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ABSTRACT: 

To solve the problem of relative camera pose estimation, a method using optimization with respect to the manifold is proposed. 

Firstly from maximum-a-posteriori (MAP) model to nonlinear least squares (NLS) model, the general state estimation model using 

optimization is derived.  Then the camera pose estimation model is applied to the general state estimation model, while the 

parameterization of rigid body transformation is represented by Lie group/algebra. The jacobian of point-pose model with respect to 

Lie group/algebra is derived in detail and thus the optimization model of rigid body transformation is established. Experimental 

results show that compared with the original algorithms, the approaches with optimization can obtain higher accuracy both in 

rotation and translation, while avoiding the singularity of Euler angle parameterization of rotation. Thus the proposed method can 

estimate relative camera pose with high accuracy and robustness. 

* Corresponding author

1. INTRODUCTION

In general, there are three kinds of relative camera pose 

estimation models: 2D-2D, 3D-2D, and 3D-3D, whereas the 

kind of 3D-2D model is the most widely used in 

photogrammetry, incremental structure-from-motion (SFM), 

visual simultaneous localization and mapping (V-SLAM), 

augmented reality, autonomous navigation and so on. It can be 

described as that how to determine the orientation and position 

of a fully calibrated perspective camera, given n (n≥3) 3D 

points in the world framework and their corresponding 2D 

image points, which is also known as the perspective-n-point 

(PnP) problem (Hartley, Richard, 2003). 

Considering the importance of PnP problem, a large amount of 

work has been done in the past few decades. The P3P problem 

attracts a lot of researchers’ interests, such as (Li, 2011) and 

(Rieck, M. Q., 2014). Usually P3P solutions are implemented 

with RANSAC outlier rejection scheme. In practice, there are 

often more than 3 points and considering the redundancy can 

generally improve accuracy, most of recent works on PnP 

problem concentrate on the situations with more than 3 points. 

Roughly, the state-of-the-art solutions on PnP problem can be 

divided into two types – the multi-stage method and the direct 

minimization method. 

Typically, the multi-stage methods first estimate the points 

coordinates in the camera framework, and transform the PnP 

(3D-2D) problem into 3D-3D pose estimation problem. Also, 

the linear methods usually have closed-form solutions. Latest 

progress in linear methods includes EPnP (Lepetit, V., 2009), 

RPnP (Li, S., 2012), OPnP (Zheng, Y., M, 2013). Lepetit, et al. 

(Lepetit, V., 2009) expresses the n 3D points as a weighted sum 

of four virtual control points, making the PnP problem reduce 

to estimate the coordinates of these control points in the camera 

referential, which reduces the complexity to O(n). Li, et al. (Li, 

S., 2012) points out that due to underlying linearization scheme, 

EPnP performs poor for slightly redundant cases with n = 4 or n 

= 5. Then, Li, et al propose another non-iterative O(n) solution 

which retrieves the optimum by solving a seventh order 

polynomial. Zheng, et al (Zheng, Y., M, 2013) put forward a 

non-iterative O(n) solution which transforms the PnP problem 

to an unconstrained optimization problem solved by a Grobner 

basis solver. Moreover, the well-known direct linear 

transformation (DLT) is also a multi-stage method, because it 

first estimates the projection matrix and extracts the camera 

pose. However due to ignoring the orthogonal constraint of 

rotation matrix, its accuracy is poor. 

The second type of PnP solutions is direct minimization 

methods. Its main idea is to minimize a defined energy function 

(or cost function), either in the image space or in the object 

space, which contains all nonlinear constraints. There exists 

some representative direct minimization methods. Lu et al. (Lu, 

C. P., 2000) propose an orthogonal iteration method to

minimize the object space collinearity error, while Garro et al.

(Garro, V., 2012) propose an alternative minimization method

to minimize the 3D space geometric error. Hesch, et al. (Hesch,

J. A., 2011) present a direct least squares (DLS) method for

computing all solutions of the PnP problem by solving a system

of three third-order polynomials. However, due to the Gayley

representation of rotation, there are degeneration cases. Then

they provide a remedy to conquer the degeneracy of the Gayley

representation by solving DLS three times under different

rotated 3D points, whereas the computational time is tripled.

To sum up, all the mentioned multi-stage methods are generally

poor in accuracy, while the direct minimization methods suffer

from the risk of getting trapped into local minimum. So in

practise, we often firstly acquire an initial guess about the PnP
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solution using multi-stage methods such as EPnP, DLT or 

RPnP, and then we use optimization method such as Gauss-

Newton or Levenberg-Marquardt scheme to generate an optimal 

result. 

However, in optimization, especially in computer vision and 

robotics, the correct treatment of angles consistently causes 

confusion. On one hand, a minimal parameterization is desired, 

but also singularities should be avoided. Interpolation of angles 

is not straightforward, since the group of rotation is only locally 

Euclidean. Probably the most elegant way to represent rigid 

body transformation is using a Lie group/algebra representation. 

 

Thus we present an approach for relative camera pose 

estimation using optimization method with respect to the Lie 

group, which can avoid the singularity of Euler angle 

parameterization of rotation, and make the optimization method 

such as Gauss-Newton or Levenberg-Marquardt (Moré, J. J., 

1978) more robust and convenient. 

 

2. METHODS FOR STATE ESTIMATION USING 

OPTIMIZATION  

In this section, we give a brief review of state estimation using 

optimization. This section defines the common notation and 

technology for the rest of the paper and introduces different 

types of optimization our method uses. 

 

2.1 Maximum-a-posteriori (MAP) estimation and Least 

Square Problems 

In general, we want to estimate a set of unknown variables 

p given a set of measurements f , where we know the 

likelihood function ( )p f p . We estimate p by computing the 

assignment of variables 
*

p that attains the maximum of the 

posterior ( )p p f : 

* arg max ( ) arg max ( ) ( )p p p 
p p

p p f f p p  (1) 

In case no prior knowledge is available, ( )p p becomes a 

constant (uniform distribution) which is inconsequential and 

can be dropped. Then MAP estimation reduces to maximum 

likelihood estimation (MLE). Assuming that the measurements 

are independent, problem (1) factorizes into: 
* arg max ( ) arg max ( )i i

i

p p  
p p

p p f f p  (2) 

In order to write (2) in a more explicit but still widely 

applicable form, assume that the measurement noise is a zero-

mean Gaussian noise with information matrix
1f . Then, the 

measurement likelihood in (2) becomes: 

1
,

21 ˆ( ) exp( ( ) )
2 i

i i i i ip


  
f

f p f f p  (3) 

Since maximizing the posterior is the same as minimizing the 

negative log-posterior, or energy, the MAP estimate in (2) 

becomes: 

1
,

* 2

2

arg min ( )

arg min log( ( ))

1 ˆarg min ( )
2 i

i i i

i

p







 

 
f

p

p

p

p p

f p

f f p

 
(4) 

which is a nonlinear least squares problem.  

 

2.2 Optimization Methods 

2 ( ) p  is simply a sum of squares, and to minimize it is called 

nonlinear least squares optimization. A common technique for 

nonlinear least squares optimization is the Gauss-Newton (GN) 

method. The Gauss-Newton method performs iteratively, 

starting from a given initial guess 0p and updates by the rule: 

( 1) ( )i i   p p  (5) 

where at each step the update vector  is found by solving the 

normal equation: 
T 1 T 1( )    p f p p fJ J J r  (6) 

Here, 





p

r
J

p
and ˆ( ) r f f p  is the residual error. 

A widely used optimization method is a variant of GN called 

Levenberg-Marquardt (LM), which alters the normal equation 

as follows: 
T 1 1 T 1( diag( ))        p f p f p fJ J J r  (7) 

The parameter  rotates the update vector  towards the 

direction of the steepest descent. Thus, if  0  , pure GN is 

performed, whereas if    , gradient descent is used. In 

LM, the update step is performed only if it can significantly 

reduce the residual error. The parameter  is self-adapted in 

the LM method. 

 

3. RELATIVE CAMERA POSE ESTIMATION MODEL 

3.1 The Camera Projection Function and Camera Poses 

Points in the world 
3

jx R are mapped to the camera image 

using the observation function: 

ˆ( , ) ( )i j i jz T x K T x  proj  (8) 

Here, the jx is homogeneous point, iT  is the rigid body 

transformation which consists of the rotation matrix R  and 

translation vector t , and K is the camera calibration matrix 

(which we assume is known from prior calibration) and 

( )proj is the 3D-2D projection function: 

T

1 2

3

1
( ) : ( , )a a

a
proj a , 

3 Ra  (9) 

The camera pose at a time-step i is represented as the rigid 

body transformation iT .  
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3.2 Pose Estimation Model 

Given a set of 3D points jx  x  which are associated with 2D 

measurements ijz , to estimate the camera pose a time-step i iT , 

we minimize the following energy function using LM algorithm: 

1

2
2 1

ˆ( ) ( , )
2 j

i j i j

j

T z z T x


   (10) 

with respect to the rigid body transformation iT . We use the 

Huber cost function as a robust kernel to guard against spurious 

matches. 

 

3.3 Pose Optimization with respect to Lie Groups 

The optimization methods presented in the previous section are 

applicable for scalar fields which are defined on Euclidean 

vector spaces 
n

. However, we want to minimize the re-

projection error with respect to the rigid body transformation 

iT , which includes the rotation 1 2 3( , , )  ω  in three 

dimensional space. ω can be any parameterization of rotation 

in 3D (such as Euler angles or the rotation vector). Performing a 

rotation by   and then byω is in general not equivalent to 

performing a rotation of ω+ . Vector addition is simply not 

the right operation to concatenate rotations. Thus, rotations 

cannot be modelled as Euclidean vector space, but as a Lie 

group. 

 

3.3.1 Lie group and Lie algebra 

A rigid body transformation in 
3

can be expressed as an 

4 4  matrix which can be applied to homogeneous position 

vectors (H. Strasdat., 2010): 

0 1
T

 
  
 

R t
, with SO(3)R ,

3Rt  (11) 

Here, SO(3) is the Lie group of rotation matrices. The rigid 

body transformations in 
3

 form a smooth manifold and 

therefore a Lie group, which is called the Special Euclidean 

Group ( SE(3) ). The group operator is the matrix 

multiplication. 

A minimal representation of this transformation is defined by 

the corresponding Lie algebra (3)se  which is the tangent 

space of SE(3)  at the identity. In 
3

, the algebra elements 

are 6-vectors 
T( , )ω v : 1 2 3( , , )  ω  is the axis-angle 

representation for rotation, and v is a rotated version of the 

translation t .  

Elements of the (3)se  algebra can be mapped to the SE(3)  

group via the exponential mapping SE(3)exp : 

SO(3)

SE(3)

exp ( )
exp ( , ) :

0 1 0 1

   
    
   

Rω Vv t
ω v . 

(12) 

Here, 

2

SO(3) 2

sin( ) 1 cos( )
exp ( ) ( ) ( )I

 

 
 


  ω ω ω . 

(13) 

Equation (13) is the Rodrigues’ formula.  

2

2 3

1 cos( ) sin( )
( ) ( )I

  

 
 

 
 V = ω ω            (14) 

Here, 
2

  ω , and ( )  is an operator which maps a 3-

vector to  its skew-symmetric matrix. Since SE(3)exp is 

surjective, there is also an inverse mapping SE(3)log .    

 

3.3.2 Pose-Point Transformation Jacobian 

Using the chain rule, the partial derivative of the residual 

ˆ( , )z z T x r  with respect to T  is: 

SE(3)

0

SE(3)

0

SE(3)

0

1

3

3 3

23
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 
 
    

 
 
 

R

R

R

R

q

r

proj

proj

proj q

q

t

t

t

t

 )

(15) 

We can get the update vector   from (7) in the tangent space 

around identity (3)se  and mapped back onto the manifold 

SE(3) , leading to a modified update step: 

1 SE(3)exp ( )i iT T    (16) 

Thus, we can use LM algorithm to solve the pose estimation 

problem. 

 

4. EXPERIMENTAL RESLULTS 

In this section, we experimentally investigate the LM algorithm 

for camera pose optimization on the manifolds, and compare the 

original state-of-the-art solutions to PnP problem with their 

corresponding optimization versions, including the well-known 

iterative approach by Lu et al. (Lu, C. P., 2000), denoted as 

LHM in short, the multi-stage method, put forward by Li et al. 

(Li, S., 2012), denoted as RPnP, and OPnP method proposed by 

Zheng (Zheng, Y., 2013). Their optimization versions are 

denoted as LHM+LM, RPnP+LM and OPnP+LM respectively. 

Also the direct minimization based method, DLS+++ (Hesch, J. 

A., 2011), is included. 

The source codes of LHM, RPnP, OPnP and DLS++ are 

publicly available on the internet provided in (Zheng, Y., 2013). 

All the experiments are performed in MATLAB on a laptop 

with 2.4GHz CPU and 8GB RAM.  

To acquire a quantitative analysis, all the experiments are 

implemented with simulated data. We generate a virtual 

perspective camera, and n 3D reference points in the camera 
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framework, which are randomly distributed in a specific range. 

All the simulated data parameter settings are below in Table 1. 

 

Parameters Settings 

Focal length 800 pixels 

Principle point (320 pixels, 240 pixels) 

Image solution 640 pixels   480 pixels 

3D point x-range [-2, 2] 

3D point y-range [-2, 2] 

3D point z-range [4, 8] 

Table 1. Parameter settings for simulated data 

 

We rotate and translate the 3D points with the ground-truth 

transformation trueT , including the rotation trueR and 

translation truet . Then the absolute error in degrees between 

trueR  and the estimated rotation R  is measured. The rotation 

error is defined as: 
3

1(deg ) max cos( , ) 180k k

rot k trueerr ree a r r   (17) 

where 
k

truer and 
kr  are the k-th column of trueR  and 

R respectively. 

The translation error is the relative difference between truet and 

the estimated t , which is defined as: 

(%) ( ) 100trans trueerr   t t t  (18) 

 

4.1 Varying Number of Points with Fixed Noise Level 

Firstly, we vary the number of points n from 4 to 49, and add 

zero-mean Gaussian noise with fixed deviation (2 pixels) onto 

the projection images. At each n, 100 independent tests are 

performed. The average rotation and translation error are 

presented in Fig. 1 to Fig. 4. 

Results show that all the solutions with LM algorithm 

optimized outperform their original versions, especially the 

accuracy of RPnP is improved effectively, which demonstrates 

the effectivity and efficiency of the proposed optimization 

strategy. We can find that the RPnP is not accurate enough, 

even in the presence of redundant correspondences, and the 

major reason lies in its underlying approximation schemes.  

Also, we can find that compared with other methods, the LHM 

is not so accurate due to its possible local optimum. Moreover, 

with the number of points increasing, the accuracy of all 

solutions are all improved effectively. 

 

Figure 1. Mean rotation error w.r.t. varying number of points 

 

Figure 2. Median rotation error w.r.t. varying number of points 

 

 

Figure 3. Mean translation error w.r.t. varying number of points 

 

Figure 4. Median translation error w.r.t. varying number of 

points 

 

4.2 Varying Noise Levels with Fixed Number of Points 

Then, we fix the number of points n to be 10, and add zero-

mean Gaussian noise with varying deviation levels (from 0.5 to 

5 pixels) onto the projection images. At each noise level, 100 

independent tests are performed and the average results are 
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reported. The average rotation and translation error are 

presented in Fig. 5 to Fig. 8. 

As shown in Fig. 5 to Fig. 8, the proposed optimization strategy 

is efficient and effective, as the accuracy of all solutions is 

improved, especially the RPnP method. Also, we can find that 

with the noise increasing, the accuracy of all the method 

decreases.  

 

Figure 5. Mean rotation error w.r.t. varying noise levels 

 

Figure 6. Median rotation error w.r.t. varying noise levels 

 

Figure 7. Mean translation error w.r.t. varying noise levels 

 

Figure 8. Median translation error w.r.t. varying noise levels 

 

5. CONCLUSION 

We propose an approach for relative camera pose estimation 

using optimization method with respect to the Lie group, which 

can avoid the singularity of Euler angle parameterization of 

rotation, and make the optimization method such as Gauss-

Newton or Levenberg-Marquardt more robust and convenient. 

Experimental results show that the proposed approach 

outperform the original method without optimization which is 

capable of estimate relative camera pose with high accuracy, 

and it  can be widely used in Photogrammetry . 
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