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Experimental measurement-device-independent
verification of quantum steering
Sacha Kocsis1,2, Michael J.W. Hall1, Adam J. Bennet1, Dylan J. Saunders1,3 & Geoff J. Pryde1

Bell non-locality between distant quantum systems—that is, joint correlations which violate a

Bell inequality—can be verified without trusting the measurement devices used, nor those

performing the measurements. This leads to unconditionally secure protocols for quantum

information tasks such as cryptographic key distribution. However, complete verification of

Bell non-locality requires high detection efficiencies, and is not robust to typical transmission

losses over long distances. In contrast, quantum or Einstein–Podolsky–Rosen steering, a

weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies

and high losses. The cost is that current steering-verification protocols require complete trust

in one of the measurement devices and its operator, allowing only one-sided secure key

distribution. Here we present measurement-device-independent steering protocols that

remove this need for trust, even when Bell non-locality is not present. We experimentally

demonstrate this principle for singlet states and states that do not violate a Bell inequality.
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E
ntanglement provides a fundamental resource for a range of
quantum technologies, from quantum information proces-
sing to enhanced precision measurement1–4. In particular,

the strong correlations inherent in shared entanglement—for
example, between two parties—allows secure messaging and
quantum information transfer, potentially over long distances1,5.
At the same time, the strong restrictions of quantum
measurement theory prevents the extraction of useful
information when an adversary has access to only one of the
entangled systems6–8. Furthermore, any adversary measuring one
or more of the entangled systems reveals their presence to the
communicating parties.

When correlations due to quantum entanglement are suffi-
ciently strong, they allow the unconditionally secure sharing of a
cryptographic key between two distant locations, without
requiring any trust in the devices used or in the observers
reporting the results9. They also allow generation of
unconditionally genuine randomness, again with no trust in the
devices used or their operators10,11. The corresponding
verification protocols are thus device-independent, and can be
put in the form of a ‘Bell-non-local game’, played between a
referee and two untrusted parties, which can be won by the latter
only if they genuinely share a Bell-non-local quantum state
(Fig. 1a)12, that is, an entangled state that violates a Bell
inequality.

There are, however, practical difficulties in entanglement
verification via Bell-non-local games. Even if the entanglement
is strong enough (compared with noise) to otherwise violate a Bell
inequality, there may be too many null measurement results for
unconditional verification—arising, for example, from detector
inefficiencies or the typical transmission losses involved in
implementations over long distances. Too many null results will
make it impossible even for ‘honest’ devices to win a Bell-non-
local game. This is the well-known ‘detection loophole’13.

A promising alternative is based on a different test of non-
locality, called Einstein–Podolsky–Rosen (EPR) steering (or
quantum steering). First identified by Erwin Schrödinger14, and
present in the EPR paradox15, this corresponds to being able to
use entanglement to steer the state of a distant quantum system
by local measurements, and is strictly weaker than Bell non-
locality16,17. Further, the detection loophole can be circumvented
in the verification of steering, if the device and operator for one
of the two entangled systems is completely trusted by the
referee18–20 (Fig. 1b). This leads to the real possibility of one-
sided device-independent secure key distribution that is robust to
both detector inefficiency and transmission loss21. Unfortunately,
however, an unconditionally secure protocol cannot rely on trust
at all, even in one side.

Very recently, work on entanglement verification by Buscemi22

has been generalized to show that EPR steering can in fact be

verified in the absence of trust in either side, via quantum-
refereed steering (QRS) games23. In comparison with Bell-non-
local games, the referee still sends classical signals to one party,
but sends quantum signals to the other party (Fig. 1c). The
quantum signals must be chosen such that they cannot be
unambiguously distinguished, to prevent the possibility of
cheating. Until now, only an existence proof for such games
was known, with no explicit means of construction23. For the case
of entanglement witnesses, a recent measurement-device-
independent protocol and demonstration has addressed a
similar question24,25, although EPR steering, Bell non-locality
and calibration of the quantum signals (see below) were not
considered.

In this paper we give the first explicit construction of a QRS
game, for the trust-free verification of steering entanglement. We
also demonstrate a proof-of-principle implementation, for optical
polarization qubits, in a scenario where no Bell non-locality—as
tested by the Clauser–Horne–Shimony–Holt (CHSH) inequality26

—is present. The results open the way to measurement-device-
independent key distribution protocols that do not require Bell
non-locality, and which can circumvent the detection loophole.

Results
Quantum-refereed steering game. Consider the following sce-
nario (Fig. 1c). On each run the referee, whom we shall call
Charlie, chooses at random a pair of numbers labelled by k�(j, s),
with jA{1, 2, 3} and s¼±1. Charlie sends Alice the value of j as a
classical signal, and sends Bob a qubit in the s-eigenstate of the
Pauli spin observable sC

j , that is, the state oC
k ¼ 1

2 ð1þ ssC
j Þ. The

referee requires Alice and Bob to send back classical binary sig-
nals, a¼±1 and b¼ 0 or 1, respectively. The referee uses their
reported results over many runs to calculate the payoff function

PðrÞ :¼ 2
X

k¼ðj; sÞ
shabij;s� r=

ffiffiffi
3
p� �
hbij;s

h i
; ð1Þ

where h � ij, s denotes the average over those runs with k¼ (j, s).
Here rZ1 is a parameter that indicates how well the referee can
prepare the desired qubit states oC

k , with r¼ 1 for perfect pre-
paration (see Methods section). Alice and Bob win the game if
and only if P(r)40.

In this QRS game Alice and Bob are allowed to plan a joint
strategy beforehand, but are not allowed to communicate during
the game. The latter could be enforced via space-like separated
measurement regions. The game is measurement-device-inde-
pendent, because Charlie makes no assumptions about how Alice
and Bob generate their values of a and b—they and their devices
are untrusted. Remarkably, Alice and Bob cannot cheat—they are
only able to win the game if Alice is genuinely able to steer Bob’s
state (see Methods section).
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Figure 1 | Quantum correlation games. (a) In ‘non-local games’ a referee (Charlie) can verify that Alice and Bob share a Bell-non-local resource, by

sending classical input signals j and k, receiving output signals a and b and checking whether the corresponding correlations violate a Bell inequality.

No trust in Alice and Bob or their devices is necessary, as indicated by the black boxes. (b) The referee may similarly use an ‘EPR steering game’ to

verify the presence of an EPR steering resource, by checking whether the correlations violate a suitable EPR steering inequality. However, all known

EPR steering games require the referee to fully trust one of the observers and their devices, as indicated by the transparent box. (c) Using the

measurement-device-independent protocols of this paper, the referee can now unconditionally verify EPR steering, by using ‘quantum-refereed steering

games’ that replace the need for trust with quantum input signals ok.
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For example, suppose that Alice and Bob share a two-qubit
Werner state, rAB

W ¼W C� 1
�� �AB

C� 1
� ��þð1�WÞ1=4, where

0rWr1 and |C�iAB denotes the singlet state27, and adopt the
following strategy: on receipt of signal j Alice measures sA

j , while
Bob measures the projection operator |C�iBChC� | onto the
singlet state in the two-qubit Hilbert space spanned by his system
and oC

k . It is straightforward to calculate that the corresponding
theoretical value of the payoff function in equation (1) is

PWðrÞ ¼ 3W�
ffiffiffi
3
p

r: ð2Þ
Hence Alice and Bob can, in principle, win the game whenever
W4r=

ffiffiffi
3
p

. This condition is in fact necessary for them to be able
to win the game with a shared Werner state (see Methods section),
and therefore the above strategy is optimal.

A QRS game can be constructed for every quantum state that is
EPR steerable (see Methods). Quantum signals must be sent to
Bob if it is to be verified that Alice can steer Bob’s state, and to
Alice if the converse is to be verified. Note this directionality
of EPR steering is non-trivial: for some quantum states only
one-way EPR steering is possible28–30.

Measurement-device-independent verification of EPR steering.
We experimentally verified device-independent EPR steering using
our quantum-refereed game. Alice and Bob’s shared state, and the

states sent by Charlie to Bob, were encoded in photon polarization
qubit states. The payoff function P(r) was calculated via single-qubit
measurements and a partial Bell-state measurement (BSM), all
using linear optics and photon counting (Fig. 2)31.

The QRS game requires two components: the entanglement
shared between Alice and Bob and the qubit encoding the state
ok from Charlie. These were generated using a degenerate 820 nm
polarization entanglement source, and a heralded single-photon
source at 820 nm, respectively. To play the game, different
measurement apparatus is required for Alice and Bob: Alice only
makes single-qubit measurements, while Bob implements a two-
qubit measurement between his half of the entangled pair, and
the incoming qubit from Charlie. This two-qubit measurement
was implemented using a partial BSM device. Thus, Bob
implemented projections onto the singlet subspace |C�iBChC� |
(corresponding to the outcome b¼ 1) and the triplet subspace
(1� |C�iBChC� |) (corresponding to b¼ 0), of the two-qubit
Hilbert space spanned by his and Charlie’s systems (see
Methods). However, the inner workings of Alice and Bob’s
apparatus need not be known, because the protocol is measure-
ment-device-independent.

In particular, a key innovation of our protocol is that the payoff
function P(r) in equation (1) cannot present ‘false positives’ of
EPR steering. Alice and Bob do not have to be trusted and can try
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Figure 2 | Illustration of experimental apparatus. A pair of separate spontaneous parametric down-conversion (SPDC) sources create Alice’s,

Bob’s and Charlie’s photons. One photon from Charlie’s source acts as a heralding signal, with the remaining photon prepared in the quantum state

ok and sent via optical fibre to the input of Bob’s partial BSM device, accompanied by a corresponding classical signal jA{1, 2, 3} sent to Alice.

Using a 50:50 beam splitter, Bob combines Charlie’s photon (prepared in state ok) with his own photon rB (comprising half of the entangled state

rAB shared with Alice), and projects onto the singlet subspace |C�BCihC�BC|. Alice receives Charlie’s announcement j accompanied by the other half

of the shared entangled state rAB, and measures sj. To execute the entanglement verification, Charlie receives Alice’s and Bob’s output signals aA{±1}

and bA{0, 1}, and computes a payoff function P, where P40 witnesses quantum steering in a device-independent setting.
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to cheat by any means, provided that they cannot communicate
during the demonstration. This result requires rZr* in the payoff
function P(r) to assure measurement-device independence, where
r* characterizes the quality of Charlie’s preparation of the states
he sends to Bob (r*Z1, r*¼ 1 perfect; see Methods). In this work
we choose r¼ r*.

To implement our protocol, Charlie sent Bob a qubit ok

(derived from the heralded single-photon source) encoded in the
s1 ¼ X̂, s2 ¼ Ŷ , or s3 ¼ Ẑ basis, and announced to Alice a
corresponding value of j¼ 1, 2 or 3. Alice implemented a
measurement on her half of the entangled state (projective, in the
X̂, Ŷ or Ẑ basis depending on Charlie’s announcement) and Bob
implemented his partial BSM. Charlie received classical outputs
from Alice (a¼±1) and Bob (b¼ 0 or 1) over many runs. Using
this information Charlie calculated the payoff function P(r) in
equation (1), and tested for positivity to verify EPR steerability.

We tested for device-independent steering both for highly
entangled states and also in the regime where a Bell inequality
cannot be violated, since there exist mixed entangled states such
as Werner states that can satisfy this latter condition. In theory,
violation of the bound Pp0 for our steering test requires
W41=

ffiffiffi
3
p
� 0:5774 (see Methods section), while the best

explicit Bell-type inequality for Werner states is violated for
W\0.7056—the Vértesi bound32. Note this is slightly below the
well-known CHSH bound of W41=

ffiffiffi
2
p

(ref. 26).
We carefully characterized Charlie’s state preparation to

determine that r*¼ 1.081±0.009. Using a Werner state with
W¼ 0.698±0.005 (below both the CHSH and Vértesi bounds)
we observed P(r*)¼ 0.05±0.04—a violation of our steering
inequality (Fig. 3). This violation may be compared with the
theoretical prediction PW(r*)¼ 0.22 from equation (2), for ideal
states and measurements. Our experimental state has a fidelity of

97.6% with a Werner state having W¼ 0.698. Although the
fidelity is high, it is not unity: our experimental state has small
imperfections including an undesired population imbalance and
an undesired phase shift between logical states. From modelling,
we find that this accounts for the imperfection to within
experimental error, with the model predicting P(r*)¼ 0.067.

With higher values of W (for example, WE1) one would also
expect a verification of steering, and indeed we observed
P(r*)¼ 1.09±0.03 for a state having a fidelity FE0.98 with the
ideal singlet Bell state (Fig. 3). This is close to the ideal value of
3�

ffiffiffi
3
p

r� � 1:13 for a singlet state, corresponding to W¼ 1 in
equation (2).

Even without ideal entangled states or measuring devices, our
observations of measured payoffs P(r*)40 meant that Charlie
was able to verify that Alice could steer Bob’s state, without
requiring any trust in them or their devices.

Discussion
EPR steering is a key quantum resource because, apart from its
fundamental interest, it is known to be useful in secure quantum
key distribution protocols21. Compared with violation of a
loophole-free Bell inequality—which provides fully device-
independent QKD—EPR steering in its usual form provides a
one-sided device-independent protocol, requiring trust in one
party (say, Bob) and their apparatus. Our demonstration of QRS
removes the need to trust Bob and his apparatus, only requiring
the assumption that quantum mechanics is a reliable description
of reality. This lack of trust is possible essentially because Bob is
unable to unambiguously distinguish between the states sent to
him by Charlie23.

Thus, as long as quantum mechanics is correct, the protocol has
the advantages of Bell inequality violation, but can tolerate higher
noise. It should also be noted that steering inequalities exist for an
arbitrarily high degree of loss18, and hence corresponding QRS
games can be constructed using our methods for long-distance
applications such as secure quantum networks33.

We note that the r parameter that we have introduced is only
required to characterize the degree of confidence in the
preparation of the referee states. It is unnecessary to characterize
the state that Bob eventually receives from Charlie; indeed,
transmission through any quantum channel will not change the
protocol nor increase r (see Methods section). Therefore, as long
as Charlie can characterize his prepared states, the protocol can
proceed. Our protocol imposes a more complex measurement
procedure on Bob, a joint BSM, compared with one-qubit Pauli
projections required in a Bell test. As the protocol is robust
against preparation and transmission imperfections of the referee
states, this added complexity of Bob’s measurement is a
reasonable overhead for removing all need for trust. We note
that it is easier for Alice and Bob to demonstrate EPR steering to
Charlie if he can prepare his states with a high degree of
confidence, that is, with rE1.

A future challenge is to demonstrate the closure of the
detection loophole and space-like separation loophole for our
protocol. When this is achieved, it will be possible to perform
fully device-independent entanglement sharing between two
parties—with only the assumption that quantum physics
holds—with application in quantum key distribution, random
number generation and beyond.

Methods
Constructing QRS games. A quantum state rAB on some Hilbert space HA#HB,
shared between two parties Alice and Bob, is defined to be non-steerable by Alice if
and only if there is a local hidden state (LHS) model rB

l ; pðlÞ
� 	

for Bob16, that is, if
and only if the joint probability of measurement outcomes a and b, for arbitrary
measurements A and B made by Alice and Bob, can be written in the form
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Figure 3 | Observed payoff function for Werner and singlet states.

The main figure shows the measured values of the payoff function

P(r) for r¼ r*¼ 1.081±0.009, for the cases of a Werner state with

W¼0.698±0.005 and a state with fidelity FE0.98 to the ideal singlet Bell

state (W¼0.98). The upper dashed horizontal line indicates the maximum

possible payoff, 3�
ffiffiffi
3
p

(see text), while the lower dashed horizontal line at

P(r)¼0 denotes the cutoff value for demonstrating steering. The purple

shaded region indicates the range of W corresponding to steerable Werner

states that do not violate any known Bell inequality, and the dot-dashed

vertical line corresponds to the minimum value of W required to violate the

standard CHSH Bell inequality (see text). As is most clearly seen in the

inset figure, the data point for W¼0.698±0.005 lies to the left of the

values required to violate known Bell inequalities, with P(r)40. Hence

steering is verified. The error bars are defined in the methods section.
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p(a, b)¼
P

lp(l)p(a|l)p(b|l), with p(b|l) restricted to have the quantum form
TrB rB

lBb

 �

. Here Bbf g is the positive-operator-valued measure (POVM)
corresponding to B. Such LHS models, and hence non-steerable states, satisfy
various EPR steering inequalities16, of the formX

j

ajBj
� �

rB
l Þ;pðlf g� 0; ð3Þ

where the aj denote classical random variables generated by Alice, and the Bj

denote quantum observables on Bob’s system. States non-steerable by Bob are
similarly defined in terms of LHS models for Alice, however, we may focus on EPR
steering by Alice without any loss of generality. It is known that for any EPR-
steerable state shared by Alice and Bob, there is a corresponding steering inequality
of the above form34. To construct a QRS game from any such steering inequality,
we adapt a method recently used by Branciard et al.24 for constructing games for
verifying entanglement per se .

In particular, for a given EPR steering inequality as in equation (3), we define a
corresponding QRS game G (see Fig. 1c) in which on each run the referee, Charlie,
sends Alice a classical label j and Bob a state oC

k defined on a Hilbert space HC

isomorphic to some subspace of HB. These states must be such that the equivalent
states oB

k on HB form a linear basis for the observables Bj, that is, Bj ¼
P

kgjkoB
k

for some set of coefficients gjk. Alice and Bob are not allowed to communicate
during the game, but can have a prearranged strategy and perform arbitrary local
operations. Alice returns a value a¼ aj, and Bob returns a value b¼ 0 or 1
corresponding to some POVM B � B0; B1f g on HB#HC. The corresponding
payoff function is defined by PG :¼

P
j,kgjkhabij,k, where h � ij,k denotes the average

over runs with a given j and k. Alice and Bob win the game if PG40. The QRS
game in the main text is equivalent to taking j¼ 0, 1, 2, 3, k�(j, s), aj¼±1 for
j¼ 1, 2, 3, a0 ¼ � r=

ffiffiffi
3
p

, oC
k ¼ ð1þ ssC

j Þ=2 and gjk¼ s(¼ 1) for ja0 (j¼ 0). The
factor of 2 in the payoff function equation (1) for this game is chosen to make P(r)
equal to the left hand side of the steering inequality

P3
j¼1 ajsj
� �

� r=
ffiffiffi
3
p

o0
(ref. 34). This steering inequality can be violated for Werner states only if W4r=

ffiffiffi
3
p

(ref. 34), and hence this condition is also necessary for Alice and Bob to be able to
win the QRS game in the main text. For perfect state generation by the referee, that
is, r¼ 1 (see below), this reduces to W41=

ffiffiffi
3
p

. Note that this corresponds to the
condition for a Werner state to allow EPR steering, with measurements limited to
three Pauli directions, in the non-quantum-refereed scenario16,17.

We now show that Alice and Bob can win game G only if Alice and Bob share a
state that is EPR steerable by Alice. Restricting Alice and Bob to no communication
during the game prevents them from generating a steerable state from a non-
steerable one23, and hence we must show that if they share any non-steerable state
on any Hilbert space HA#HB then PGr0. Now, for such a state there is some LHS
model rB

l ; pðlÞ
� 	

(see above), and thus

PG ¼
X

j;k

gjkhabij;k ¼
X
j;k;l

gjkpðlÞhajilTrBC rB
l � oC

k

� 
B1


 �
¼
X
j;k;l

gjkNqðlÞhajilTrC tC
l o

C
k


 �
¼ NhajB

C
j i tC

l ;qðlÞf g
ð4Þ

where the normalization factor N, probability distribution q(l) and density
operator tlC are implicitly defined via NqðlÞtC

l ¼ TrB rB
l � 1C� 

B1

 �

; BC
j :¼P

kgjkoC
k on HC is isomorphic to Bj on HB, and the average is with respect to the

LHS model {tC(l); q(l)}. Noting the average corresponds to the left hand side of
steering inequality in equation (3) for this LHS model, one has PGr0 as required.
Conversely, analogously to the entanglement verification games of Branciard
et al.24, it may be shown that Alice and Bob can in principle win the game if they
share a state that violates the EPR steering inequality in equation (3), where Bob
measures the projection B1 onto an appropriate Bell state on HB#HC (see, for
example, equation (2)).

In practice, the referee cannot ensure perfect generation of the states oC
k .

However, by performing tomography on these states, the referee can adjust the
coefficients gjk appropriately, to take this into account. We describe one method of
doing so below, for the experiment carried out in this paper, which can be easily
generalized to other QRS games. We observe that it does not matter if the
generated states are acted on non-trivially by some completely positive channel, f,
before reaching Bob, as this is equivalent to simply replacing Bob’s measurement B
on HB#HC by (IB#f*)(B), where f* denotes the dual channel and IB is the
identity map on HB.

In particular, for the QRS game corresponding to equation (1), suppose that the
referee actually generates the states ~oC

k ¼ 1
2 1þ nðj;sÞ
� 

� rC . The payoff function in
equation (1) then evaluates to PðrÞ ¼ N

P
l qðlÞTr tC

l TlðrÞ

 �

for a shared non-
steerable state, with N, q(l) and tC

l defined as above and

TlðrÞ :¼2
X

j

aj
� �

l
~oC

j;þ � ~oC
j;�

� �
� rffiffiffi

3
p ~oC

j;þ þ ~oC
j;�

� �� �

¼
X

j

aj nðj;þÞ � nðj;�Þ
� �

� rffiffiffi
3
p nðj;þÞ þ nðj;�Þ
� �� �

� rC

* +
l

� 2r
ffiffiffi
3
p

� max
aj¼	 1f g

X
j

aj nðj;þÞ � nðj;�Þ
� �

� rffiffiffi
3
p nðj;þÞ þ nðj;�Þ
� �� ������

������ 2r
ffiffiffi
3
p

¼ max
aj¼	 1f g

AðaÞ� rBj j � 2r
ffiffiffi
3
p

;

ð5Þ

where the inequality follows using aj¼±1 and v �rr|v|, and we define a¼
(a1, a2, a3), A að Þ :¼

P
j aj nðj;þÞ � nðj;�Þ
� 

and B :¼
P

j nðj;þÞ þ nðj;�Þ
� 

=
ffiffiffi
3
p

.
It is straightforward to show that the right hand side of the inequality is no more
than zero for rZr*, with

r� :¼ max
aj¼	 1f g

AðaÞ � Bð Þ2 þAðaÞ � AðaÞ 3�B � Bð Þ

 �1=2 �AðaÞ � B

3�B � B ð6Þ

Hence, for rZr*, the operator Tl(r) is non-positive, and hence P(r)r0 for any
non-steerable state. It is straightforward to check that r*¼ 1 for perfect state
generation, ~oC

k ¼ oC
k ¼ 1

2 1þ ssC
j

� �
. Determining r* experimentally involves

tomographically characterizing (as below) Charlie’s state preparations {j, s} to
find the Bloch vectors n(j, s). We experimentally found r*¼ 1.081±0.009.

Experimental apparatus. The individual spontaneous parametric down-
conversion (SPDC) sources used in our demonstration consisted of a pair of
sandwiched bismuth borate (BiBO) crystals, each 0.5 mm in length and cut for
type-I degenerate down-conversion from 410 nm (pump) to 820 nm (signal/idler),
with their optic axes perpendicularly oriented. Charlie’s source was pumped with
200 mW of horizontally polarized light to generate polarization-unentangled
photon pairs. One of Charlie’s photons (signal) was sent to a single-photon
counting module (Perkin-Elmer SPCM-AQR-14-FC), to herald the arrival of a
degenerate idler counterpart at the BSM device. The second SPDC source was
pumped with 200 mW of diagonally polarized light, generating the polarization-
entangled state rABarA#rB shared between Alice and Bob. The state from the
SPDC source could be transformed into any of the four Bell states by implementing
a local unitary with a fibre polarization controller (to generate anti/correlated
statistics) combined with a half-wave plate tilted in the xy plane with its optic axis
in the horizontal plane (to set the phase f of the entangled Bell state). Alice’s
photon (consisting of one-half of the entangled state) was sent to her single-qubit
measurement station, whereas Bob’s photon (consisting of the remaining half of
the entangled state) was coupled into single-mode fibre and sent to Bob’s BSM
device. Bob’s BSM device consisted of a central 50:50 beam splitter and polarization
analysis at the output ports. The device combined Bob’s half of the entangled state
rAB, and the state oC

k that Charlie sent to him. Bob’s partial BSM device resolved
the |Cþi and |C�i Bell states through discrimination of orthogonally polarized
photon pairs (the case of |Cþi) or through anti-bunching behaviour (the case of
|C�i). On the other hand, the |F±i states required number resolving detection
(since these states saw pairs of photons degenerate in polarization bunched at the
point of detection). Because our single-photon counting modules were not number
resolving, we instead opted for pseudo-number resolution by replacing the single-
mode fibres at Bob’s BSM output with single-mode 50:50 fibre beam splitters. The
initially bunched pairs of photons travelling down these fibre beam splitters were
separated and number-resolved 50% of the time, a feature accounted for in the
analysis of the payoff function.

The Bell-state analysis featured non-classical HOM interference between the rB

and oC
k photons at the central 50:50 beam splitter. A HOM interference visibility of

89% was calculated, where a high interference visibility corresponded to effective
resolution of the singlet state |C�i and the other three triplet Bell states (for some
local unitary). Bob performed a joint measurement on rB � oC

k , where the fibre
input coupler for the oC

k photon was kept on a linear z� translation stage to match
temporal modes between the rB and oC

k photons. A photon detection at Alice’s
detector heralded the presence of the rB photon at the 50:50 beam splitter, and a
photon detection in Charlie’s heralding detector signified the presence of the oC

k
photon. Our method to calculate the payoff function P(r) for an experimental
Werner state rAB was relatively straightforward, and used the fact that a Werner
state can be expressed as a statistical mixture of all four Bell states. Data was taken
with rAB consecutively prepared in the four Bell states, and the data sets were
aggregated to produce a value of the payoff function for the effective state rAB. The
Werner parameter was tuned by weighting the data collection time for the singlet
state relative to the data collection time for the three triplet states (where the data
collection interval for the three triplet states was identical). For example, to test the
payoff function using a completely mixed state (W¼ 0), data could be taken for an
equal time with all four Bell states. Taking a relatively shorter collection time for
the triplet states allowed us to obtain a mixture corresponding to a Werner state
with W¼ 0.0698±0.005, below the CHSH and Vértesi bounds for Bell inequality
violation by a Werner state (see main text). It may be remarked that it remains an
open question whether there exists a Bell inequality that can be violated for W
below the Vértesi bound, although it is known to be impossible for Wt0.6595
(refs 32,35).

Charlie’s ability to send the correct state oC
k to Bob was also experimentally

characterized. An average fidelity of F av¼ 98.7±0.6% was measured in the
Bell-state analysis set-up for the six Pauli operator eigenstates prepared by Charlie’s
source.

All states were characterized using maximum-likelihood quantum state
tomography as per ref. 36, and fidelities between (in general) mixed states r and s
given by the standard formula F r;sð Þ ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
p

s
ffiffiffi
r
pp
 �2

.

Experimental error analysis. Experimental uncertainties were derived from
Poissionian counting statistics and standard error propagation techniques. Error
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bars quoted represent ±1 standard deviations. Where uncertainties are required in
quantities derived from tomographic state reconstructions36, the process was as
follows. A large number of tomographic reconstructions on the state were
performed, with each trial drawing from a Poissonian distribution of statistics for
each measurement outcome. Each of the reconstructed density matrices were used
to calculate the parameter of interest (for example, W), and the mean and s.d. of
the distribution in that parameter produced the value and its uncertainty.
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