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Abstract: We study simultaneous rank procedures for unbalanced designs
with independent observations. The hypotheses are formulated in terms of
purely nonparametric treatment effects. In this context, we derive rank-
based multiple contrast test procedures and simultaneous confidence in-
tervals which take the correlation between the test statistics into account.
Hereby, the individual test decisions and the simultaneous confidence in-
tervals are compatible. This means, whenever an individual hypothesis has
been rejected by the multiple contrast test, the corresponding simultaneous
confidence interval does not include the null, i.e. the hypothetical value of no
treatment effect. The procedures allow for testing arbitrary purely nonpara-
metric multiple linear hypotheses (e.g. many-to-one, all-pairs, changepoint,
or even average comparisons). We do not assume homogeneous variances
of the data; in particular, the distributions can have different shapes even
under the null hypothesis. Thus, a solution to the multiple nonparametric
Behrens-Fisher problem is presented in this unified framework.
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1. Introduction

In many experiments more than two treatment groups are involved. Hereby the
global null hypothesis, i.e. no impact of the factor “treatment” on the response,
is often not the main question. In statistical practice, however, the traditional
method for making inferences on the effects of interest is achieved in three
steps: First the global null hypothesis is tested by an appropriate procedure
(e.g. ANOVA). If the global null hypothesis is rejected, multiple comparisons
are commonly used to test the different sub-hypotheses. In the last step of the
analysis, confidence intervals for the effects of interest are computed.

Although stepwise procedures using different approaches on the same data
are pretty common in practice, they may have the undesirable property that the
global null hypothesis may be rejected, but none of the individual hypotheses
and vice versa. This means, the global test procedure and the multiple testing
procedure may be non-consonant to each other (Gabriel 1969 [14]). Further the
confidence intervals may include the null, i.e. the value of no treatment effect,
even if the corresponding individual null hypotheses have been rejected. This
means, the individual test decisions and the corresponding confidence inter-
vals may be incompatible (Bretz, Genz, and Hothorn 2001) [3]. In randomized
clinical trials, the computation of compatible simultaneous confidence intervals
(SCI), i.e. confidence intervals which always lead to the same test decisions
as the multiple comparisons, is consequently required by regulatory authori-
ties:“Estimates of treatment effects should be accompanied by confidence inter-
vals, whenever possible. . .” (ICH E9 Guideline 1998, chap. 5.5, p. 25 [24]). It
is well known that the classical Bonferroni adjustment can be used to perform
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multiple comparisons as well as for the computation of compatible SCI. This
approach, however, has a low power, particulary when the test statistics are not
independent. In practice, the computation of correlation accounted compatible
SCI is often neglected, because no adequate procedures exist. Thus, there is a
desirable demand for statistical procedures, which can be used for (i) testing
the global null hypothesis, (ii) performing multiple comparisons, and (iii) for
the computation of compatible SCI by taking the correlation between the test
statistics into account. Such procedures are particularly of practical importance.

In recent years, parametric multiple contrast test procedures (MCTP) with
accompanying compatible SCI for linear contrasts in terms of the expectations
of homoscedastic normal samples were derived by Mukerjee, Robertson, and
Wright (1987) [28] and Bretz, Genz, and Hothorn (2001) [3]. These MCTP
take the correlation between the test statistics into account. Hereby the proce-
dures by Bretz et al. (2001) [3] can be used for testing arbitrary contrasts, e.g.
many-to-one, all-pairs, average, or even changepoint comparisons. Thus, MCTP
provide an extensive tool for the computation of compatible SCI. They are cal-
culated by establishing the exact joint multivariate t - distribution of different
test statistics with correlation matrix R for testing individual hypotheses and
control the familywise type I error rate (FWER) in the strong sense (Hochberg
and Tamhane 1987 [22]). The results by Bretz et al. (2001) [3] were extended to
general linear models by Hothorn, Bretz, and Westfall (2008) [23] and to het-
eroscedastic models by Hasler and Hothorn (2008) [20] and Herberich, Sikorski,
and Hothorn (2010) [21]. For a comprehensive overview of existing paramet-
ric methods we refer to Bretz, Hothorn, and Westfall (2010) [4]. We note that
the parametric SCI use the critical values from the extreme tail portion of the
multivariate t-distribution, which is the portion most sensitive to nonnormality
(Gao et al. 2008 [17]). Therefore, when the normality assumption is violated, the
problem of robustness will be more serious for SCI compared to individual inter-
vals. In practice, however, skewed data, or even ordered categorical data occur
in a natural way. Thus, there is a desirable demand for nonparametric MCTP
and compatible SCI, particularly in the case of ordinal data and discontinuous
distributions.

Munzel and Hothorn (2001) [30], Wolfsegger and Jaki (2006) [40] and Ryu
(2009) [35] derive nonparametric SCI for the treatment effects pij = P (Xi <
Xj) + 1/2P (Xi = Xj), where Xi and Xj are independently distributed. In the
literature, pij is known as relative effect (Brunner and Puri 2001 [10]; Gao et
al. 2008 [17]), or, ordinal effect size measure in case of ordered categorical data
(Ryu and Agresti 2008 [36]; Ryu 2009 [35]). We note that pij is an intransi-
tive measure, i.e. it may occur p12 ≤ p23 ≤ p31 (Brown and Hettmansperger
2002 [5]). Therefore, the use of pairwise defined relative effects in multiple com-
parisons may result in paradox statements in terms of Efron’s dice (see, e.g.
Gardner 1974 [18]; Thangavelu and Brunner 2006 [39]) and should be avoided.

The purpose of this article is to propose rank-based MCTP and compati-
ble SCI for transitive relative effects in unbalanced one-way designs with inde-
pendent observations, a fixed number of levels, and arbitrary contrasts. Their
derivation requires the asymptotic joint distribution of rank statistics under ar-
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bitrary alternatives. The covariance structure of the rank statistics turns out to
result in a quite involved representation (Puri 1964 [32]; Rust and Fligner 1984
[33]), who consider only continuous distributions. Here, we will represent the
structure of the covariance matrix in a simple and unified way allowing for dis-
continuous distributions and moreover we will provide procedures for multiple
comparisons and SCI. For an user friendly application of the proposed methods,
the freely available R-software package nparcomp was developed.

We further note that the MCTP proposed here do not assume homogeneous
variances. The distributions can have different shapes even under the null hy-
pothesis. Thus a solution to the multiple nonparametric Behrens-Fisher problem
will be presented in a closed form. The new procedures are generalizations of
the well-known multiple rank sum tests by Dunn (1964) [11], Steel (1959 [37],
1960 [38]), and Gao et al. (2008) [17], to heteroscedastic designs.

The paper is organized as follows. The nonparametric model, treatment ef-
fects, and hypotheses are presented in Section 2. A unified estimation approach
for relative effects and the asymptotic multivariate normality of linear rank
statistics in this general setup are derived in Section 3, where also consistent
estimators of the parameters of this distribution are given. In Section 4, MCTP
and compatible SCI are derived. A modification of the test statistics and ap-
proximations to their finite-sample distributions are presented in Section 5. As a
practical example, a real data set is analyzed in Section 6. All procedures follow
from a general asymptotic theory, which is presented in the Appendix.

Throughout the article we use the following notation. By 1a we denote the
a × 1 column vector of 1′s and by Ia = diag{1, . . . , 1} the a-dimensional unit
matrix. Further ⊗ denotes the Kronecker product and ⊕ the Kronecker sum
of two matrices, respectively. Finally vec(·) denotes the vector operator of a
matrix, which stacks the columns of a matrix on top of each other.

2. Nonparametric model and hypotheses

Let Xik be the kth (independent) replicate in the ith group among the total
a groups. Let ni be the sample size within the ith group, and N =

∑a

i=1 ni

is the total sample size. Let Fi(x) = P (Xik < x) + 1/2P (Xik = x) denote
the normalized version of the distribution function, which is the average of the
left and right continuous version of the distribution function. In the context of
nonparametric models, the normalized version of the distribution function Fi(x)
was first mentioned by Lévy (1925) [27]. Later on, it was used by Ruymgaart
(1980) [34], Akritas, Arnold, and Brunner (1997) [1], Munzel (1999) [29], Gao
et al. (2008) [17], among others, to derive asymptotic results for rank statistics
including the case of ties in a unified way. We note that the Fi may be arbitrary
distributions, with the exception of the trivial case of one-point distributions.
The general model specifies only that

Xik ∼ Fi, k = 1, . . . , ni, (2.1)

and does not require that the distributions are related in any parametric way; in
particular it does not require homoscedasticity (Akritas et al. 1997 [1]). Factorial
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designs can be described in this setup by putting a “factor pattern” on the
index i in the same way as in the theory of linear models. The vector of the
distributions is denoted by F = (F1, . . . , Fa)

′.
The general model (2.1) does not entail any parameters by which a differ-

ence between the distributions could be described. Therefore, the distribution
functions Fi(x) are used to define treatment effects by

pj =

∫
GdFj , j = 1, . . . , a, (2.2)

where G =
∑a

i=1 wiFi denotes a mean distribution in its weighted (wi = ni/N ;
Akritas et al. 1997 [1]) or unweighted (wi = 1/a; Brunner and Puri 2001 [10];
Gao et al. 2008 [17]) form. If pi < pj , then the values from Fi tend to be
smaller than those from Fj . In case of pi = pj, none of the observations from Fi

and Fj tend to be smaller or larger. Gao et al. (2008, p. 2576) [17] state that
the unweighted relative effect “has the advantage of not being influenced by the
allocation of sample sizes in the data”. Therefore, we will mainly concentrate
on this effect throughout the paper. Paradox statements in terms of Efron’s
dice cannot occur, because each comparison in (2.2) refers to a fixed reference
distribution G (Thangavelu and Brunner 2006 [39]). We will rewrite pj as a
linear combination

pj =

a∑

i=1

wipij , j = 1, . . . , a, (2.3)

of pij =
∫
FidFj . Let p = (p1, . . . , pa)

′ =
∫
GdF denote the vector of the

relative treatment effects. The representation of pj in (2.3) enables a simple
representation of the covariance matrix of linear rank statistics under arbitrary
alternatives. We further note that the weights wi may be arbitrarily chosen
under the constraint

∑a

i=1 wi = 1. To have a reasonable interpretation of hy-
potheses in terms of these generalized relative effects, the weights should not
depend on the sample sizes.

In the nonparametric setup discussed above, Akritas et al. (1997) [1] propose
to formulate hypotheses by the distribution functions as HF

0 : CF = 0, where
C denotes an arbitrary contrast matrix, i.e. C1a = 0, and derive global test
procedures for HF

0 . Gao et al. (2008) [17] consider the family of hypotheses

ΩF = {HF
0 : c′ℓF = 0, ℓ = 1, . . . , q}, (2.4)

where c′ℓ = (cℓ1, . . . , cℓa) denotes an arbitrary contrast. They derive multiple test
procedures for many-to-one and all-pairs comparisons. All test procedures for
HF

0 , however, are limited to testing problems and cannot be used to construct
confidence intervals for the underlying treatment effects δℓ = c′ℓp. In this paper,
we consider the family of hypotheses

Ωp = {Hp
0 : c′ℓp = 0, ℓ = 1, . . . , q}, (2.5)

and we derive MCTP for Ωp and compatible SCI for the effects δℓ = c′ℓp.
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We note that the hypothesis in the classical Behrens-Fisher model is con-
tained in this general setup as a special case. This is easily seen from the fact that
pij = 1/2 if Fi and Fj are both symmetric distributions with the same center
of symmetry. The nonparametric hypothesis HF

0 : CF = 0 is very general and
implies Hp

0 : Cp = 0: HF
0 : CF = 0 ⇒ Hp

0 : Cp = C
∫
GdF =

∫
Gd(CF) = 0.

In the special case of quite restrictive location models Fi(x) = F (x − µi), i =
1, . . . , a, the nonparametric and parametric hypotheses in terms of the location
parameters µi are equivalent. For a detailed discussion of the hypotheses for-
mulated above we refer to Akritas et al. (1997) [1] and Brunner and Munzel
(2000) [8].

3. Asymptotic normality of linear rank statistics

Rank estimators of the quantities pj defined in (2.3) are derived by replacing the

unknown distribution functions Fi(x) by their empirical counterparts F̂i(x) =
n−1
i

∑ni

k=1 c(x − Xik), i = 1, . . . , a, where c(x) = 0, 1/2, 1 according as x <
0, x = 0, x > 0, respectively (Ruymgaart 1980 [34]). Note that

F̂i(Xjk) =
1

ni

(
R

(ij)
jk −R

(j)
jk

)
, i 6= j, (3.1)

where R
(ij)
jk is the rank of observation Xjk among all ni + nj observations in

the combined sample (i, j), and R
(j)
jk is the internal rank of Xjk among all nj

observations in sample j. If there are no ties, then R
(ij)
jk is the usual rank of Xjk.

In the presence of ties, R
(ij)
jk is the midrank of Xjk. The quantities niF̂i(Xjk)

are also called placements (Orban and Wolfe 1982 [31]).
To estimate the relative effect pij used in (2.3), we use the normed placements

given in (3.1) by

p̂ij =

∫
F̂idF̂j =

1

nj

nj∑

k=1

F̂i(Xjk) =
1

ni

(
R

(ij)

j· − nj + 1

2

)
. (3.2)

Here, R
(ij)

j· = n−1
j

∑nj

k=1 R
(ij)
jk is the mean of the ranks in sample j. Thus, one

obtains an estimator of pj in (2.3) as a linear combination of p̂ij in (3.2) by

p̂j =

a∑

i=1

wip̂ij . (3.3)

This representation of the estimator provides an unified approach for both the
usual ranks as well as the so-called pseudo ranks (Gao and Alvo 2005 [15], 2008

[16]; Gao et al. 2008 [17]), since Rjk = 1
2 +N

∑a

i=1 wiF̂i(Xjk). The usual ranks
are obtained by letting wi = ni/N and the pseudo ranks by letting wi = 1/a.
Let p̂ = (p̂1, . . . , p̂a)

′ denote the vector of the estimators p̂j in (3.3). We note
that p̂j is an unbiased and consistent estimator of pj , which follows from the
unbiasedness and consistency of p̂ij (Brunner et al. 2002 [9]).
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The asymptotic equivalence stated in the next theorem will facilitate the
representation of the asymptotic covariance matrix in a simple and unified form.

Theorem 1. Let F̂ = (F̂1, . . . , F̂a)
′ denote the vector of the empirical distribu-

tions, and let Ĝ =
∑a

i=1 wiF̂i denote the empirical weighted mean distribution.
Under the assumption that N → ∞ such that N/ni ≤ N0 < ∞, for i = 1, . . . , a,

√
N(p̂− p) +

√
N

(∫
GdF̂−

∫
FdĜ+ 1a − 2p

)
, (3.4)

where + denotes the asymptotic equivalence of two sequences of random vari-
ables.

For a proof of Theorem 1 we refer to Gao et al. (2008) [17], Lemma 2.1.
Akritas et al. (1997) [1] and Gao et al. (2008) [17] state that the asymptotic
covariance matrix of

√
NC(p̂ − p) leads to a simple representation under the

hypothesis HF
0 : CF = 0. From (3.4) it follows immediately that

√
NC(p̂− p)

HF
0

+
√
NC

∫
GdF̂ =

√
NCY·,

where Y· = (Y 1·, . . . , Y a·)
′ is a vector of independent random variables Y i· =

n−1
i

∑ni

k=1 G(Xik). Thus, under the hypothesis HF
0 , the asymptotic covariance

matrix is given by VF
N = CΣFC′, where ΣF =

⊕a

i=1 N/niσ
2
i and σ2

i =
Var(G(Xi1)). For the computation of consistent estimates for the unknown
quantities σ2

i , and a comprehensive overview of different global test procedures
for HF

0 , we refer to Akritas et al. (1997) [1] and Brunner and Puri (2001) [10].
Multiple test procedures for ΩF defined in (2.4) are presented by Gao et al.
(2008) [17].

The representation of the covariance matrix of (3.4) by means of Ĝ leads to
the same obstinate structure as the representation by Puri (1964) [32]. There-
fore, we first rewrite the right-hand side of (3.4) and by some simple algebraic
arguments we obtain for the jth component

√
N(p̂j − pj) +

√
N

(∫
GdF̂j −

∫
FjdĜ+ 1− 2pj

)

=
√
N

(∫ ( a∑

i=1

wiFi

)
dF̂j −

∫
Fjd

(
a∑

i=1

wiF̂i

)
+ 1− 2pj

)

=
√
N

a∑

i=1

wiZij ,

where Zij = n−1
j

∑nj

k=1 Yijk − n−1
i

∑ni

k=1 Yjik + 1 − 2pij is a sum of the inde-
pendent random variables Yijk = Fi(Xjk) and Yjik = Fj(Xik), respectively.
For a convenient vectorial representation, we define the random vector Z =
vec[(Zij)i,j=1,...,a]. Let W = (w1, . . . , wa) ⊗ Ia denote the known matrix of
weights w1, . . . , wa. Thus, an equivalent representation of the asymptotic equiv-
alent sums defined in (3.4) is given by

√
N(p̂− p) +

√
NWZ. The asymptotic
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covariance matrix of
√
N(p̂− p) is given by

VN = Cov (
√
NWZ) = WΣW′, (3.5)

where Σ = (σij,rs)i,j,r,s=1,...,a = Cov (
√
NZ). Here, σij,ij = Var(

√
NZij) de-

notes the variance of
√
NZij , and σij,rs = Cov (

√
NZij ,

√
NZrs) denotes the

covariance of
√
NZij and

√
NZrs, respectively. For convenience define θij,rs =

Cov (Yij1, Yrs1). By independence of Yijk and Yijk′ , k 6= k′,

σij,rs =





0, i = j ∨ r = s, 0, i 6= r, s ∧ j 6= r, s,
N
ni
θji,si, i = r ∧ j 6= s, N

nj
θij,rj , i 6= r ∧ j = s,

−N
ni
θji,ri, i = s ∧ j 6= r, − N

nj
θij,sj , i 6= s ∧ j = r,

σij,ij , i = r ∧ j = s, σij,ji, i = s ∧ j = r,

(3.6)

where σij,ij = N/njθij,ij +N/niθji,ji and σij,ji = −σij,ij . Note that the repre-
sentation of pj as a linear combination of pij leads to the simple representation
of the structure of VN as given in (3.5). The asymptotic normality of the linear
rank statistic

√
N(p̂− p) will be given in the next theorem.

Theorem 2. Let VN as given in (3.5). If N → ∞ such that N
ni

≤ N0 < ∞
and if VN → V such that rank(VN ) = rank(V) ∀N ≥ M0 < ∞, then, the
linear rank statistic

√
N(p̂−p) has, asymptotically, as N → ∞, a multivariate

normal distribution with expectation 0 and covariance matrix VN .

A consistent estimator of VN will be provided in the next section.

3.1. Estimation of the covariance matrix

Note that it is sufficient to derive consistent estimators of the variances θij,ij =
Var(Yij1) and the covariances θij,rs = Cov (Yij1, Yrs1) as given in (3.6). If the
random variables Yijk were observable, then a natural estimator of the covari-
ance θji,si, for example case 3 in (3.6), would be given by the empirical covariance

θ̃ji,si =
1

ni − 1

ni∑

k=1

(Yjik − Y ji·)(Ysik − Y si·). (3.7)

The random variables Yijk , however, are not observable, and, for the compu-
tation of an estimator, they must be replaced by observable random variables,
which are “close enough” to the originals in an appropriate norm. To this end,
let Ŷijk = F̂i(Xjk) denote the normed placements as given in (3.1) and define
the centered placements

Dijk = Ŷijk − 1

nj

nj∑

k=1

Ŷijk =
1

ni

(
R

(ij)
jk −R

(j)
jk −R

(ij)

j· +
nj + 1

2

)
. (3.8)
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Then, an estimator of VN = WΣW′ is given by V̂N = WΣ̂NW′, where Σ̂N

denotes the matrix Σ with σij,rs being replaced by the estimators

σ̂ij,rs =





0 i = j ∨ r = s, 0 i 6= r, s ∧ j 6= r, s,
N
ni
θ̂ji,si, i = r ∧ j 6= s, N

nj
θ̂ij,rj , i 6= r ∧ j = s,

−N
ni
θ̂ji,ri, i = s ∧ j 6= r, − N

nj
θ̂ij,sj , i 6= s ∧ j = r,

σ̂ij,ij , i = r ∧ j = s, σ̂ij,ji, i = s ∧ j = r,

(3.9)

where σ̂ij,ij = N/nj θ̂ij,ij +N/niθ̂ji,ji and σ̂ij,ji = −σ̂ij,ij . Here

θ̂ji,si =
1

ni − 1

ni∑

k=1

DjikDsik, j 6= s, θ̂ij,rj =
1

nj − 1

nj∑

k=1

DijkDrjk, i 6= r

θ̂ji,ji =
1

ni − 1

ni∑

k=1

D2
jik, i 6= j, θ̂ij,ij =

1

nj − 1

nj∑

k=1

D2
ijk, i 6= j,

denote the empirical variances of Ŷijk and the empirical covariances of Ŷijk and

Ŷrsk, respectively. Theorem A.4 shows that V̂N = WΣ̂NW′ is a consistent
estimate for VN .

The asymptotic distribution of
√
N(p̂ − p) and the estimator V̂N can now

be used for the derivation of MCTP for Ωp and compatible SCI for δℓ = c′ℓp.

4. Multiple contrast test procedures

In order to develop MCTP for the family of hypotheses Ωp defined in (2.5), we
first need to derive the test statistics for each individual hypothesisHp

0 : c′ℓp = 0.

Define v̂ℓℓ = c′ℓV̂Ncℓ and let T p
ℓ =

√
Nc′ℓ(p̂ − p)/

√
v̂ℓℓ, ℓ = 1, . . . , q. By the

asymptotic normality of
√
Nc′ℓ(p̂ − p) and Slutsky’s theorem, it follows that

T p
ℓ

d→ N(0, 1). The test statistics T p
ℓ are collected in the vector

T = (T p
1 , . . . , T

p
q )

′. (4.1)

Note that the MCTP and compatible SCI are derived by establishing the
asymptotic joint distribution of the test statistics T defined in (4.1). Although
the exact marginal distributions of the test statistics T p

ℓ depend on the sample
sizes and are not identical for unbalanced designs with finite replications, the
marginal distribution of T p

ℓ is asymptotically standard normal, as N → ∞.
Further the asymptotic distribution of T is derived under arbitrary alternatives.
Thus, it is completely specified under any configuration of the null hypotheses.

Corollary 1. Define vℓℓ = c′ℓVNcℓ and vℓm = c′ℓVNcm. Under the assump-
tions of Theorem 2, the statistic T follows a multivariate normal distribution
with expectation 0 and correlation matrix R = (rℓm)ℓ,m=1,...,q, where rℓm =
vℓm/

√
vℓℓvmm, asymptotically.
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Proof. Let C = (c′ℓ)ℓ=1,...,q denote the contrast matrix obtained by the q single

contrasts c′ℓ. The proof follows by the asymptotic normality of
√
NC(p̂ − p)

and Slutsky’s theorem.

Corollary 1 particularly states that the type of contrast is incorporated in
the correlation matrix of the vector of test statistics T. For a strong control of
the FWER, however, the limiting joint distribution of the test statistics under
alternatives is not sufficient. In addition, it must be shown that the limiting
distribution of the statistics is completely specified under arbitrary intersections
of the null hypotheses, i.e. that the family of hypotheses Ωp and T constitutes
a joint testing family.

Lemma 1. The family of hypotheses Ωp and the corresponding test statistics
T constitute a joint testing family asymptotically.

So far, multiple comparison rank procedures compute the variances and co-
variances of the statistics under the global null hypothesis (Munzel and Hothorn
2001 [30]). Thus, the resulting test statistics do not constitute a joint test-
ing family asymptotically, and do not provide a strong control of the FWER
(Hochberg and Tamhane 1987, p. 249 [22]). Next we will derive a simultaneous
test procedure (STP) from the joint testing family {Ωp,T}.

Let z1−α,2,R denote the two-sided (1−α)-equicoordinate quantile of N(0,R),
i.e.

P

(
q⋂

ℓ=1

{−z1−α,2,R ≤ Xℓ ≤ z1−α,2,R}
)

= 1− α (4.2)

for X = (X1, . . . , Xq) ∼ N(0,R) (Bretz et al. 2001 [3]). We write z1−α,2,R to
emphasize that it is the two-sided equicoordinate quantile; one-sided quantiles
are written as z1−α,1,R. For bivariate distributions, z1−α,2,R geometrically forms
a cuboid having a square base. The quantiles become smaller with an increasing
correlation (see Figure 1). For the numerical computation of z1−α,2,R we refer
to Bretz et al. (2001) [3] and Genz and Bretz (2009) [19].
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Fig 1. Two-sided equicoordinate quantiles of different bivariate N(0, I2 + ρ(121
′

2
− I2)) dis-

tributions with different correlations ρ: ρ = 0 (left), ρ = 0.5 (middle) and ρ = 0.99 (right).
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The asymptotic correlation matrix R, however, is unknown and must be es-
timated. Let v̂ℓℓ and v̂ℓm denote the consistent estimators of vℓℓ and vℓm in
Corollary 1 replacing VN with V̂N as given in Theorem A.4. Then, a con-
sistent estimator of the correlation matrix R is given by R̂ = (r̂ℓm)ℓ,m=1,...,q,
where r̂ℓm = v̂ℓm/

√
v̂ℓℓv̂mm. Thus, the set {Ωp,T, z1−α,2,R̂} of hypotheses, cor-

responding test statistics and one critical value for all individual hypotheses
constitutes an asymptotic STP (Gabriel, 1969 [14]). The strong error control of
the proposed method is shown in the next theorem.

Theorem 3. As N → ∞, the STP {Ωp,T, z1−α,2,R̂} controls the FWER in
the strong sense.

For large sample sizes, the individual hypothesis Hp
0 : c′ℓp = 0 will be re-

jected at a two-sided multiple level α, if |T 0.5
ℓ | ≥ z1−α,2,R̂. Asymptotic (1− α)-

simultaneous confidence intervals for the treatment effects δℓ = c′ℓp are obtained
from

[
c′ℓp̂− z1−α,2,R̂

√
v̂ℓℓ/N ; c′ℓp̂+ z1−α,2,R̂

√
v̂ℓℓ/N

]
. (4.3)

Note that the test decision for Hp
0 : c′ℓp = 0 and the SCI defined in (4.3) are

compatible by construction. This means, whenever an individual hypothesis is
rejected, the corresponding confidence interval does not include the null. Fur-
ther, for large sample sizes, the global null hypothesis Hp

0 : Cp = 0 will be
rejected at a two-sided multiple level α, if max{|T 0.5

1 |, . . . , |T 0.5
q |} ≥ z1−α,2,R̂. In

practical applications it can be reasonable to consider the one-sided confidence
regions

[
−1 ; c′ℓp̂+ z1−α,1,R̂

√
v̂ℓℓ/N

]
or
[
c′ℓp̂− z1−α,1,R̂

√
v̂ℓℓ/N ; 1

]
. (4.4)

For the special cases of trend alternatives and genetic models, compatible SCI
based on pairwise rankings are provided by Konietschke and Hothorn (2012)
[25] and Konietschke, Libiger, and Hothorn (2012) [26].

4.1. Range preserving confidence intervals

For the following considerations, we assume that the linear contrasts c′ℓ =
(cℓ1, . . . , cℓa) are normed, i.e. |cℓi| ≤ 1. Note that the SCI defined in (4.3) may
not be range preserving, i.e. the lower bounds can be smaller than −1 and the
upper bounds can be larger than 1. For a detailed discussion about range pre-
serving confidence intervals we refer the reader to Efron and Tibshirani (1993,
Section 13.6) [12] and Brunner, Domhof and Langer (2002, Section 4.5, p. 60)
[7]. Range preserving SCI for the treatment effects δℓ = c′ℓp can be obtained by
applying Cramér’s multivariate Delta-Theorem. Let

g(xℓ) =
1

2
log

(
1 + xℓ

1− xℓ

)
and g−1(yℓ) =

exp(2yℓ)− 1

exp(2yℓ) + 1
, ℓ = 1, . . . , q, (4.5)
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denote the Fisher-transformation of xℓ and its inverse function, and let g(x) =
(g(x1), . . . , g(xq))

′. Further let d = (δ1, . . . , δq)
′ denote the vector of the treat-

ment effects δℓ = c′ℓp and let d̂ = (δ̂1, . . . , δ̂q)
′ denote the vector of the consistent

estimators δ̂ℓ = c′ℓp̂. Finally let Ψ = diag(1 − δ21 , . . . , 1 − δ2q)
−1 denote the Ja-

cobian matrix of g(d).

Corollary 2. Under the assumptions of Theorem 2, the vector
√
N(g(d̂)−g(d))

follows a multivariate N(0,Γ) distribution, where Γ = ΨVNΨ′.

Proof. The proof follows by Theorem 2 and by Cramér’s multivariate Delta-
Theorem.

Define Ψ̂ = diag(1 − δ̂21 , . . . , 1 − δ̂2q)
−1 and note that the estimator Γ̂ =

Ψ̂V̂NΨ̂′ is a consistent estimator of Γ defined in Corollary 2. To test the in-
dividual hypothesis Hp

0 : c′ℓp = 0, define the test statistic T̃ p
ℓ =

√
N(g(δ̂ℓ) −

g(δℓ))/
√
γ̂ℓℓ, where γ̂ℓℓ denotes the ℓth diagonal element of Γ̂. The test statistics

T̃ p
ℓ are collected in the vector

T̃ = (T̃ p
1 , . . . , T̃

p
q )

′. (4.6)

Under the assumptions of Corollary 1, the vector T̃ follows, asymptotically, as
N → ∞, a multivariate normal distribution with expectation 0 and correlation
matrix R. Since the Fisher-transformation is monotone, {Ωp, T̃} consitutes a

joint testing family and {Ωp, T̃, z1−α,1,R̂} controls the FWER in the strong

sense (see Theorem 3). Thus, range preserving (1− α)-simultaneous confidence
intervals for the treatment effects δℓ = c′ℓp are obtained from p∗ℓ,L = g−1(pgℓ,L)

and p∗ℓ,U = g−1(pgℓ,U ), where

pgℓ,L, p
g
ℓ,U = g(δ̂ℓ)∓ z1−α,2,R̂

√
γ̂ℓℓ/N.

Since g(xℓ) and g−1(yℓ) are both strictly monotone transformations, the range
preserving SCI are compatible to the individual test decisions, by construction.

5. Small sample approximations and simulation results

The procedures considered in the previous section are valid for large sample
sizes. The quality of the approximations by multivariate normal distributions
of the proposed methods were investigated by simulation studies for different
numbers of factor levels, sample sizes, and different kinds of contrasts. The
simulations indicate that the convergence of T defined in (4.1) to its asymptotic
multivariate normal distribution is rather slow. In general, the approximation is
worse for a large number of factor levels and smaller sample sizes. Thus we also
consider a small sample modification of this statistic. We adopt the Box-type
approximation (Box 1954 [2]) proposed by Brunner, Dette and Munk (1997) [6]
and Gao et al. (2008) [17] to approximate the distribution of T by a multivariate
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T (ν,0, R̂) distribution with ν degrees of freedom, expectation 0 and correlation

matrix R̂.
For each linear contrast c′ℓ = (cℓ1, . . . , cℓa), ℓ = 1, . . . , q, define the random

variables Aℓik = cℓi(G(Xik) − wiFi(Xik)) −
∑

s6=i cℓswsFs(Xik). By reorganiz-
ing the asymptotic equivalent sums of random variables in (3.4), it is easily
seen that

√
Nc′ℓ(p̂ − p) +

√
N
∑a

i=1 n
−1
i

∑ni

k=1 Aℓik. By independence of Aℓik

and Aℓik′ , k 6= k′, we obtain for the variance Var(
√
N
∑a

i=1 n
−1
i

∑ni

k=1 Aℓik) =
N
∑a

i=1 ω
2
iℓ/ni, where ω2

ℓi = Var(Aℓi1). With the same arguments as in the
proof of Theorem A.4, the unknown variances ω2

ℓi can be consistently estimated

by the empirical variances ω̂2
ℓi = (ni − 1)−1

∑ni

k=1

(
Bℓik −Bℓi·

)2
, where Bℓik =

cℓi(Ĝ(Xik)−wiF̂i(Xik))−
∑

s6=i cℓswsF̂s(Xik). Following Gao et al. (2008) [17],

the distribution of T can be approximated by a multivariate T (ν,0, R̂) distri-
bution with ν = max{1,minℓ=1,...,q{ν1, . . . , νq}} degrees of freedom, where

νℓ =

(
a∑

i=1

ω̂2
ℓi/ni

)2/ a∑

i=1

ω̂4
ℓi/
(
n2
i (ni − 1)

)
. (5.1)

The quality of the modifications of the MCTP T in (4.1) and T̃ in (4.6) to

their finite-sample distributions by multivariate T (ν,0, R̂) distributions were in-
vestigated for Dunnett-type (D), Tukey-type (T), Average-type (A), and change-
point (C) comparisons in different one-way layouts with sample sizes:

• Design 1: n1 = 7, n2 = 7, n3 = 7
• Design 2: n1 = 20, n2 = 15, n3 = 25, n4 = 25
• Design 3: n1 = 7, n2 = 7, n3 = 7, n4 = 7, n5 = 7
• Design 4: n1 = 25, n2 = 25, n3 = 15, n4 = 20, n5 = 30.

The corresponding contrast matrices for these four kinds of different contrasts
are given in Section A.5.

The results reported here constitute a representative set from a much larger
simulation study using R (www.r-project.org). All simulation results were ob-
tained from 10,000 simulation runs. The equicoordinate quantiles were com-
puted with the R-package mvtnorm (Genz and Bretz 2009 [19]). We also include
the parametric counterpart of T proposed by Hasler and Hothorn (2008) [20]
(H) in the simulation study. This MCTP denotes T without ranking the data.
In case of skewed distributions, H tends to be quite conservative in case of pos-
itive dependent test statistics (e.g. many-to-one comparisons), but very liberal
when the test statistics are negatively dependent (average comparisons). The
simulation results for the different designs are displayed in Table 1.

The simulation results indicate that the rank-based MCTP T̃ controls the
FWER quite accurately, even in case of small sample sizes, all considered num-
bers of factor levels, and arbitrary contrasts for both normal and lognormal
distributions (see Table 1). For other distributions, e.g. exponential or even or-
dered categorical data, the simulation results were quite similar and are not
shown here. The MCTP T tends to be slightly liberal in case of extremely
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Table 1

Simulated FWER (α = 5%) of the MCTP T, T̃, and H for different kinds of contrasts (C):
Dunnett (D) (see A.1), Tukey (T) (see A.2), Average (A) (see A.3), and Changepoint (C)

(see A.4).

Design
1 2 3 4

C T T̃ H T T̃ H T T̃ H T T̃ H

Normal Distribution Xik ∼ N(0, 1)
D 6.3 4.9 4.8 5.2 4.3 4.9 6.6 4.4 4.8 5.2 4.3 4.8
T 7.3 5.6 4.8 5.5 5.1 4.5 8.2 5.3 5.3 5.9 4.8 5.2
A 6.1 4.8 4.1 6.2 4.5 4.6 6.5 5.4 6.7 4.9 4.3 5.4
C 6.0 4.9 5.1 5.3 4.9 5.4 5.0 4.1 6.1 5.3 4.8 5.2

Lognormal Distribution Xik ∼ LN(µ, σ2)
D 6.3 4.9 1.7 5.1 4.2 2.7 6.4 4.2 1.3 5.4 4.5 3.7
T 7.0 5.2 1.6 5.7 4.5 2.6 8.3 5.2 1.4 6.1 4.7 2.1
A 5.8 4.8 3.5 5.3 4.5 9.0 6.8 5.3 15.2 4.8 4.3 13.4
C 5.7 4.8 3.3 5.2 4.7 6.5 5.6 4.5 6.9 5.3 4.8 6.8

small sample sizes and large numbers of factor levels. The parametric MCTP
H shows a quite liberal or even quite conservative behavior in case of skewed
distributions, depending on the chosen contrast.

The powers of the rank based MCTP T and T̃ were compared with the
power of the parametric MCTP H for all-pairs comparisons. Hereby both the
all-pairs power P(“reject all false null hypotheses”) and the any-pairs power
P(“reject any true or false null hypothesis”) were investigated for a one-point
shift alternative δ = (0, 0, 0, δ)′. The simulation results for a = 4 levels and
equal sample sizes (ni = 25) are shown in Figure 2.

The powers of the tests were investigated for both normal and lognormal dis-
tributions. For normal distributions, the powers of the nonparametric rank tests
are nearly as powerful (even for relatively small sample sizes) as the parametric
MCTP H. For lognormal distributions, the powers of the rank tests are consid-
erably higher than the power of the parametric version. Simulation results for
other distributions, unbalanced designs, and different kinds of contrasts were
quite similar and are not shown here.

6. Example

In this section we apply the MCTP and compatible SCI proposed in the pre-
vious sections to a dataset with ordinal data analyzed by Akritas et al. (1997)
[1]. Originally, two inhalable test substances (drug 1 an drug 2), each in a con-
centration of 2 ppm, 5 ppm, and 10 ppm, were compared with regard to their
irritative activity in the respiratory tract of the rat after subchronic inhalation.
In each level, 20 rats were graded on an ordinal scale: 0=no irritation, 1 =
slightly irritation, 2=distinct irritation, and 3=severe irritation. Here, we only
analyze the data for drug 1 with the R-software package nparcomp. The results
and point estimators p̂2, p̂5, and p̂10 of the relative treatment effects p2, p5, and
p10 are displayed in Table 2.
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Fig 2. Empirical any-pairs (left) and all-pairs (right) power curves (α = 5%) of the MCTP

T, T̃, and H for normal distributions ((a) and (b)) and lognormal distributions ((c) and (d))
for all-pairs comparisons and shift alternative δ = (0, 0, 0, δ)′.

Table 2

Data and estimated effects p̂j for the Irritation Trial

Rats with scale Results
Concentration 0 1 2 3 p̂j

2 18 2 0 0 .31
5 12 6 2 0 .45
10 3 7 6 4 .73

From Table 2, it follows that the scores obtained with concentration 2 ppm
tend to be smaller (p̂2 = .31) than the scores in group 5 ppm (p̂5 = .45), and

in group 10 ppm (p̂10 = .73), respectively. The MCTP T̃ in (4.6) can be used
to test the multiple hypotheses Hp

0 : p2 = p5, H
p
0 : p2 = p10, and Hp

0 : p5 = p10
at multiple level α = 5% by taking the correlation between the test statistics
into account as well as for the computation of compatible SCI. The estimated
degree of freedom of the corresponding multivariate t-distribution is given by
ν = 28.72. The adjusted p-values for the individual hypotheses Hp

0 : c′ℓp = 0 are

calculated by 1−Φ(−|T̃ 0.5
ℓ |13, |T̃ 0.5

ℓ |13, 28.72,0, R̂), where Φ(·, ·, ν,0, R̂) denotes
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Table 3

All-pairs comparisons and 95%-compatible SCI for δℓ = c′
ℓ
p in the Irritation Trial

95%-SCI
Comparison Estimator Lower Upper Adjusted p-Value

p5 − p2 .14 −4 · 10−3 .28 6.31 · 10−2

p10 − p2 .42 .28 .50 < 10−6

p10 − p5 .28 .11 .42 1.67 · 10−3

the cumulative distribution function of the multivariate T (ν,0, R̂) distribution.
The results are displayed in Table 3. It follows immediately that the irritation
of the respiratory tract of the rats in group 2 ppm is milder than the damage
effected by 5 ppm, and 10 ppm, respectively (p < .0001 and p = 1.67 · 10−3).
The lower bounds of the 95%-SCI are larger than zero. The data do not provide
any evidence to reject the null hypothesis Hp

0 : p2 = p5 at multiple level α = 5%
(p = 6.31 · 10−2; 95%-SCI: [−4 · 10−3; .28]). We can conclude that the damage
gets worse with an increasing concentration of the test substance.

7. Discussion

Recently, Elliot and Hynan (2011) [13] propose a SAS macro implementation of
a multiple comparison post hoc test for a Kruskal-Wallis analysis. The procedure
is an omnibus test based on two steps: (1) testing the global null hypothesis,
and (2) performing multiple comparisons. This nonparametric procedure cannot
be used for the computation of confidence intervals for the effects of interest.
In this manuscript, rank-based MCTP and compatible SCI for transitive rel-
ative effects in unbalanced designs have been introduced. The procedures are
based on the asymptotic multivariate normality of linear rank statistics under
arbitrary alternatives. Explicit expression for the covariance matrix of the rank
statistics, as well as their multivariate normality, are obtained in a technically
simple and general framework. Subsequent covariance estimation is achieved in
terms of the empirical distribution functions. Under this unified framework, the
procedures can be used for testing arbitrary multiple linear hypotheses in terms
of relative effects, with an accompanying computation of compatible SCI for the
treatment effects. Some simulation results demonstrate the practical benefit of
the proposed methods. For a convenient application of the proposed methods,
the R-software package nparcomp was developed and is available on CRAN.
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Appendix A: Asymptotic results

A.1. Proof of Theorem 2

Let λi,N , i = 1, . . . , a, denote the eigenvalues of VN and let
λ∗
N = mini{λN,i|λN,i > 0} denote the smallest eigenvalue larger than zero.

Since VN → V for N → ∞ such that rank(VN ) = rank(V), there exists a
constant c0 > 0 and M0 < ∞ such that λ∗

N ≥ c0 ∀N ≥ M0. Without loss
of generality let λ1,N , . . . , λj,N → 0 and let λj+1,N , . . . , λa,N ≥ c0 ∀N ≥ M0.
From the spectral decomposition theorem, there further exists an invertible ma-
trix S such that SVNS′ = D =

⊕2
i=1 Di, where D1 = diag{λ1,N , . . . , λj,N}

and D2 = diag{λj+1,N , . . . , λa,N}. Thus, D1 → 0, by assumption. If j = a,
then VN = 0, which can be considered as a multivariate normal one-point dis-
tribution. The asymptotic multivariate normality of the sums of independent
random variables

√
NWZ is now established by the Cramer-Wold device. Let

k = (k1, . . . , ka)
′ denote an arbitrary vector of constants. Since S is invertable

and thus describes a bijektive map, there exists for each k a vector k̃ with
k′ = k̃′S. From the Lindeberg-Feller limit theorem it follows that

LN =

√
Nk′WZ√

Var(
√
Nk′WZ)

=
Nk′WZ√

Var(Nk′WZ)

d→ N(0, 1),

because

Var(Nk′WZ) = Var(
√
Nk′W(

√
NZ)) = Nk′VNk

= N k̃′SVNS′k̃ ≥ N k̃′D2k̃ ≥ min
s=j+1,...,a

{k̃2s}Nc0 → ∞.

This means that the sums of the variances of Nk′WZ diverge for N → ∞ and
Linderberg’s condition is fulfilled, because the random variables N/niYijk are
uniformly bounded by the assumption that N/ni ≤ N0 < ∞.

A.2. Proof of Lemma 1

Under the assumptions of Theorem 2, T follows, asymptotically, as N → ∞,
a multivariate normal distribution with expectation 0 and correlation matrix
R. Thus, the asymptotic joint distribution of T is completely specified under
Hp

0 :
⋂q

ℓ=1{H
p
0 : c′ℓp = 0}. Each test statistic T p

ℓ converges, as N → ∞, to the
standard normal distribution. In particular, the asymptotic distribution of T p

ℓ

is independent from the distribution of T p
m (ℓ 6= m). This means, that under ar-

bitrary intersection hypotheses Hp
0 :
⋂

j∈J{H
p
0 : c′jp = 0}, the asymptotic joint

distribution of TJ = {T p
j , j ∈ J} is completely specified. Here, J ⊆ {1, . . . , q}

denotes an arbitrary set of indexes. This completes the proof.
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A.3. Proof of Theorem 3

The testing family {Ωp,T} constitutes an asymptotic joint testing family. Fur-
ther, the STP {Ω,T, z1−α,2,R} is coherent, by construction. Therefore, the as-
sumptions of Theorem 2 in Gabriel (1969) [14] are fulfilled. Next the unknown

correlation matrix is replaced by the consistent estimator R̂. Consider the map

f(R) = z1−α,2,R. Since f is continuous, it follows that z1−α,2,R̂ − z1−α,2,R
p→ 0,

as N → ∞. This means, the quantity z1−α,2,R̂ is a consistent estimator of

z1−α,2,R. Therefore, if N → ∞, the STP {Ωp,T, z1−α,2,R̂} controls the FWER
in the strong sense.

A.4. Estimation of the covariance matrix VN

Lemma A.2. Let || · ||∞ denote the sup norm and let Dijk as given in (3.8).

Further define D̃ijk = Yijk − n−1
j

∑nj

k=1 Yijk . If ni → ∞, Dijk − D̃ijk
a.s.→ 0.

Proof.

|Dijk − D̃ijk| ≤
∣∣∣F̂i(Xjk)− Fi(Xjk)

∣∣∣+ 1

nj

nj∑

k=1

∣∣∣F̂i(Xjk)− Fi(Xjk)
∣∣∣

≤
∣∣∣
∣∣∣F̂i − Fi

∣∣∣
∣∣∣
∞

+ max
k=1,...,nj

∣∣∣F̂i(Xjk)− Fi(Xjk)
∣∣∣

≤ 2
∣∣∣
∣∣∣F̂i − Fi

∣∣∣
∣∣∣
∞

a.s→ 0, ni → ∞,

where the last step follows from the Glivenko-Cantelli theorem.

Theorem A.4. Let Σ̂N = (σ̂ij,rs)i,j,r,s=1,...,a and let V̂N = WΣ̂NW′. If

min{n1, . . . , na} → ∞ such that N
ni

≤ N0 < ∞, then V̂N −VN
a.s.→ 0.

Proof. Since a is bounded, it is sufficient to show consistency elementwise. Con-
sider the covariance θji,si = Cov (Yji1, Ysi1) and let θ̃ji,si as given in (3.7). By

the strong law of large numbers, θ̃ji,si − θji,si
a.s.→ 0, if nj , ns → ∞. Therefore

it is sufficient to show |θ̂ji,si − θ̃ji,si| a.s.→ 0, if nj , ns → ∞. By the triangular
inequality it follows that

|θ̂ji,si − θ̃ji,si| =

∣∣∣∣∣
1

ni − 1

ni∑

k=1

(DjikDsik − D̃jikD̃sik)

∣∣∣∣∣

≤ 1

ni − 1

ni∑

k=1

∣∣∣Djik(Dsik − D̃sik)− D̃sik(D̃jik −Djik)
∣∣∣

≤ 1

ni − 1

ni∑

k=1

∣∣∣Dsik − D̃sik

∣∣∣+ 1

ni − 1

ni∑

k=1

∣∣∣D̃jik −Djik

∣∣∣

≤ max
k=1,...,ni

|Dsik − D̃sik|+ max
k=1,...,ni

|Djik − D̃jik|
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≤ 2 max
k=1,...,ni

|Ysik − Ŷsik|+ 2 max
k=1,...,ni

|Yjik − Ŷjik |

≤ 2
∣∣∣
∣∣∣F̂s − Fs

∣∣∣
∣∣∣
∞

+ 2
∣∣∣
∣∣∣F̂j − Fj

∣∣∣
∣∣∣
∞

a.s.→ 0, nj , ns → ∞.

For the other elements the proof is basically the same and is therefore omitted.
The rest of the proof follows by considering linear combinations of the estima-
tors.

A.5. Simulation settings

The contrast matrices used in the simulation studies (see Section 5) are given
by the Dunnett-type (D) contrast matrix

C =




−1 1 0 . . . 0 0
−1 0 1 0 . . . 0
...

...
...

...
...

...
−1 0 0 . . . . . . 1


 , (A.1)

the Tukey-type (T) contrasts

C =




−1 1 0 . . . . . . 0 0
−1 0 1 0 . . . . . . 0
...

...
...

...
...

...
...

−1 0 0 0 . . . . . . 1
0 −1 1 0 . . . 0 0
0 −1 0 1 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . . . . . . . −1 1




, (A.2)

Average-type (A) contrasts

C =




1 − 1
a−1 − 1

a−1 . . . − 1
a−1

− 1
a−1 1 − 1

a−1 . . . − 1
a−1

...
...

. . .
...

...
− 1

a−1 − 1
a−1 − 1

a−1 . . . 1


 , (A.3)

and Changepoint (C) comparisons

C =




−1 + n2

N2a
. . . . . . +na−1

N2a
+ na

N2a

− n1

N12
− n2

N12
+ n3

N3a
. . . +na−1

N3a
+ na

N3a

...
...

. . .
...

...
...

− n1

N1(a−1)
− n2

N1(a−1)
− n3

N1(a−1)
. . . − na−1

N1(a−1)
+1


 , (A.4)

where Nij = ni + . . . + nj ; i < j. For a comprehensive overview of different
contrasts we refer the reader to Bretz et al. (2001) [3].



Rank-based multiple test procedures 757

References

[1] Akritas, M. G., Arnold, S. F. and Brunner, E. (1997). Nonparamet-
ric hypotheses and rank statistics for unbalanced factorial designs. Journal
of the American Statistical Association 92 258–265. MR1436114

[2] Box, G. E. P. (1954). Some theorems on quadratic forms applied in the
study of analysis of variance problems, I. Effect of inequality of variance in
the one-way classification. Annals of Mathematical Statistics 25 290–302.
MR0061787

[3] Bretz, F., Genz, A. and Hothorn, L. A. (2001). On the numerical
availability of multiple comparison procedures. Biometrical Journal 43

645–656. MR1863491
[4] Bretz, F., Hothorn T. and Westfall, P. (2010). Multiple Compar-

isons Using R, Chapman and Hall, London.
[5] Brown, B. M. and Hettmansperger, T. P. (2002). Kruskal-Wallis,

multiple comparisons and Efron dice. Australian and New Zealand Journal
of Statistics 44 427–438. MR1934732

[6] Brunner, E., Dette, H. and Munk, A. (1997). Box-Type approxima-
tions in nonparametric factorial designs. Journal of the American Statistical
Association 92 1494–1502. MR1615259

[7] Brunner, E., Domhof, S. and Langer, F. (2002). Nonparametric Anal-
ysis of Longitudinal Data in Factorial Experiments. New York, Wiley.
MR1865401

[8] Brunner, E. and Munzel, U. (2000). The nonparametric Behrens-Fisher
problem - Asymptotic theory and small sample approximations. Biometri-
cal Journal 42 17–25. MR1744561

[9] Brunner E., Munzel U. and Puri M. L. (2002). The multivariate non-
parametric Behrens-Fisher problem. Journal of Statistical Planning and
Inference 108 37–53. MR1947390

[10] Brunner, E. and Puri, M. L. (2001). Nonparametric methods in factorial
designs. Statistical Papers 42 1–52. MR1821004

[11] Dunn, O. J. (1960). Multiple comparisons using rank sums. Technometrics
2 241–252.

[12] Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Boot-
strap. New York, Chapman and Hall. MR1270903

[13] Elliott, A. C. andHynan, L. S. (2011). A SAS macro implementation of
a multiple comparison post hoc test for a Kruskal-Wallis analysis. Computer
Methods and Programs in Biomedicine 102 75 –80.

[14] Gabriel, K. R. (1969). Simultaneous test procedures - some theory
of multiple comparisons. Annals of Mathematical Statistics 40 224–250.
MR0240931

[15] Gao, X. and Alvo, M. (2005). A unified nonparametric approach for un-
balanced factorial designs. Journal of the American Statistical Association
100 926–941. MR2201020

http://www.ams.org/mathscinet-getitem?mr=1436114
http://www.ams.org/mathscinet-getitem?mr=0061787
http://www.ams.org/mathscinet-getitem?mr=1863491
http://www.ams.org/mathscinet-getitem?mr=1934732
http://www.ams.org/mathscinet-getitem?mr=1615259
http://www.ams.org/mathscinet-getitem?mr=1865401
http://www.ams.org/mathscinet-getitem?mr=1744561
http://www.ams.org/mathscinet-getitem?mr=1947390
http://www.ams.org/mathscinet-getitem?mr=1821004
http://www.ams.org/mathscinet-getitem?mr=1270903
http://www.ams.org/mathscinet-getitem?mr=0240931
http://www.ams.org/mathscinet-getitem?mr=2201020


758 F. Konietschke et al.

[16] Gao, X. and Alvo, M. (2008). Nonparametric multiple comparison proce-
dures for unbalanced two-way factorial designs. Journal of Statistical Plan-
ning and Inference 138 3674–3686. MR2455956

[17] Gao, X., Alvo, M., Chen, J. and Li, G. (2008). Nonparametric multiple
comparison procedures for unbalanced one-way factorial designs. Journal
of Statistical Planning and Inference 138 2574–2591. MR2432382

[18] Gardner, M. (1974). On the paradoxical situation that arise from non-
transitive relations. Scientific American 231 120–125.

[19] Genz, A. and Bretz, F. (2009). Computation of multivariate normal and
t probabilities. Lecture Notes in Statistics, New York, Springer. MR2840595

[20] Hasler, M. and Hothorn, L. A. (2008). Multiple contrast tests
in the presence of heteroscedasticity. Biometrical Journal 50 793–800.
MR2542344

[21] Herberich, E., Sikorski, J. and Hothorn, T. (2010). A robust proce-
dure for comparing multiple means under heteroscedasticity in unbalanced
designs. PLoS ONE, DOI:10.1371/journal.pone.0009788.

[22] Hochberg, Y. and Tamhane, A. C. (1987). Multiple Comparison Pro-
cedures. Wiley, New York. MR0914493

[23] Hothorn, T., Bretz, F. and Westfall, P. (2008). Simultaneous in-
ference in general parametric models. Biometrical Journal 50, 346–363.
MR2521547

[24] ICH (1998). Statistical Principles for Clinical Trials. Guideline, Available
at http://private.ich.org.

[25] Konietschke, F. andHothorn, L. A. (2012). Evaluation of toxicological
studies using a nonparametric Shirley-Type trend test for comparing several
dose levels with a control group. Statistics in Biopharmaceutical Research,
in press (DOI: 10.1080/19466315.2011.633861).

[26] Konietschke, F., Libiger, O. and Hothorn, L. A. (2012).Nonparamet-
ric Evaluation of Quantitative Traits in Population-Based Association
Studies when the Genetic Model is Unknown. PLoS ONE 7(2): e31242.
doi:10.1371/journal.pone.0031242.
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