tasks would help assess the usefulness of
dynamically-generated classification systems. The semantic struc-
ture of the Wikipedia-based index collection makes for somewhat
salient classes in the classification system, but our approach does
not guarantee complementary sibling classes. Concept relationships
mined from knowledge bases like Probase may help alleviate this
weakness by further constraining the set of permissible candidate
queries in a given Document Cover iteration.
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