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Abstract: In this study, an application of evolutionary multi-objective 

optimization algorithms on the optimization of sandwich structures is 

presented. The solution strategy is known as Elitist Non-Dominated 

Sorting Evolution Strategy (ENSES) wherein Evolution Strategies (ES) 

as Evolutionary Algorithm (EA) in the elitist Non-dominated Sorting 

Genetic algorithm (NSGA-II) procedure. Evolutionary algorithm seems 

a compatible approach to resolve multi-objective optimization problems 

because it is inspired by natural evolution, which closely linked to 

Artificial Intelligence (AI) techniques and elitism has shown an 

important factor for improving evolutionary multi-objective search. In 

order to evaluate the notion of performance by ENSES, the well-known 

study case of sandwich structures are reconsidered. For Case 1, the goals 

of the multi-objective optimization are minimization of the deflection 

and the weight of the sandwich structures. The length, the core and skin 

thicknesses are the design variables of Case 1. For Case 2, the objective 

functions are the fabrication cost, the beam weight and the end 

deflection of the sandwich structures. There are four design variables 

i.e., the weld height, the weld length, the beam depth and the beam 

width in Case 2. Numerical results are presented in terms of Pareto-

optimal solutions for both evaluated cases. 

 

Keywords: Multi-objective Evolutionary Optimization, Elitist Non-
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Introduction 

Sandwich-structured composites are a special class 

of composite materials with the typical features of low 

weight, high stiffness and high strength. The sandwich 

structure is fabricated by attaching two thin, strong 

and stiff skins to a lightweight and relatively thick 

core made of hybrid materials, Fig. 1 (DIAB, 2012). 

The separation of the skins (faces), which actually 

carry the load, by a low density core, increases the 

moment of inertia of the panel with little increase in 

weight producing an efficient structure (Ashby, 2011). 

The studies on sandwich structures have been 

extensively continued due to the advantages in 

sandwich structures. Many researchers have addressed 

the experimental, analytical and numerical analysis on 

sandwich structures such as Rabczuk et al. (2004;  

Can et al., 2010; Bannister et al., 1999; Guilleminot et al., 

2008; Lascoup et al., 2010). The subject interests in 

sandwich structures are mainly on interfacial fracture, 

optimization of the designation, delamination, 

fabrication techniques and influence of changes in 

sandwich components, i.e., skins and core.  

Early applications to multi-objective optimization 

problems were mainly preference-based techniques 

although the focus is on finding multiple trade-off 

solutions (Deb, 2001). Some of the earliest studies are 

those of Schaffer (1985) who invented in Vector-

Evaluated Genetic Algorithm (VEGA) and Goldberg 

(1989) who pioneered in Multi-Objective optimization 
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Algorithm (MOEA) through the concept of domination. 

Through the idea of Goldberg (1989), many researchers 

expanded the MOEAs with numerous of 

implementations. As such, Genetic Algorithm (GA) 

(Fonseca and Fleming, 1993), Non-dominated Sorting 

GA (NSGA) (Srinivas and Deb, 1994) and niched 

Pareto-GA (NPGA) (Horn et al., 1994). Later, 

implementations of EAs in MOEAs are adopted and 

innovative techniques are developed. For instance, 

Kursawe’s diploidy approach (Kursawe, 1991), Hajela and 

Lin’s weight-based approach (Hajela and Lin, 1992) and 

Osyczka and Kundu’s distance based GA (Osyczka and 

Kundu, 1995). A comparative study of those techniques is 

carried out and well-delineated by Zitzler (1999). 

Consequently the studies on multi-objective 

optimization problems have been extensively explored 

and several methods are proposed to help the 

decision-maker in the optimization process. For 

instance, Zitzler et al. (2000; Tan et al., 2001) carried 

out a comprehensive performance assessment on 

different multi-objective evolutionary methods. Then, a 

region-based selection evolutionary multi-objective 

optimization (PESA-II) by Corne et al. (2001), a fast 

elitist multi-objective genetic algorithm (NSGA-II) by 

Deb et al. (2002), a Strength Pareto Evolutionary 

Algorithm II (SPEA2) by Amuso and Enslin (2007) and 

improved SPEA2 by Zitzler et al. (2001), an Adapting 

scatter search to multi-objective optimization (AbYSS) 

by Nebro et al. (2008) as well as Liu et al. (2010) on a 

Multiobjective Evolutionary Algorithm based on 

Decomposition (MOEA/D-DE) using Differential 

Evolution (DE). Rangavajhala et al. (2006; Chen et al., 

2012) suggested on Robust Design Optimization (RDO) 

and a new efficient sequential approximate Multi-

Objective Optimization (MOO) method for by obtaining 

the Pareto-optimal points respectively. Mosavi and 

Vaezipour (2012) developed a method on the basis of 

Reactive Search Optimization (RSO) algorithms in 

solving engineering optimal design and compared this 

method with Interactive Multi-objective Optimization 

and Decision-making method. 

An important task in multi-objective optimization is 

to identify a set of optimal trade-off solutions (called a 

Pareto set) between the conflicting objectives, which 

helps gain a better understanding of the problem 

structure and supports the decision-maker in choosing 

the best compromise solution for the considered 

problem. It can be regarded as a population-based 

stochastic generate-and-test algorithm. It deals 

simultaneously with a set of possible solutions (so-

called population), which allows to find an entire set of 

Pareto-optimal solutions in a single run of the 

algorithm. This approach is different to the traditional 

mathematical programming techniques, which performs 

a series of separate runs in finding the optimal solution. 

In addition, evolutionary algorithm is less liable to the 

shape or continuity of the Pareto-optimal solution, 

whereas these two factors are the main interest for 

mathematical programming techniques (Coello, 1999). 

Elitist Non-dominated Sorting Evolution Strategy 

(ENSES) by Garcia (2011) is employed to obtain 

Pareto-optimal solutions. 
 

 
 
Fig. 1. A chart of hybrid materials that combine two (or more) monolithic materials, or of one material and space. Reproduced by 

Ashby (2011) 
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Fundamentally, ENSES is a sub-division of elitist 

multi-objective evolutionary algorithms. The ENSES 

is implemented with an effective sorting method 

based on individual ranking by non-dominated sorting 

and a crowded distance metric sorting, which 

evaluates the population density of solutions in the 

same rank as defined in NSGA-II. It also has a good 

search performance for widely distributed Pareto-

optimal solutions with conflicting objectives. The 

difference is that this function uses Evolution 

Strategies (ES) instead of Genetic Algorithm (GA) as 

Evolutionary Algorithm (EA) in the NSGA-II 

procedure for multi-objective optimization. 

The application adopted in the present paper could 

serve as the basis comparison for a study of multi-

objective optimization with several objective functions. 

For Case 1, minimization of the deflection and the 

weight of the sandwich structure are presented. For Case 

2, the fabrication cost of the joint is minimized as well as 

the end deflection and the weight of the beam structure. 

The multi-objective optimization formulation is carried 

out by employing the ENSES to these objective 

functions. The idea of this work is motivated from the 

studies of Mosavi and Vaezipour (2012; Steeves and 

Fleck, 2004a; Garcia, 2011). The rest of the paper is 

organised as follows. A short resume of ENSES 

principal evolutionary technique is explained in section 2 

followed by the elaboration of sandwich structures in 

section 3. Section 4 delineates the problem formulations 

and the optimization criteria. The numerical results and 

discussions on the notion of performance are realized in 

section 5 before the paper is concluded in section 6. 

Elitist Non-Dominated Sorting Evolution 

Strategy (ENSES) 

ENSES is an elitist multi-objective evolutionary 

algorithm that implements “evolution strategy” as 

evolutionary algorithm. ES is a variant of Evolutionary 

Algorithms (EA), which uses mutation, recombination 

and selection applied to a population of individuals 

containing candidate solutions in order to evolve 

iteratively better and better solutions (Beyer and 

Schwefel, 2002). Evolution strategies were invented by 

Rechenberg (1973; Schwefel, 1981) and illustrate self-

adaptation of strategy parameters in evolutionary 

computing. The self-adaptivity is defined as that some 

parameters of EA are varied during a run where the 

parameters are included in the genes and coevolved with 

the solutions (Eiben and Smith, 2003). The ENSES 

algorithm is based on NSGA-II by Deb et al. (2002). 

Hussain (1998) stated that for an evolution strategy, a 

fixed-length real-valued vector is utilized to illustrate the 

representation. This means that each position in the 

vector corresponds to a feature of the individual. 

There are two main reproduction operators in ES; (a) 

Gaussian mutation: A random value from a Gaussian 

distribution is added to each element of an individual’s 

vector to create a new offspring. (b) Intermediate 

recombination: The vectors of two parents are averaged 

together, element by element, to form a new offspring. 

These operators reflect the behavioral interpretation of 

the representation due to the usage of vector element 

values to derive the new vector elements. The selection 

of parents to form offspring is less constrained than the 

parent’s selection in genetic algorithms and genetic 

programming. In common practice of an ES, parents are 

selected randomly (not based upon fitness) and offspring 

are generated through the use of recombination. Then, 

survivors are selected deterministically in which the 

survivors are chosen either from the best offspring (with 

no parents survive) or from the best parents and 

offspring (Spears et al., 1993). 

The algorithm of ENSES only works with the ‘µ +λ’ 

selection scheme. This means that ENSES is designed 

for the minimization problems only. For any 

maximization problems, we need to modify the original 

objective for maximization into an objective for 

minimization by using the ‘Duality principle’. This 

principle can be achieved by multiplying the objective 

function with -1. The domination function computes the 

‘Domination matrix’, which specifies the domination 

relation between two individuals using constrained-

domination. The recombination and mutation functions 

perform the recombination and mutation required in 

evolution strategies to obtain the next offspring 

population. There are seven options of recombination 

offered by ENSES. We adopt discrete recombination for 

the variables recombination whilst intermediate 

recombination for the strategy parameters. The non-

dominated sorting algorithm identifies the different 

fronts using an O(MN
2
) non-dominated sorting 

procedure, which is taken from section 2.4.7 of Deb 

(2001). It also carries out the ‘Crowded Tournament 

Selection’, so the function returns the parent population 

of the next generation. The ENSES procedure is outlined 

in the following (Garcia, 2011): 
 

Step 1: Initialize the population. Problem range and 

constraints are identified to set the population. 

Step 2: Perform ENSES. Evolution strategy, elitism and 

evaluations are made in this stage. ‘µ +λ’ 

concept is used. 

Step 3: Perform fronts and crowded tournament 

selection operator. 

Step 4: Selection. Better results are stored. 

Step 5: Create offspring population by using the 

crowded tournament selection, crossover and 

mutation operators. Increase generation counter. 
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Step 6: Output data. The minx and minf are derived, 

which minimizes the objective function f and 

achieved minimum of the function f, 

respectively. 

 

Elitist Non-Dominated Sorting Genetic Algorithm 

(NSGA-II) 

The elitist Non-dominated Sorting Genetic 

Algorithm (NSGA-II) by Deb et al. (2002) is an elitist 

multi-objective evolutionary algorithm with time 

complexity of in generating non-dominated fronts in 

one generation for population size and objective 

functions. The crowding distance sorting is an 

essential part in ranking the population and the best 

individuals in terms of non-dominance and diversity 

are then chosen (Cao et al., 2011). It measures on how 

close an individual is to its neighbours. Large average 

crowding distance will result in better diversity in the 

population. In order to define the solutions of the first 

non-dominated front in a population of size N, a 

domination computation needs to be done where each 

solution can be compared with every other solution in 

the population to find if it is dominated. This requires 

at most O(MN) computations for each solution, where 

M is the objective function. When this process is 

continued in order to find all members of the first 

non-dominated level in the population, thus the 

overall complexity of the NSGA-II is given by 

O(MN
2
). The NSGA-II procedure is summarized as 

shown in Fig. 2 (Deb, 2001; Seshadri, 2011). 

Sandwich Composite Structures 

Sandwich structures with composite skin sheets 

that combine high stiffness, strength and mechanical 

energy absorption with low weight are widely used in 

the aerospace, marine, automobile, locomotive, 

buildings and consumer industries (Xia and Wu, 2010; 

Mori et al., 2007). A typical sandwich composite 

structure is used to analyze the multi-objective 

optimization as depicted in Fig. 3. 

The skins carry most of the load (tensile and 

compressive loads) in the sandwich structures and the 

local flexural rigidity is negligible (extremely small 

value). The skins form the exterior surfaces and 

withstand the shear forces when the local pressure is 

high. Commonly, fibre reinforced composites are used 

as the skin materials. The separation of the skins by 

the core increases the moment of inertia of the section 

and its section modulus producing a structure that 

resists bending and buckling loads well. 

Correspondingly, the core has to be stiff enough to 

ensure the skins do not slip over each other and make 

the sandwich structure behave as a load-bearing unit 

(Ashby, 2011). An adhesive layer also provided in a 

sandwich structure to assure the core and skins are 

bonded together. Adhesive layers will carry the shear 

and tensile stresses as same as the shear stress in core 

(DIAB, 2012). 

There are several reasons for the usage of sandwich 

composites structures; 

Decrease Weight 

They provide mechanical properties to much lower 

weight than traditional monolithic materials such as 

steels. For instance, in transportation, this property 

gives a robust impact wherein a lower weight in 

vessel construction enables higher payloads resulting 

in reduced emissions. 

Environmentally Friendly 

Since the usage of sandwich composites will make a 

lighter structural design thus less material is consumed in 

the construction consequently less energy-consuming 

over its lifetime. 

Free Design 

Deformability in sandwich composites gives an 

advantage in designing stage. This allows non-linear and 

smooth designs not only for the aesthetic and 

aerodynamic reasons. 

Thermal Insulation 

Great impact to sub-sea application due to the cell 

structure in core materials, which filled with air. This 

prevents the heat or cold transfusion. 

Sound Insulation 

The core material has the ability to absorb sound. 

Corrosion Resistance 

The non-corrosive properties of sandwich structures 

prevent the risk of corrosion attack on structures. 

Suitable for marine structures. 

Very Low Water Absorption 

The closed cells in sandwich structures prevent 

moisture from penetrating the core consequently 

increasing the weight and destroy the structures. 

Repairing Aspect 

Cracks can be repaired without any major work as 

compared to steel thus will not affect the performance of 

the structures. 

It is noted that the sandwich beams prone to fail by 

one of several potential failure modes, Fig. 4 

(Ratwani, 2010; Composites, 2000; Steeves and Fleck, 

2004b); the operative mode is defined by the material 
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properties, beam geometry and the loading 

configuration. Four failure modes which regularly 

arise in sandwich beams are core shear PCS, skin 

yielding or microbuckling PMB, ductile indentation PDI 

and elastic indentation PEI. Core shear failure is 

caused by insufficient core shear strength or panel 

thickness. It also occurs when the shear strength of the 

core is exceeded. The maximum shear strength PCS 

can be estimated by Equation 1: 

 

( )2CS f c cP b t t τ= +  (1) 

 

 
 

Fig. 2. A flowchart of NSGA-II. Reproduced by Deb and Goel (2001) 

 

 
 

Fig. 3. A typical sandwich composite structure. Reproduced by Composites (2000) 

 

 
 (a) (b) 
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 (c) (d) 

 
Fig. 4. Failure modes in sandwich beam structures. Reproduced by Steeves and Fleck (2004b) (a) Core shear (b) Microbuckling (c) 

Indentation (d) Face wrinkling 

 

Skin yielding or microbuckling occurs when the 

axial stress in the sandwich skin attains the yield or 

microbuckling strength PMB of the skin material given 

by Equation 2: 

 

( )4 f c f

MB

b t t
P

L

σ+
=  (2) 

 

The expression for the maximum load PDI in ductile 

indentation problem is as Equation 3: 

 

( )
1

22DI f c fP bt σ σ=  (3) 

 

The maximum indentation load PEI referring to an 

elastic indentation failure can be computed by 

Equation 4: 

 

( )
1

32 2

3

f c f c

EI f

t t E
P bt

L

π σ +
 =
 
 

 (4) 

 

Conclusively, a sandwich structure is designed to 

ascertain that it is capable to withstand the structural 

loads throughout its design life and its structural integrity 

during the in-service environments. 

Problem Formulation 

The two optimization tasks are formulated as follows. 

Case 1: A Simply Supported Sandwich Beam 

A sandwich beam as illustrated in Fig. 5 is adopted 

where the span of the beam is ls, the width b, the core 

thickness tc and the skin thickness, tf. Assume a 3-point 

loading is imposed to the beam. However, the analysis 

is identical for other forms of bending load with the 

exception of the different values for the beam 

geometrical constants k. When subject to a load P, the 

beam is prone to deflect. The deflection of a sandwich 

beam δ is the sum of the bending deflection δb and the 

shear deflection δs. The bending deflection δb depends 

on the relative tensile and compressive moduli of the 

skin materials whilst the shear deflection δs is 

dependent on the shear modulus of the core. The 

stiffness of the beam in bending is calculated from the 

equivalent flexural rigidity (EI)eq and the equivalent 

shear rigidity (AG)eq by Equation 5: 

 

( )

( )

2

2

f f b

b ceq

eq

E bt h
EI

AG bh G

=

=
 (5)  

 

where, Ef and Gc are the skin’s modulus of elasticity 

and core shear modulus (in direction of the applied 

load), respectively and hb = tf + tc is the distance 

between facing skin centres. The deflection of the 

beam δ can be written as Equation 6: 

 

( ) ( )

3

b s s s

eq eq

k Pl k Pl

EI AG
δ = +  (6) 

 

where, kb and ks are the bending and shear deflection 

coefficients respectively as summarized in Table 1. The 

δ value is the objective function that needs to be 

minimized. The other key issue in designing sandwich 

beams is the minimization of weight. The weight of the 

beam W is governed by Equation 7: 
 

2 f s f c s cW gbl t gbl tρ ρ= +  (7) 

 

where, g is the acceleration due to gravity. This problem 

formulation leads to two nonlinear objective functions 

with respect to five nonlinear inequality constraints. The 

length ls, the core tc and skin thicknesses tf are the design 

variables of Case 1. 
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Table 1. Beam geometrical constants for different types of loading modes. Reproduced by Composites (2000) 

 Maximum shear Maximum bending  Bending deflection Shear deflection 
Beam type force F moment M coefficient kb coefficient ks 

Simply Supported with Uniform Distributed Load (SS-UDL) 
2

P
 

8

Pl
 

5

384
 

1

8
 

Fixed-Fixed end with Uniform Distributed Load (FF-UDL) 
2

P
 

12

Pl
 

1

384
 

1

8
 

Simply Supported beam with Central Load (SS-CL) 
2

P
 

4

Pl
 

1

48
 

1

4
 

Fixed-Fixed end with Central Load (FF-CL) 
2

P
 

8

Pl
 

1

192
 

1

4
 

Cantilever beam with Uniform Distributed Load (Can-UDL) P 
2

Pl
 

1

8
 

1

2
 

Cantilever beam with End Load (Can-EL) P Pl 
1

3
 1 

Cantilever beam with Triangular Load (Can-TriL) P 
3

Pl
 

1

15
 

1

3
 

 

 

 
Fig. 5. The geometry configurations of the sandwich beam 

 

 
 
Fig. 6. The welded sandwich beam optimal design problem 

 

A welded sandwich beam design in Fig. 6 is an 
example that deals with hybrid materials and connecting 

them to form a complex structure. The beam is welded 
on another beam carrying a point load F. The problem of 
designing an optimal welded sandwich beam consists of 
dimensioning a welded sandwich beam and the welding 
length in order to minimize the fabrication cost C, the 
end deflection of the beam δ(x) and the beam weight W 
subjected to bending stress σd, constraints on shear stress 
τd, the buckling load on the bar Pb and side constraints. 
This problem formulation leads to three nonlinear 
objective functions with respect to three nonlinear and 
one linear inequality constraints. The objective is to 
reduce the fabrication cost of the joint without causing a 
high deflection that occurs at the beam end as well as the 
beam weight. Four variables have been identified, i.e. the 
beam depth t, the beam width b, the weld length l and the 
weld thickness h. The beam weight expression is similar 
to the one adopted in Case 1 but with different input 
variables. The cost C and deflection δ(x) formulations 
are governed by Equation 8: 
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( )

( )

2

3

1.10471 0.04811

2.1952

C h l tb L l

x
tb

δ

= + +

=
 (8) 

 

The formulation of the four constraints are related 

to the shear stress τ(x) developed at the support 

location of the sandwich beam, which is set to be 

smaller than the design shear stress τd. The normal 

stress σ(x) developed at the support location of the 

sandwich beam is meant to be smaller than the design 

normal stress value σd. The width of the welded 

sandwich beam b must be greater than the weld 

thickness h from the standpoint. The beam buckling 

load Pb guarantees a safe sandwich beam design by 

providing a greater value than the F. The constraint 

expressions are given as follows Equation 9: 

 

( )

( )

[ ] ( )

( )

( )

[ ] ( )

( )

2

22

22

2

22

2

22

22

6

/ 2
4 42

2
2 0.707

12 4

2
2

4 4

/ 2
4 4

2 0.707
12 4

4.013
f f

b

FL
x

bt

t hl
F L l

F
l

hl t hl
hl

F
x

hl t hl

t hl
F L l

t hl
hl

E bt t

P

σ

τ

=

 
 +

+ +          +
  +         = +     + +
 
 

 
 +

+ + 
 +
   +
  +       

=
( )

22

6 3

2
6 3

1
12 10

22 3
1

12
(12 10 )

3

f f cc
E bt t

tb
t

L L
tb

      ×       − 
  ×   

    (9) 

 

Optimization Criteria 

We have seen in the previous section that the two 
optimization tasks result in multi-objective 
optimization problems. With all of the aforementioned 
considerations, the two multi-objective function 
problems are formulated as follows; 

A Sandwich Beam: 

 

( )

( )

1

3

2 2

 2

2
 

f s f c s c

b s s s

f f b b c

Minimize f x W gbl t gbl t

k Pl k Pl
Minimize f x

E bt h bh G

ρ ρ

δ

= = +

= = +
 

 

Subject to: 

( )
( )
( )
( )

1 CS

2 MB

3 DI

4 EI

max

g P – P 0,

g P – P 0,

g P – P 0,

g P – P 0,

,

100mm 1000mm

5mm 20mm

10mm 50mm

f

c

x

x

x

x

l

t

t

δ δ

= ≥

= ≥

= ≥

= ≥

≤

≤ ≤

≤ ≤

≤ ≤

 

 

A Welded Sandwich Beam Design 
 

( ) ( )

( ) ( )

( )

2

1

2 3

3

 1.10471 0.04811

2.1952
 

 2 ( ) ( )( 2 )f f c f

Minimize f x C h l tb L l

Minimize f x x
tb

Minimize f x W gb L l t gb L l t t

δ

ρ ρ

= = + +

= =

= = + + + −

 

 
Subject to: 

 

( ) ( )
( ) ( )
( ) ( )
( )

1

2

3 b

4

– 0,

– 0,

P – 0,

– 0,

3 mm , 150 mm

3 mm  , 250 mm

d

d

g x t x

g x s x

g x x F

g x b h

h b

l t

τ

σ

= ≥

= ≥

= ≥

= ≥

≤ ≤

≤ ≤

 

 
The relevant material properties of the facing skins 

and the core used in both cases are given in Table 2. 

Simulation Results and Evaluation of 

Performance 

Evaluating an optimization technique frequently 
includes the notion of performance. In the case of multi-
objective optimization, the quality verification is 
certainly more complicated than the single-objective 
optimization problems, due to the multiple optimization 
goals. Obviously, the goals consist of minimizing the 
distance of the resulting non-dominated set to the Pareto-
optimal solution, finding a good distribution of the 
solutions where the evaluation might be upon the 
distance metric and maximizing the extent of the 
obtained non-dominated front wherein a wide range of 
values should be covered by the non-dominated 
solutions. In this section, a detailed discussion on results 
of two optimization problems is presented. For the 
simulation results, the set of best compromises are given 
in the form of the associated Pareto-optimal solution. 

ENSES performs an elitist multi-objective 
evolutionary algorithm and the major concern of this 
technique is avoiding the premature convergence; i.e. 
converges to a point that is only a local minimiser of the 
function. In addition, the NSGA-II algorithm used in 
ENSES for multi-objective problems might return fully 
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non-dominated solutions, but non-dominance is not a 
guarantee for convergence to the Pareto front. This is 
particularly true for a small population but with a large 
population of sample size thus acquiring more function 
evaluations. For multi-objective optimization, 
convergence of an algorithm occurs simply when all 
members of that population are non-dominated. In 
general, ENSES is able to find a good approximation to 
the problem’s global minimum or Pareto front, with high 
probability. It also indicates other promising regions in 
the search space, or function as a simple test algorithm to 
find potential problems with the objective functions. In 
terms of output presentations, ENSES gives a 
visualization on the initial generation gen = 0 and the 
Pareto optimal front for every runs as depicted in Fig. 7. 

According to Fig. 7a and b the blue points represent 
the initialization of the population by random means 
while the red points are the final solutions produced by 
the last generation. Through the iterations, the 
improvement in the solutions becomes smaller and 
smaller converging against the optimal Pareto set. 
Looking into the influence of the population size, 
several runs were performed in order to investigate the 
influence of the population size as well as the 
maximum number of generations converging towards 
the Pareto-optimal front. By taking Case 1 as the 
sample problem, we could visualize the outcomes 
(initial generation and Pareto-optimal solutions) of 
multiple runs with several population sizes by ENSES 
as in Fig. 8 and 9, respectively. 

 

 
(a) 

 

 

(b) 
 
Fig. 7. Initial generations and Pareto-optimal front in ENSES for simply supported sandwich beam with central load (a) Initial 

generation visualization (b) Pareto-optimal front visualization 
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(a) 

 

 
(b) 

 

 
(c) 
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(d) 
 
Fig. 8. Initial generation due to the influence of population sizes and number of generations in Case 1 analysis (a) Initial generation of 200 

samples (b) Initial generation of 250 samples (c) Initial generation of 500 samples (d) Initial generation of 1000 samples  
 

    
 (a) (b) 
 

     
 (c) (d) 

 
Fig. 9. Pareto-optimal solutions due to the influence of population sizes and number of generations in Case 1 analysis (a) Pareto-

optimal solutions of 200 samples (b) Pareto-optimal solutions of 250 samples (c) Pareto-optimal solutions of 500 samples (d) 

Pareto-optimal solutions of 1000 samples 
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 (a) (b) 

 
Fig. 10. Beam evaluations with respect to the boundary conditions: Simply supported with uniform distributed load (SS-UDL); 

Fixed-Fixed end with Uniform Distributed Load (FF-UDL); Simply supported beam with central load (SS-CL); Fixed-Fixed 

end with Central Load (FF-CL); Cantilever beam with Uniform Distributed Load (Can-UDL); Cantilever beam with End 

Load (Can-EL); Cantilever beam with Triangular Load (Can-TriL) (a) Initial generation with different boundary conditions 

(b) Pareto-optimal solutions with different boundary conditions 

 
Table 2. Sandwich composite configuration and data (Composites, 2000) 

 Data 

Configuration ------------------------------------------------------------------------------------------------ 

Facing skins: S1 S2 S3 S4 

Compressive strength, σf (MPa)  550.0 150.0  1300.0  35.0 

Young’s modulus, Ef (GPa) 20.0 70.0  115.0  9.0 

Density, ρf (kg/m3) 470.0  1350.0 190.0 6300.0 

Core:                                          C1 C2 C3 C4 

Compressive strength, σc (MPa) 0.9 0.4  10.0 2.9 

Core shear strength, τc (MPa) 15.0 1.9 4.7 1.7 

Young’s modulus, Ec (MPa) 165.0 55.0 2345.0 364.0 

Shear modulus, Gc (MPa) 600.0 55.0 1275.0 193.0 

Density, ρc (kg/m3) 29.0 127.0 144.0 72.0 

Case 1 

Applied load, P (kN)  25.00000 

UDL, q (kN/m length)  20.00000 

Gravity speed, g (m/s2)  9.81000 

Width, b (m)  0.50000 

Max. Deflection, δmax (mm)  0.05000 

Parent population size, µ  500.00000 

Offspring population size, λ  500.00000 

No. of generation  500.00000 

Case 2 

Point load, F (kN)  25.00000 

Overhang beam length, L (m)  0.50000 

Skin thickness, tf (m)  0.00025 

Parent population size, µ  500.00000 

Offspring population size, λ  500.00000 

No. of generation  500.00000 

 

Figure 10 and 11 describe the resulting Pareto-

fronts with respect to the aforementioned variables 

from the perspectives of boundary conditions and 

material properties evaluated by ENSES. Initially the 
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beam is assumed to be a simply-supported beam. 

However, the analysis is identical for other forms of 

bending load with relevant value of k-constants. The 

ENSES evaluations are executed over 500 generations 

to optimize the two objectives subjected to the 

constraints on sandwich beam failure modes and 

maximum deflection. It can be concluded that an 

identical result is retrieved between the simply-

supported and fixed-fixed end supports with uniform 

distributed load. 

The difference of beam deflection value becomes 

smaller and smaller as it reaches 7 kg for SS-UDL, 

FF-UDL, FF-CL, Can-TriL cases followed by Can-

UDL at 9 kg weight. Commonly, a stiff facing skin is 

attached to a lightweight core. The principle of chosen 

material for facing skins and core varies from the 

lowest to the greatest strength as in Table 2. Figure 11 

illustrates the heavier the material used in the 

sandwich beam, the lesser deflection is occurred 

provided that the same load and boundary condition 

are applied. 

Case 2: Welded Sandwich Beam 

Figure 12 illustrates that along with the step-by-

step iterations, the Pareto-optimal solutions become 

better and better with respect to the overall 

optimization as well as achieving a greater and greater 

spread across the three objectives. The interactions of 

the Pareto-optimal solutions are clearly defined, when 

we present them in any two of these objectives in two 

dimensions plotting. The Pareto-optimal solutions 

reflect extremely well behaved across all three 

objectives when these are considered in pairs, Fig. 

12d-f wherein the solutions are improving through the 

iterations and indicating a convergence of the 

compromise process. The crossing phenomenon due 

to the action of the various operators, which occurs 

among these different generations is obvious. This can 

be seen from the differences between the 

visualizations of the two-objective optimization of 

initial generation in Fig. 12a-c wherein the best 

location of initial generations is presented. From 

generation to generation, the number of the global 

Pareto front solutions increases sharply. The global 

optimal searching ability of the ENSES approach is 

clearly demonstrated. Through the iterations, the 

improvement in the solutions becomes smaller and 

smaller ultimately reaching a convergence as shown 

in Fig. 13. 1000 generations are made in order to get 

the convergence of welded sandwich beam with 

respect to the aforementioned constraints. Through the 

verification, it is found that the 500 solutions on the 

Pareto front are sufficient to derive the best solution 

with respect to the number of solutions and 

generations, i.e., the overall number of function 

evaluations. 

However, providing more samples will lead to 

more effort in computational analysis. Thus, this issue 

reflects to uneconomical in computational cost even 

though a better result is obtained. Since ENSES is 

dealt with the component of ‘µ +λ’, thus the 

convergence time is depending on the generations and 

populations generated during the analysis. The points 

of Pareto-optimal solution generated in the 

convergence stage are similar to the user-defined 

input value for generation’s column.  

 

      

 (a) (b) 

 
Fig. 11. Combinatorial in material properties of core and facing skins. Refer to Table 2 for the material configurations (a) Initial 

generation with combinatorial material properties (b) Pareto-optimal solutions with combinatorial material properties 
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 (a) (b) 

 

      
 (c) (d) 

 

     
 (e) (f) 

 
Fig. 12. Initial generation and Pareto-optimal solutions in optimizing the three objective functions of welded sandwich beam 
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Conclusion 

It has been proven for various combinatorial 

optimization problems that they can be solved by 

evolutionary algorithms in reasonable time using a 

suitable representation together with mutation operators 

adjusted to the given problem. A comprehensive of 

elitism approach is presented in order to find the 

solutions of global optima for two and three optimization 

problems. In this study, the ENSES model is built to 

integrate a variety of optimization objectives using ES as 

EA in the NSGA-II procedure, which involves an 

initialization, crossover and mutation operators. We have 

demonstrated and verified the model by applying it to 

two optimization problems. Case 1 has two nonlinear 

objective functions with respect to five nonlinear 

inequality constraints whilst Case 2 has three nonlinear 

objective functions with respect to three nonlinear and 

one linear inequality constraints. The input variables for 

Case 1 are the length ls, the core tc and skin thicknesses 

tf. For Case 2, four variables have been identified, which 

consists of the beam depth t, the beam width b, the weld 

length l and the weld thickness h. 

 ENSES is found to be efficient due to its strategies 

like fitness sharing and solution diversity preservation. 

Eventually, the adoption of the ENSES models to a 

relatively well-defined beam problem have not only 

verified the robustness of the ENSES models, but also 

demonstrated the capability of the models to deal with 

more objectives and more variables. Though, the 

ENSES model only works for minimization problems. 

It is trivial to make a minimization problem -f(x) from a 

maximization problem f(x). Our evaluation outcomes 

illustrate that the model is useful as a support tool to 

optimize the beam design problems and other test 

functions. The potential of ENSES to cater more 

objectives and variables is very transparent due to its 

open-ended format even though we only tested them 

with two and three objective functions. Nevertheless, 

the current approach can be further improved in its 

efficiency and effectiveness. It also has to be mentioned 

that in certain situations, e.g., when preference 

information is included in the fitness assignment process 

and the preferences change over time, elitism may have its 

drawbacks. A comparison with other EMOAs such as 

SMS-EMOA or SPEA etc. instead of NSGA-II will be 

useful to the users in order to show the good performance 

with the similar test adaptations. In this context, the 

suggested algorithms could be useful to compare the 

models quantitatively and allowing a more accurate 

assessment towards the optimization problems. 

 Conclusively, a simple basis is presented in order to 

help the designers and users on the understanding of the 

model approach as well as the sandwich structure itself. 

The design, weight and environmental benefits make the 

sandwich structures are always be the chosen materials 

in the constructions nowadays. 
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