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In healthy older adults, resveratrol supplementation has been shown to improve

long-term glucose control, resting-state functional connectivity (RSFC) of the

hippocampus, and memory function. Here, we aimed to investigate if these beneficial

effects extend to individuals at high-risk for dementia, i.e., patients with mild

cognitive impairment (MCI). In a randomized, double-blind interventional study, 40

well-characterized patients with MCI (21 females; 50–80 years) completed 26 weeks

of resveratrol (200 mg/d; n = 18) or placebo (1,015 mg/d olive oil; n = 22) intake.

Serum levels of glucose, glycated hemoglobin A1c and insulin were determined

before and after intervention. Moreover, cerebral magnetic resonance imaging (MRI)

(3T) (n = 14 vs. 16) was conducted to analyze hippocampus volume, microstructure

and RSFC, and neuropsychological testing was conducted to assess learning and

memory (primary endpoint) at both time points. In comparison to the control group,

resveratrol supplementation resulted in lower glycated hemoglobin A1c concentration

with a moderate effect size (ANOVARM p = 0.059, Cohen’s d = 0.66), higher RSFC

between right anterior hippocampus and right angular cortex (p < 0.001), and led to

a moderate preservation of left anterior hippocampus volume (ANOVARM p = 0.061,

Cohen’s d = 0.68). No significant differences in memory performance emerged between

groups. This proof-of-concept study indicates for the first-time that resveratrol intake

may reduce glycated hemoglobin A1c, preserves hippocampus volume, and improves

hippocampus RSFC in at-risk patients for dementia. Larger trials with longer intervention

time should now determine if these benefits can be validated and extended to cognitive

function.
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INTRODUCTION

The growing incidence of Alzheimer’s disease worldwide and the
lack of curative pharmacological approaches increase the demand
for alternative preventive strategies at earlier disease stages, i.e.,
in patients with mild cognitive impairment (MCI). Nutrition is
now well-recognized as a factor that influences brain structure,
functional connectivity, and cognition andmaymodulate the rate
and degree of disease progression (Gustafson et al., 2015; Huhn
et al., 2015).

Caloric restriction and administration of caloric restriction
mimetics like the polyphenol resveratrol might provide a
promising avenue to slow brain atrophy and cognitive decline
(Kim et al., 2007; Dal-Pan et al., 2011; Willette et al., 2012). It
has been shown that physiological doses of resveratrol are safe
and well-tolerated and that the substance is able to penetrate
the blood-brain barrier to influence the central nervous system
(Turner et al., 2015).

Several studies in mice demonstrated resveratrol-mediated
neuroprotective effects on key features of Alzheimer’s
disease, including decreased amyloid deposition, reduced
tau hyperphosphorylation (Porquet et al., 2013), enhanced
neurogenesis in the hippocampus (HC) (Harada et al., 2011),
and improved memory function linked to activation of longevity
genes, i.e., Silent Information Regulator T1 (Zhao et al., 2013).
In primates, spatial memory performance was improved after
resveratrol intake (Dal-Pan et al., 2011).

Moreover, first resveratrol interventional trials were
conducted in humans, showing positive influence on cerebral
blood flow (Kennedy et al., 2010), glucose control (Brasnyo
et al., 2011; Bhatt et al., 2012; Crandall et al., 2012), and verbal
episodic memory performance (Witte et al., 2014). No beneficial
effects on brain volume have been found in human trials so
far (Witte et al., 2014; Turner et al., 2015). In sum, beneficial
effects in healthy adults are not yet conclusive (Wong et al.,
2013; Witte et al., 2014; Wightman et al., 2015), possibly due to
short intervention times of 4–6 weeks in trials with a negative
outcome (Wong et al., 2013; Wightman et al., 2015). Moreover,
studies that investigate the impact of resveratrol on cognition
and brain networks in individuals at high-risk for dementia, like
MCI patients, are missing so far.

The previous positive trial on resveratrol supplementation
in healthy older adults evaluated a 26-week intervention with
200mg resveratrol, showing an improvement in verbal episodic
memory performance. Potential mechanisms underlying this
effect were also described, such as a significant decrease in
glycated hemoglobin A1c (HbA1c) and an increase in resting-
state functional connectivity (RSFC) between the HC and frontal,
parietal, and occipital brain regions (Witte et al., 2014).

Based on these findings, we now aimed to improve verbal
episodic memory function in memory-impaired patients at high-
risk for dementia (primary endpoint). Therefore, we conducted
a similarly designed proof-of-concept study (double-blind,
randomized-controlled) with MCI patients, assessing the effects
of a 26-week resveratrol supplementation. Moreover, we aimed
to investigate glucose metabolism, total gray matter volume,
and RSFC and structure of the HC, a key region implicated in

memory function (Wittenberg and Tsien, 2002) and known to
be affected early in the course of Alzheimer’s disease (Ries et al.,
2008).

MATERIALS AND METHODS

The study was approved by the Ethics Committee of the Charité
University Hospital Berlin, Germany, and was in accordance
with the declaration of Helsinki. All subjects provided informed
written consent before participation in the study and received a
small reimbursement at the end.

Study Participants
Patients (aged 50–80 years) with MCI were recruited in Berlin
(Memory Clinic of the Department of Neurology of the Charité
University Hospital and Neurology specialist practice) and
Frankfurt am Main (Institute of General Practice), Germany.
MCI patients (amnestic; single and multiple domain) were
diagnosed according to Mayo criteria within 12 months before
baseline visit. These criteria comprised a subjective cognitive
complaint and an objective memory impairment in standardized
tests [performing at least one standard deviation below age- and
education-specific norm in relevant subtests of the CERAD-Plus
or Rey Auditory Verbal Learning Test (AVLT) battery (Total
Word List, Delayed Recall Word List/Figures) (Morris et al.,
1989)]. Moreover, patients showed relatively preserved general
cognition, no impairment in activities of daily living, and no
dementia (Petersen et al., 1999). Exclusion criteria comprised
MMSE scores <24 at baseline visit, severe untreated medical,
neurological or psychiatric diseases and brain pathologies
identified in the magnetic resonance imaging (MRI) scan, no
right-handedness (Oldfield, 1971), non-fluent German language
and BMI <18 kg/m2 or >35 kg/m2.

Study Design
One-hundred-ten patients, previously diagnosed with MCI, were
screened for study eligibility by telephone (e.g., for additional
severe diseases, known brain pathologies, MR ineligibility).
Twenty-two had to be excluded on the basis of these criteria.
The remaining 88 patients were invited for baseline assessment.
From this group, 11 patients had to be excluded either due to
a pathological MRI finding (n = 3) or due to comorbidities
(n = 8; Parkinson’s disease, depression). Eligible patients were
allocated in different intervention groups (details below) by a
simple randomization approach, based on a computer-generated
list of random numbers, carried out by an investigator that was
not involved in the study. Thirty-five patients were randomized
into a separate study testing the effect of omega-3 fatty acids on
brain structure and function. Two patients (resveratrol n = 1;
placebo n = 1) did not complete the intervention due to time
constraints. In total, 40MCI patients completed the current study
(resveratrol n = 18; placebo n = 22; see Figure 1). MRI scans
from follow-up were not available for 10 patients (scheduling
problems at follow-up), leaving 30 patients for longitudinal MRI
analysis (resveratrol n= 14; placebo n= 16).

During baseline assessment, patients underwent a
standardized medical examination, neuropsychological testing,

Frontiers in Neuroscience | www.frontiersin.org 2 March 2017 | Volume 11 | Article 105

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Köbe et al. Resveratrol, Glucose, Brain Structure in MCI

FIGURE 1 | Study flow chart. In total, 110 MCI patients were screened on telephone, of which 88 were invited for baseline assessment. Forty-two patients met the

inclusion criteria and were randomized to the resveratrol intervention group (n = 19) or to the placebo intervention group (n = 23). Two patients did not complete

participation due to time constraints. Thus, 40 patients successfully completed the intervention over 26 weeks (resveratrol n = 18; placebo n = 22). Before and after

the intervention period, patients underwent a standardized medical examination, including neuropsychological testing, cerebral magnetic resonance imaging (MRI),

anthropometry, and fasting blood draw for detection of serum parameters and APOE e4 status. MRI scans from both time points baseline and follow-up were not

available for 10 patients (scheduling problems at follow-up), leaving 30 patients for longitudinal MRI analysis (resveratrol n = 14; placebo n = 16).

structural and resting-state functional MRI of the brain, as well
as fasting blood sampling, and assessments of anthropometric
data and mood (baseline assessment; see Figure 1 and Table 1).

MCI patients were randomized in either a resveratrol or
placebo group, receiving a daily supplementation of 200mg
resveratrol, plus 350mg quercetin to increase bioavailability
of resveratrol (De Santi et al., 2000), or 1,015mg olive oil,
respectively. Patients were instructed to follow a regular intake
once a day (4 capsules) before or at a main meal for 26 weeks.
Resveratrol intake was well tolerated with no reported treatment-
related serious adverse events that would have led to study
termination. Each patient received half of their study medication
at baseline and the second half after 13 weeks.

Capsules were provided by VIA Vitamine, Oberhausen,
Germany. Following the intervention, baseline measurements
were repeated (follow-up assessment; see Figure 1).

Compliance of Capsule Intake
The number of remaining resveratrol or placebo capsules was
counted after 13 and 26 weeks, showing a >83% compliance
rate. Moreover, patients completed a questionnaire on capsule
intake at the end of the study. Misses of capsule intake exceeding
5 times/ month would have led to pre-specified exclusion from
analysis. However, none of the patients had to be excluded in
this study due to capsule misses. Patients were instructed not to

change their dietary habits and their physical activity throughout
the intervention.

Neuropsychological Assessment
Learning and episodic declarative memory performance of MCI
patients was tested, using the German version of the Rey
Auditory Verbal Learning Test (AVLT) (Lezak, 2004). Patients
were asked to learn a list of 15 words within five immediate
recall trials, followed by a 30 min delayed recall and delayed
recognition test. Learning ability was defined as the sum of words
learned in all five trials (maximum 75 words). Delayed recall
represented the total number of remembered words after 30 min
(maximum 15 words). For delayed recognition, MCI patients
were asked to recognize the 15 original words presented within 35
distractor words subsequent to the delayed recall test (number of
correctly recognized wordsminus false positive words; maximum
15words). Trained staffmembers conducted all tests according to
standardized procedures.

Magnetic Resonance Image (MRI)
Acquisition
MRI scanning was conducted at baseline and follow-up, using a
3-Tesla Siemens Trio system with a 12-channel head coil at the
Berlin Center for Advanced Neuroimaging.
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TABLE 1 | Baseline characteristics of MCI patients dependent on group.

Characteristic

parameters

Resveratrol Placebo

n (Women) [n] 18 (10) 22 (11)

Age [years] 65 ± 9 (50–80) 69 ± 7 (51–79)

Education [years] 14 ± 4 (8–20) 16 ± 3 (11–19)

Body mass index

(BMI) [kg/m2]

26 ± 3 (20–31) 26 ± 3 (23–32)

Right-handedness

[%]a
90 ± 11 (70–100) 81 ± 37 (−50–100)

Systolic blood

pressure [mm Hg]a
140 ± 20 (117–177) 145 ± 14 (115–168)

LDL-to-HDL ratio 2.5 ± 0.8 (1.4–4.2) 2.2 ± 0.7 (0.9–3.7)

hsCRP [pg/ml]c 1.3 ± 2.2 (0.3–9.3) 2.1 ± 1.9 (0.3–7.9)

Smoking [pack

years]a
11 ± 14 (0–38) 4 ± 8 (0–30)

Physical activity

[kcal/week]a
3,734 ± 3,844 (321–13,034) 3,199 ± 2,486 (435–9,295)

Beck’s Depression

Index (BDI) [score]b
9 ± 6 (0–20) 9 ± 6 (0–20)

State-Trait Anxiety

Inventory-X1 [score]

34 ± 6 (23–45) 39 ± 9 (22–56)

Mini mental state

examination (MMSE)

[score]

28 ± 2 (24–30) 29 ± 1 (26–30)

Apolipoprotein_

rs429358/rs7412

[n e4−; e4+]

13; 5 9; 13

Data expressed as mean ± SD (range; min-max).
aTwelve or b four patients were excluded due to missing values, respectively.
cOne extreme outlier (27.7 pg/ml) within the resveratrol group was excluded (indicating

an acute infection). Adjusting for differences in CRP value did not attenuate the beneficial

effect of resveratrol on HbA1c concentration, HC RSFC, and HC volume compared with

placebo.

High resolution T1-weighted scans (3D Magnetization
Prepared Rapid Acquisition with Gradient Echoes (MPRAGE);
TR = 1,900 ms, TE = 2.52 ms, 192 sagittal slices, voxel-size of
1.0 × 1.0 × 1.0 mm3, flip angle = 9◦), and diffusion-weighted
spin-echo echo-planar imaging (EPI) scans (TR = 7,500 ms,
TE = 86 ms, 61 axial slices, voxel size of 2.3 × 2.3 × 2.3 mm3;
64 directions with a b-value of 1,000 s/mm2 and 10 b0) were
acquired.

Functional scans were obtained at rest using a T2∗-weighted
EPI sequence (TR= 2,300 ms, TE= 30 ms, 34 slices, voxel size of
3.0 × 3.0 × 4.0 mm3, flip angle = 90◦). Patients were instructed
to keep their eyes closed, relax, think of nothing in particular and
move as little as possible during this 6 min scan.

Image preprocessing and analyses were done using the
software package FSL 4.1 (http://www.fmrib.ox.ac.uk/fsl), AFNI
2011 (http://afni.nimh.nih.gov/afni), and FreeSurfer 5.3 (http://
surfer.nmr.mgh.harvard.edu/), as indicated below.

MRI Analyses
MRI analyses were performed according to Witte et al. (2014),
where the procedure is described in detail.

Briefly, volumetric delineation of the total gray matter, and
left and right HC was conducted, using FSL and Freesurfer brain
extraction tools (BET and mri_watershed), FMRIB’s Automated
Segmentation Tool (FAST) and Integrated Registration and
Segmentation Tool (FIRST). To determine the respective anterior
and posterior parts, the center of gravity of the HC was
assessed after rigid body transformation to MNI space and
the corresponding y-coordinate then served as a measure for
individual anterior/posterior-division.

Individual HC volumes were adjusted for intracranial volume
(ICV), according to previous studies (Raz et al., 2005; den Heijer
et al., 2012; Kerti et al., 2013), using the following formula:
adjusted volume = raw volume − b × (ICV − mean ICV).
The coefficient b represents the slope of regression of a region
of interest volume on ICV. The results of HC segmentation
were superimposed on anatomic images and visually inspected
to exclude misregistration or erroneous HC identification.

Hippocampal microstructure was assessed by mean diffusivity
(MD), estimated by using diffusion tensor imaging (DTI), in line
with previous studies (den Heijer et al., 2012; Kerti et al., 2013).
Therefore, a tensor model was fitted to the motion-corrected
DTI data at each voxel to create individual 3-dimensional
maps of MD. Then, individual T1-weighted images were co-
registered to the b0 images, using rigid-body transformation.
These registrations were used to transform masks of the left and
right anterior and posterior HC (derived from the T1 images) to
theMDmaps, for extraction of the mean individual hippocampal
MD values. For this analysis FSL software was used.

To assess potential changes in RSFC of the HC, we used a
customized processing stream based on the 1,000 Functional
Connectomes Project (http://www.nitrc.org/projects/fcon_1000)
(Biswal et al., 2010). Co-registered masks of the left and right
anterior and posterior HC served as seeds for RSFC analysis,
in line with previous studies (Rombouts et al., 2005; Andrews-
Hanna et al., 2010; Witte et al., 2014). Pre-processing of
individual functional scans comprised slice time correction,
motion correction, spatial smoothing with a 6 mm full-width-
half-maximum (FWHM) Gaussian kernel, temporal filtering
(0.01–0.1 Hz), and de-trending, using AFNI and FSL software.
The functional scans were normalized to the anatomical image,
using affine co-registrations. Noise due to motion, white matter,
cerebrospinal fluid, and global change was removed from the
functional signal by multiple regressions, creating standardized
residual BOLD-signal time series (in FSL). Then, mean time
series of the individual HC seeds were correlated with times
series of all other gray matter voxels in the brain, using a general
linear model approach within FSL (FMRIB’s local analysis of
mixed effects with Ordinary Least Square option, FLAMEO). The
resulting Pearson’s r correlation coefficient 3D maps were then
Fisher’s z-transformed and smoothed, using a kernel of sigma= 1
to improve normality. This produced spatial maps in which the
values of voxels represented the strength of the correlation with
the individual HC seeds. Registration of individual z-maps for
group analysis included a rigid body within-subject registration
of both time points to a “halfway space” before affine and non-
linear registrations to a study-specific template, as described in
detail in previous studies (Witte et al., 2014; Köbe et al., 2016).

Frontiers in Neuroscience | www.frontiersin.org 4 March 2017 | Volume 11 | Article 105

http://www.fmrib.ox.ac.uk/fsl
http://afni.nimh.nih.gov/afni
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://www.nitrc.org/projects/fcon_1000
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Köbe et al. Resveratrol, Glucose, Brain Structure in MCI

SNP Genotyping
DNA was extracted from whole blood, using a blood mini-kit
(Qiagen, Hilden, Germany) and stored at −80◦C until analysis.
Genotyping of the single nucleotide polymorphisms (SNP)
apolipoprotein E (APOE) rs429358 and rs7412 that have been
previously implicated in cognitive performance (Corder et al.,
1993; Egan et al., 2003; Witte and Floel, 2012) was performed,
using a pre-designed Taqman assay at the laboratory of Prof.
Dr. Dan Rujescu (University of Halle, Germany), following
procedures described previously (O’Dwyer et al., 2012).

Blood Markers of Glucose Control,
Anthropometric Measures and Mood
After fasting overnight of at least 10 h, all subjects underwent
venous blood sampling for assessment of serum levels of
glucose, glycated hemoglobin A1c as long-term measure of
glucose, insulin, high-to-low density lipoprotein (HDL-to-
LDL) ratio, and high-sensitive C-reactive protein (hsCRP). All
parameters were analyzed by IMD Laboratory, Berlin, Germany.
Anthropometric measures included weight and body mass
index (BMI). Patients also reported their physical activity and
other lifestyle habits, using the Freiburger physical activity
questionnaire (Frey et al., 1999). For mood ratings during
neuropsychological testing, the Positive and Negative Affective
Schedule (PANAS; Krohne et al., 1996) was used. Moreover,
to characterize each patient’s depression and anxiety level at
baseline, the Beck’s Depression Inventory (BDI; Kuhner et al.,
2007) and the State-Trait Anxiety Inventory (STAI X1; Laux et al.,
1981) were used.

Statistical Analyses
Before data analysis, all variables were tested for normal or near-
normal distribution (unimodal, |skewness| <1). Accordingly,
parametric and non-parametric tests were calculated, as
appropriate. Two-sided level of significance was set at α < 0.05.
SPSS 23.0 (PASW, SPSS; IBM, Armonk, NY) was used for the
analysis.

At baseline, parameters of memory performance, glucose
metabolism, HC volume and microstructure were compared
between groups, using independent t-tests or Mann-Whitney
U-tests, as appropriated. To detect differences between groups
with regard to changes over time in these parameters, we
performed repeated-measures analysis of variance (ANOVARM)
with “time” as repeated factor (baseline, follow-up) and “group”
as between-subject factor (resveratrol, placebo intervention).
Changes over intervention time within groups were evaluated,
using paired t-tests orWilcoxon signed-rank tests, as appropriate.
Correction for multiple comparison was applied for our primary
hypothesis that resveratrol intake has beneficial effects on
memory performance in comparison to placebo intake, using
Bonferroni threshold (α = 0.05 divided by the number of tests
per category). Secondary hypotheses comprised detection of
changes in glucose metabolism and HC RSFC and structure. For
all secondary analyses no adjustment for multiple testing was
applied.

HC seed-based RSFC group analysis included gray matter-
voxelwise GLM statistics, implemented in FSL, between changes

in HC RSFC in the resveratrol group compared with those in the
placebo group, using a cerebral gray matter mask (cerebellum
excluded). Gaussian random field theory was used to correct
for multiple comparisons at the cluster level (FSL easythresh,
clusterwise correction, z > 2.3, p < 0.05).

Initially all analyses were conducted unadjusted. Additionally,
analyses with 40 available datasets (memory performance and
glucose control) were corrected for 4 covariates (age, sex,
APOE e4 carrier status, and education) and analyses with
30 available data sets (MRI analyses) were corrected for 3
covariates (age, sex, and APOE e4 carrier status), to allow
adjustment for important covariates but to avoid over-fitting
Stoltzfus (2011).

To detect associations between changes in glucose parameters,
HC structure and RSFC, and memory performance after the
26-week intervention, we ran bivariate correlations; Pearson or
Spearman’s rank correlation analysis, according to distribution of
the data.

RESULTS

Baseline Characteristics
At baseline, both intervention groups were similar with regard
to sex, age, years of education, cardiovascular and psychological
risk factors, standard markers for lipid and inflammatory status,
physical activity and MMSE scores (Table 1). The placebo
group comprised a higher number of APOE e4 carriers (59%)
and a higher concentration of high-sensitive CRP (2,1 pg/ml)
compared to the resveratrol group (28% and 1,3 pg/ml).

Memory Performance
Mean scores of all AVLT subtests, i.e., learning ability, delayed
recall, retention and recognition, were comparable between
intervention groups at baseline (see Table 2). Against our
primary hypothesis no interaction effect of group × time was
found for memory performance (ANOVARM; all ds ≤ 0.471;
p≥ 0.157, Bonferroni corrected). Adjustment for age, sex, APOE
e4-carrier status and education as well as a separate analysis for
male and female patients did not change the results. For details
see Table 2.

Changes in Parameters of Glucose Control
At baseline, parameters of glucose control were similar in both
intervention groups (see Table 3).

An interaction effect of group × time was found for
HbA1c with a moderate effect size of d = 0.66 [ANOVARM,
F(1, 35) = 3.80, p = 0.059], similar after full adjustment for
age, sex, APOE e4 carrier status and education [ANCOVARM,
F(1, 31) = 3.6, p = 0.066, d = 0.65]. Here, the long-term
glucose marker HbA1c was significantly reduced in MCI patients
after resveratrol intervention [−0.15%; paired t-test; t(17) = 3.3,
p = 0.005, d = 1.60]; this was not the case in the placebo group
(−0.02%) (Figure 2). For glucose and insulin no group × time
interaction effects and no changes over time in both groups were
observed. For details see Table 3.
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TABLE 2 | Intervention related changes in declarative memory performance of MCI patients dependent on group and time.

Resveratrol (n = 18) Placebo (n = 22)

BL FU p-value BL FU p-value Unadjusted p-value

(group × time)c
Adjusted p-value

(group × time)d

Learning ability 44.9 ± 9.5 43.0 ± 10.7 0.314a 44.2 ± 8.1 41.9 ± 12.8 0.495b 0.878 0.840

Delayed recall 7.6 ± 3.9 6.7 ± 3.9 0.173a 7.2 ± 2.7 7.6 ± 3.7 0.536a 0.157 0.126

Retention −3.4 ± 2.1 −3.8 ± 2.6 0.444a −3.8 ± 2.2 −3.3 ± 2.2 0.505a 0.325 0.249

Recognition 9.8 ± 5.9 8.4 ± 6.2 0.122b 9.3 ± 4.2 7.7 ± 6.0 0.152b 0.882 0.806

Number of words in different subtests of the auditory verbal learning test expressed as mean ± SD (raw data). BL, baseline; FU, follow-up.
aPaired t-test.
bWilcoxon signed-rank test.
cANOVARM , unadjusted.
dANCOVARM, adjusted for age, sex, APOE e4 status and education.

TABLE 3 | Intervention related changes in fasting serum parameters of glucose metabolism of MCI patients dependent on group and time.

Resveratrol (n = 18) Placebo (n = 22)

BL FU p-value BL FU p-value Unadjusted p-value

(group × time)c
Adjusted p-value

(group × time)d

HbA1c [%]e 5.86 ± 0.36 5.71 ± 0.33 0.005a 5.73 ± 0.29 5.71 ± 0.28 0.769b 0.059 0.066

Glucose [mg/dl]f 97.6 ± 13.1 101.8 ± 25.0 0.392a 96.7 ± 15.2 97.2 ± 15.1 0.807b 0.468 0.297

Insulin [mU] 8.7 ± 3.7 10.4 ± 12.6 0.349b 9.2 ± 4.1 9.0 ± 5.8 0.163b 0.521 0.402

Data expressed as mean ± SD. Significant results are highlighted in bold (p < 0.05). BL, baseline; FU, follow-up; HbA1c, glycated hemoglobin A1c.
aPaired t-test.
bWilcoxon signed-rank test.
cANOVARM , unadjusted.
dANCOVARM, adjusted for age, sex, APOE e4 status and education.
eThree subject excluded due to missing values (placebo group).
fOne subject excluded due to missing values (placebo group).

Hippocampus Resting-State Functional
Connectivity
The seed-based RSFC analysis revealed that resveratrol
intervention significantly increased functional connectivity
between the right HC seed and a cluster in the right angular
cortex compared to placebo (Figure 3, yellow-red, cluster of
523 voxels, hot voxel: x = 60, y = −56, z = 10, p < 0.001).
This effect was primarily driven by the anterior part of the right
HC (cluster of 557 voxels, hot voxel: x = 60, y = −58, z = 10,
p < 0.001). Results did not change after adjustment for age, sex
and APOE e4 carrier status (p < 0.001) and after correction for
multiple comparisons (FSL easythresh). The decrease in HbA1c
did not significantly correlate with the increase in RSFC in the
resveratrol group (r = −0.131, p = 0.665). We did not find
significant group differences for the opposite contrast (placebo
intervention > resveratrol intervention). No significant group
differences were observed in correlations between the left HC
seed and other gray matter brain regions.

Gray Matter Volume, Hippocampus
Volume, and Microstructure
At baseline, total gray matter volume, and volume and
microstructure of the HC were similar between both groups (see
Table 4).

At between-group level, total gray matter volume was
similar after intervention period in both groups [ANCOVARM,

F(28) = 0.272, p = 0.606, d = 0.20]. A group × time interaction
effect was found for the atrophy rate of the left HC with a
moderate effect size of d = 0.68 [ANCOVARM; F(28) = 3.2,
p = 0.084], particularly for the left anterior HC [ANCOVARM;
F(28) = 3.8, p= 0.061, d= 0.74] after no adjustment, and was still
present after full adjustment for age, sex, and APOE e4 carrier
status [ANCOVARM; left HC, F(24) = 2.3, p = 0.144, d = 0.57;
left anterior HC, F(24) = 3.2, p= 0.088, d = 0.68]. Patients of the
placebo group showed a decrease of −4.2% in volume of the left,
specifically left anterior (−4.5%) HC, whereas the volume was
preserved in the resveratrol group (+0.3%). No group × time
interaction effects were found for changes in volume of the left
posterior HC and the right HC of both groups. For details see
Table 4 and Figure 4.

Turning to HC microstructure, no selective differences were
noted between groups for changes in mean diffusivity of the HC
over time (see Table 4).

DISCUSSION

In this proof-of-concept study with MCI patients, we
demonstrated that daily supplementation with 200mg
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FIGURE 2 | A moderate, but non-significant decrease in the long-term

glucose marker HbA1c after 26 weeks resveratrol intervention (n = 18)

compared to placebo intervention (n = 19) (ANCOVARM p = 0.059,

d = 0.66). The decrease reached statistical significance when analyzing the

resveratrol group separately (paired t-test p = 0.005). HbA1c, glycated

hemoglobin A1c.

resveratrol over 26 weeks led to a moderate decrease in
HbA1c (non-significant), a long-term marker of glucose
control, in comparison to placebo. Moreover, supplementation
significantly increased RSFC between the right HC and the right
angular cortex and preserved the volume of the left, particularly
anterior, HC with a moderate effect size (non-significant).
Beneficial effects of resveratrol on memory performance and HC
microstructure were not found.

The pathogenesis of “typical Alzheimer’s disease” has been
divided in sequential disease stages, characterized by changes
in different biomarkers over time (Jack et al., 2013). According
to this model, an initial increase in Aß deposition is followed
by Tau pathology, hypometabolism, brain atrophy particularly
of the HC, and finally cognitive dysfunction. Within this
model, changes in the functional organization of the brain
represent a promising diagnostic biomarker in early disease
stages, preceding structural brain changes (Pievani et al., 2011).
Notably, changes in RSFC are known to reflect dynamic
modulations of blood flow and brain activity, well before
structural alterations (Sheline et al., 2010; Prvulovic et al., 2011;
Brickman et al., 2014), and may therefore constitute a highly
sensitive biomarker to detect subtle changes due to dietary
modifications. Moreover, it has been shown in previous studies
that dietary changes can influence RSFC (Grayson et al., 2014;
Witte et al., 2014; Wiesmann et al., 2016). A randomized
controlled crossover study by Kennedy et al. (2010) demonstrated

that a single dose of resveratrol was sufficient to increase cerebral
blood flow, measured by near-infrared spectroscopy. However,
long-term interventional studies that investigate the beneficial
potential of nutritional components by measuring brain RSFC
are still limited. In an own study with healthy older adults,
resveratrol supplementation over 26 weeks compared to placebo
significantly improved RSFC of the HC (Witte et al., 2014).
Here, we were partially able to confirm these findings, i.e.,
found a significant increase in RSFC between the right HC
and the right angular cortex in MCI patients, supporting the
positive influence of resveratrol on brain networks even in
early disease-stages. HC and angular gyrus are structurally and
functionally connected (Uddin et al., 2010), and constitute core
areas within the default mode network, known to be related to
memory function (McCormick et al., 2014) and to deteriorate
in aging and neurodegenerative disease (Dennis and Thompson,
2014).

In addition, resveratrol supplementation showed a moderate
effect (non-significant) on preservation of hippocampal volume,
which was decreased over time in the placebo group. This result
is in line with a reduction of neurodegeneration and/or an
increase in neurogenesis of the HC observed after resveratrol
injection in rodent models, even in older age (Kim et al., 2007;
Kodali et al., 2015). In our previous resveratrol trial with healthy
older adults, we could not demonstrate a beneficial effect of
resveratrol on HC structure. However, the specific cohort in that
study, i.e., healthy older adults, might have prevented us from
observing significant differences, due to lower atrophy rates over
the course of 6 months in the healthy group (Witte et al., 2014).
MCI patients show a stronger atrophy rate within 6 months
compared to healthy older adults (McDonald et al., 2009), which
might increase the probability for statistical detection of sensitive
dietary effects on changes in brain morphology. Given that we
only found a moderate and non-significant effect of resveratrol
on HC structure, longer intervention times may be necessary to
induce significant changes (Douaud et al., 2013).

So far, studies on the impact of resveratrol on cognitive
performance showed mixed results. First interventional studies
have shown that resveratrol supplementation over 18 and 6
months, respectively, improved spatial memory performance
in non-human primates (Dal-Pan et al., 2011), and increased
the number of words retained over 30 min in healthy older
adults (Witte et al., 2014). In contrast, in a recently published
randomized-controlled trial, resveratrol intervention over 28
days was not sufficient to induce clear improvements in cognitive
function, showing merely improvements in working memory
performance (i.e., accuracy in the 3-back task), but not in tasks
related to attention and executive function (Wightman et al.,
2015). In the current study, we did not detect resveratrol-related
beneficial effects on learning and memory performance in MCI
patients, possibly due to the small sample size and still relatively
short intervention time [6 months as compared to 24 months
in a nutritional study with B-vitamin supplementation that
demonstrated improvement in episodic memory performance
(de Jager et al., 2012)]. Thus, our study design may have only
allowed for changes in RSFC and moderate effects on structure
but not yet for “downstream” cognitive effects.
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FIGURE 3 | Significant increase in resting-state functional connectivity between the right HC and the right angular cortex after 26 weeks resveratrol

intervention (n = 14) compared to placebo intervention (n = 16). Color bar indicate t-values of significant voxels (resveratrol intervention > placebo intervention;

cluster-based thresholding, p < 0.05). Individual masks of the left and right HC were used as seeds in the analysis. No group differences were observed for the

opposite contrast (placebo intervention > resveratrol intervention), and when using the left HC as seed. For better visualization we superimposed the t-map on the

MNI-template. Images are displayed in neurological convention, coordinates in mm according to MNI space. A, anterior; H, hippocampus; L, left; R, right; P, posterior.

TABLE 4 | Intervention related changes in gray matter volume, and volume and microstructure of the hippocampus of MCI patients dependent on group

and time.

Resveratrol (n = 14) Placebo (n = 16)

BL FU p-valuea BL FU p-valuea Unadjusted p-value

(group × time)b
Adjusted p-value

(group × time)c

Total GM volume [cm3] 542.8 ± 68.6 540.6 ± 65.1 0.454 552.1 ± 50.5 547.0 ± 55.6 0.301 0.606 0.744

HC, LEFT

Volume [cm3] 3.52 ± 0.6 3.53 ± 0.6 0.774 3.78 ± 0.6 3.62 ± 0.5 0.073 0.084 0.113

MD [m2/s] 1.10 ± 0.19 1.12 ± 0.14 0.629 1.14 ± 0.09 1.14 ± 0.11 0.736 0.544 0.131

HC, LEFT ANT

Volume [cm3] 2.04 ± 0.4 2.06 ± 0.3 0.583 2.24 ± 0.3 2.14 ± 0.3 0.063 0.061 0.061

MD [m2/s] 1.16 ± 0.16 1.15 ± 0.17 0.850 1.17 ± 0.10 1.17 ± 0.13 0.686 0.899 0.380

HC, LEFT POST

Volume [cm3] 1.47 ± 0.2 1.47 ± 0.3 0.863 1.55 ± 0.2 1.48 ± 0.2 0.133 0.222 0.340

MD [m2/s] 1.09 ± 0.20 1.07 ± 0.10 0.503 1.09 ± 0.08 1.09 ± 0.1 0.803 0.620 0.468

HC, RIGHT

Volume [cm3] 3.71 ± 0.5 3.75 ± 0.5 0.463 3.82 ± 0.6 3.72 ± 0.6 0.257 0.183 0.107

MD [m2/s] 1.09 ± 0.12 1.15 ± 0.09 0.029 1.16 ± 0.09 1.18 ± 0.11 0.171 0.275 0.063

HC, RIGHT ANT

Volume [cm3] 2.17 ± 0.3 2.18 ± 0.3 0.848 2.26 ± 0.4 2.20 ± 0.3 0.253 0.316 0.168

MD [m2/s] 1.16 ± 0.10 1.20 ± 0.11 0.007 1.21 ± 0.12 1.23 ± 12.8 0.266 0.374 0.429

HC, RIGHT POST

Volume [cm3] 1.53 ± 0.2 1.57 ± 0.2 0.218 1.56 ± 0.3 1.52 ± 0.2 0.231 0.093 0.071

MD [m2/s] 1.04 ± 0.08 1.06 ± 0.09 0.073 1.09 ± 0.07 1.12 ± 0.1 0.252 1.000 0.453

Number of words in different subtests of the auditory verbal learning test expressed as mean ± SD (raw data). Ant, anterior; BL, baseline; FU, follow-up; HC, hippocampus; MD, mean

diffusivity; post, posterior.
aPaired t-test.
bANOVARM, unadjusted.
cANCOVARM, adjusted for age, sex, and APOE e4 status.

Significant results are highlighted in bold (p < 0.05).

Neuroprotective mechanisms that might explain the link
between resveratrol and improved brain structure, and eventually
function, include reductions in mitochondrial dysfunction,

oxidative damage, glucose toxicity, and chronic inflammation,
by improving glucose metabolism and vascular functions, see
also Huhn et al. (2015) for detailed review. Moreover, resveratrol
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FIGURE 4 | A moderate, but non-significant, preservation of gray matter atrophy of the left, particularly anterior, hippocampus after 26 weeks

resveratrol supplementation (n = 14) compared to placebo (n = 16) (ANCOVARM; left Hippocampus, p = 0.084, d = 0.68; left anterior Hippocampus,

p = 0.061, d = 0.74). Error bars indicate standard error.

is described as a potential activator of the sirtuin pathway
that is regulated by NAD+/NADH, linking energy metabolism
to gene expression (Timmers et al., 2011; Li, 2013). Our
previous study in healthy older adults demonstrated a significant
decrease in the long-term glucosemarker HbA1c after resveratrol
intervention compared to placebo (Witte et al., 2014). In line with
these findings, we also found a moderate, but non-significant,
reduction in HbA1c after 26 weeks resveratrol treatment in
MCI patients in comparison to an unchanged value after
placebo intake. These findings point toward resveratrol-induced
modulations of glucose control as one possible mechanism
underlying beneficial effects on RSFC (Stranahan and Mattson,
2008).

Some limitations should be considered when interpreting our
findings. First, the small number of patients in both groups
might have prevented us from observing statistically significant
changes inmemory function and secondary outcome parameters,
i.e., HbA1c, and HC volume and microstructure. Second, an
intervention time of 26 weeks might be too short to reach
significant beneficial effects. Third, intervention and placebo
group differed in the number of APOE e4 carriers, which
might have biased the results; however, adjustment for APOE e4
status did not attenuate the moderate (non-significant) effects.
Fourth, self-reported information by the patients and count
of remaining capsules were the only compliance measure, but
group-specific decrease in HbA1c supports patients’ adherence.
Fifth, resveratrol was given in a formula with quercetin to
increase its bioavailability (De Santi et al., 2000), whereby an
impact of quercetin itself on brain function cannot be excluded.
However, in a randomized-controlled trial even higher doses of
quercetin (500 mg/d or 1,000 mg/d) did not show ergogenic
effects on neurocognitive functioning in humans (Broman-Fulks
et al., 2012).

In sum, we were able to partially translate previously reported
beneficial effects of resveratrol from healthy older adults to at-risk
patients for Alzheimer’s disease, showing significantly increased
HC RSFC, and moderate improvements in glucose metabolism
and HC structure (non-significant). We believe that these
findings support resveratrol as a potential non-pharmacological
agent to modify the disease process in MCI patients. However,
larger and long-term interventional trials in patients are
now needed to confirm or refute beneficial effects observed
on sensitive surrogate markers for hippocampal function,
and to determine if these findings also extend to cognitive
function.
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