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Abstract. Deployment in the design of mobile radio ter-
minals focuses on the implementation of multiradio trans-
mission systems, using a multiplicity of different radio stan-
dards combined with high-speed data communication over
multiple-input multiple-output (MIMO) and multimode di-
versity techniques. Hence, planar log.-per. four-arm anten-
nas are predistined to meet the requirements of future mobile
multiradio RF-frontends and will be introduced and analysed
in terms of an efficient spherical mode analysis by means of
surface current distribution in order to derive an analytic ac-
cess to MIMO- and polarisation-diversity performance com-
putation. A remarkable parameter reduction and a faster nu-
merical analysis with respect to conventional techniques may
be achieved. The sources in the near-field antenna region are
based on the numerical computation of surface currents in-
volving the finite element method (FEM). Relations between
the variations of the geometrical antenna parameters and the
excitation of discrete spherical modes are presented and will
be analysed in detail.

1 Introduction

This article focuses on the in-depth analysis of planar multi-
arm antennas for the application in future mobile broad-
band communication environments. For the practical real-
isation of multiradio terminals which combine the recep-
tion of a multiplicity of different communication standards
like cellular phone (e.g. GSM, WCDMA, UMTS), wireless
networks (e.g. WLAN, HIPERLAN, WiMAX), proximity
(e.g. Bluetooth, RFID, UWB) and broadcasting services (e.g.
FM, DVB-H) in one box, antennas with a compact footprint
and almost frequency-independent electromagnetic antenna
transmission behaviour are required. Furthermore the char-
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acteristics of multipath propagation by independently fad-
ing broadband and orthogonal transmission channels are ex-
ploited for the increased demand of high-speed data trans-
mission. FollowingJensen and Wallace(2004) this may lead
to the application of MIMO and multimode diversity tech-
niques in the future standardisation of novel communication
systems. In this case especially planar log.-per. four-arm
antennas in a frequency range from 1.0 to 6.0 GHz with self-
complementary antenna shapes may contribute to an excel-
lent RF-frontend performance, due to the orthogonality be-
tween the two linear excitation modes of the antenna that re-
sults in a high degree of cross-polarisation suppression and
marginal envelope correlation behaviour (seeKlemp et al.,
2005). Such a multi-arm antenna performance is mandatory
for the use in future mobile MIMO and polarisation diversity
applications.

Hence, the efficient analysis based on a spherical mode
expansion (SME) is applied to planar log.-per. multi-arm an-
tennas and especially evaluated in case of four-arm anten-
nas with a trapezoidal geometry, as proposed inKlemp and
Eul (2005). The theory of spherical mode expansion first
investigated byStratton(1941) may be effectively applied
to solve the scalar, homogeneous Helmholtz-PDE, as shown
extensively e.g. inWerner and Mittra(2000) into a series of
well-known spherical eigenfunctions. In the past, many au-
thors reported about the successful application to a multi-
plicity of wave propagation problems, e.g. Cassegrainian-fed
paraboloids (seePotter, 1967) and the investigation of mul-
tiple scattering of electromagnetic waves (seeBruning and
Lo, 1971). Even for todays techniques of spherical antenna
near field measurement this series expansion is a fundamen-
tal basis, as described byLudwig (1971). In Chen and Simp-
son(1991) andChen et al.(1992) this kind of spatial field
approach is expanded to a straight-forward spherical series
representation by means of the antenna surface current distri-
bution and was applied to an infinitely thin dipole structure.
The main advantage of this field approach is the opportu-
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Fig. 1. Trapezoidal antenna geometry in the original (p) and image
plane (q).

nity of separating the given source-region from the requested
far-field region which leads to an efficient parameter reduc-
tion and a faster numerical analysis with respect to conven-
tional computational techniques. The article is organized as
follows: A short introduction into the generatation methol-
ogy of planar log.-per. antennas will be given in Sect.2. In
Sect.3.1 and 3.2 the details of the applied SME field ap-
proach are presented, in which the sources in the antenna
near-field region are obtained from the surface current distri-
bution derived from a commercial field-simulator based on
the finite element method (FEM).

In consequence of the coordinate-transform between the
source- and the far-field region a new, modulated eigenmode
spectrum will be introduced in Sect.3.3. Furthermore, we
will highlight the spatial- and frequency-based dependence
of the spherical eigenmode excitation for this special kind of
frequency-independent log.-per. planar antennas in Sect.3.4.
A verification of the spherical field approach is accomplished
in Sect.4 involving a conventional, moment-based field cal-
culation method in the special case of planar antennas. We
will investigate the convergence properties of the series ex-
pansion with respect to the underlying coordinate system. Fi-
nally, Sect.5 derives a relationship between the geometrical
properties of log.-per. four-arm antennas of different geomet-
rical shapes and the distinct spectra of spherical eigenmodes.

2 Log.-per. multi-arm antenna design

In this section the planar logarithmically-periodic self-
complementary trapezoidal antenna designed for a use in the
frequency range of 1.0 to 6.0 GHz is introduced that serves
as an initial point for the spherical eigenmode analysis. In
Klemp et al.(2005) this kind of antenna structure was iden-
tified as an optimum in terms of cross-polarization decou-
pling, cut-off frequency and footprint. Such characteristics
in combination with an almost frequency-independent input-
impedance and radiation pattern behaviour above the cut-
off frequency are favorable for the application in multiradio
transmission systems. One of the specialized designs is a
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Fig. 2. Trapezoidal antenna geometry in the image planeq with
M = 1 andM = 5 basis function periods.

Table 1. Typical geometry settings of planar trapezoidal log.-per.
antenna structures

parameter ri/mm ro/mm NA M ŵ/◦ sf l/% δ/◦

value 5.0 50.0 4 5 45 50 45

four-arm (NA = 4) trapezoidal antenna, which provides two
operational modes with dual-linear orthogonal polarisation
fed by odd-phase port excitation of each pair of two oppo-
site arms. The properties of dual-polarisation may be used
in order to enhance channel capacity in MIMO transmission
system or reduce signal fading due to polarisation diversity
reception.

Referring to Fig.1, the log.-per. antenna geometry is gen-
erated using Eq. (1) for the innerr i and outerro limitation
radii in the image planeq, as follows:{

r i(ϕ)

ro(ϕ)

}
= ev

· exp

{
jwi(ν)

jwo(ν)

}
. (1)

In Eq. (1), wi andwo denote the inner and outer basis func-
tion in the original planep, as depicted in Fig.1a. A trape-
zoidal basis geometry is defined in terms of multiple param-
eter settings. A typical set of these parameters is shown in
Table1, whereNA denotes the number of antenna arms and
M the number of periods of the trapezoidal basis function in
the p-plane. Additional parameters are the angular spread
ŵ, the slope of the trapezoidal flankssf l and the arm width
δ, whereδ = 45◦ is used for self-complementary geometries.
As given inKlemp et al.(2005), the inner and outer radii de-
termine the upper and the lower antenna cut-off frequencies,
respectively.
In this paper the distinct trapezoidal antenna geometries with
M = 1 andM = 5 periods and cut-off frequencies at approx-
imatelyf

M1
c ≈ 4.2 GHz andf M5

c ≈ 1.6 GHz are extensively
evaluated. To get a profound insight of these structures, they
are depicted in Fig.2.
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and magnitude spectrum.

3 Spherical mode expansion (SME)

According toWerner and Mittra(2000) the spherical mode
expansion is a systematic field approximation technique for
arbitrary source-free regions in linear and partial homoge-
neous materials. The results possess a rather mathematical
than physical character and need to be interpreted in terms
of coordinate plane dependency. In this article the spherical
multipole expression is utilized to characterize the radiation
behaviour of planar log.-per. antennas introducing a novel
modal description. In this section a brief introduction of the
chosen, straight-forward field approach will be given.

3.1 Modal solutions of scalar Helmholtz equation

Any radiation and field propagation problem in ordinary
spherical coordinates exhibits a solution to the scalar, ho-
mogeneous Helmholtz partial differential equation (PDE) for
any functional dependency9(r), given by:

19(r) + k29(r) = 0 . (2)

Solving the Eq. (2) in terms of coordinate separation tech-
niques into a radial and a transversal functional dependency
leads to a double sum representation of orthogonal spherical
eigenfunctionsYn,m (ϑ, ϕ) with integer eigenvaluesn andm

describing the degree and the order of the spherical harmon-
ics (seeStratton, 1941), as follows:

9 (r) =

∑
n

∑
m

c m
n · z m

n (kr) · Yn,m (ϑ, ϕ) . (3)

In Eq. (3) c m
n is a complex weighting factor andz m

n denotes
a spherical cylinder function.

In detail the Eq. (4) expresses the composition of the
spherical eigenfunctions subdivided into even (e) and odd (o)
modes which are given by orthogonal order-dependent
trigonometric dependency (periodic Lamé products) of the
azimuth angleϕ.{

Y e
n,m (ϑ, ϕ)

Y o
n,m (ϑ, ϕ)

}
= Nm

n · P m
n (cosϑ) ·

{
cos(mϕ)

sin(mϕ)

}
(4)
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Fig. 4. Trapezoidal antenna (M = 5) in spherical coordinates with
a given electric current distributionJ s

(
r ′

)
affecting the magnetic

vector potentialA(r) in the requested far-field pointP .

FurthermoreP m
n denotes the elevation dependency in terms

of associated Legendre polynomials as non-periodic Lamé

products.Nm
n represents a normalisation coefficient in accor-

dance toWerner and Mittra(2000). Both quantities depend
on the degreen and orderm of the spherical harmonics, re-
spectively.

Figure3 depicts the spatial magnitude distribution in terms
of the even- and odd-parts as well as the magnitude plot of
the spherical eigenfunctionY3,1 (ϑ, ϕ) of the degreen = 3
and the orderm = 1.

3.2 Current-based field approach

In order to determine the magnetic vector potentialA(r) in
any requested field point, we will refer to a planar region
A′ that exhibits a source distribution of electric surface cur-
rentsJ s

(
r ′

)
, as shown in Fig.4. According to Eq. (5), the

magnetic vector potentialA(r) may be computed involving
the Kirchhoff integral of a given surface current distribution
J s

(
r ′

)
that causes free-space radiation represented by the

Green’s free-space functionG(r, r ′)= e−jk|r−r ′|/
∣∣r − r ′

∣∣.
A(r) =

1

4π

∫∫
(A′)

J s

(
r ′

)
·
e−jk|r−r ′|

|r − r ′|
dA′ . (5)

Therefore, the Green’s free space function for homogeneous,
source-free regions is a solution of the Helmholtz-PDE (2)
and may be expanded into a spherical eigenmode series, as
given in Sect. (3). The spherical wave expansion corresponds
directly to Klemp and Eul(2005) and will therefore not be
demonstrated in detail.

Magnetic current distributionsJ m may also be analysed
in the same manner leading to the electric vector potential
F . An enhancement to magnetic currents is not required, be-
cause planar log.-per. antenna structures may be completely
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Fig. 5. Modulated spherical harmonics spectrumY3,1 (ϑ, ϕ).

described in terms of real electric surface currentsJ s .

A (r) =
e−jkr

r

∞∑
n=0

n∑
m=0

j n [
a m

n · Y e
n,m (ϑ, ϕ)

+ b m
n · Y o

n,m (ϑ, ϕ)
]

. (6)

For that reason Eq. (6) provides a compact spherical eigen-
field approach forA (r) that is characterized by a com-
plete coordinate separation between near- and far-field quan-
tities adhering to the Fraunhofer approximation. The current
sources in the near-field region given by the surface current
distributionJ s of the planar antenna described by the com-
plex vector coefficientsa m

n andb m
n of the field expansion.

The Green’s function accounts for the spherical wave propa-
gation of the magnetic vector potential, whereas the remain-
ing terms incorporate its spatial profile.

For a numerical evaluation ofA (r) given by Eq. (6), the
limitation of the series expansion to finite SME degreesN

will be essential leading to impairments in the approximated
far-field representation. For that purposeLudwig (1971),
Narasimhan et al.(1985) andChen and Simpson(1991) in-
troduced a SME convergence criteria to reduce the field im-
pairments significantly, if the SME degreeN is derived for
N ≥ ka, whereask denotes the scalar wavenumber of the
free-space anda represents the radius of the sphere includ-
ing all current sources in the near-field. In our special case of
planar trapezoidal antennas the radiusa correlates with the
maximum radiusro = 50 mm of the antenna footprint.

3.3 Modulated eigenmode spectra

To accomplish the numerical antenna analysis based on the
antenna’s surface currents, we applied a conventional FEM
field-simulator in order to obtain the correct near-field source
distribution on the antenna surface. For further analysis the
far-field representation of the antenna’s radiation characteris-
tics is required, which leads to the application of the far-field
approximation by Fraunhofer. By this means, a simple rela-
tionship between the SME expanded magnetic vector poten-
tial A (r) according to Eq. (6) and the resulting electric field

componentsEϑ andEϕ in spherical coordinates is exhibited,
given by,

E (ϑ, ϕ) =

[
Eϑ

Eϕ

]
= −jkη

[
Aϑ

Aϕ

]
, (7)

where η = 120π� denotes the value of the characteristic
free-space impedance. The field approximation given by
Eq. (7) is only applicable in spherical coordinates(r, ϑ, ϕ)

and neglects the radial field component dependency. A cer-
tain coordinate transform between cartesian and spherical co-
ordinates has to be taken into account, which may be ex-
pressed by four metric coefficientsMi (ϑ, ϕ), as follows:

M1 (ϑ, ϕ) = cos(ϑ) cos(ϕ); M2 (ϑ, ϕ) = cos(ϑ) sin(ϕ)

M3 (ϕ) = − sin(ϕ); M4 (ϕ) = cos(ϕ) . (8)

The metric coefficientsMi (ϑ, ϕ), with i = 1, ..., 4, represent
the transform of cartesian components

{
Ax, Ay

}
of the mag-

netic vector potential to the spherical components
{
Aϑ , Aϕ

}
,

which leads to a new set of orthogonal spatial eigenfunctions.
The new set of eigenfunctionsY M i

n,m may be represented in
terms of the original set of spherical harmonics, as in Eq. (4),
using the coefficientsMi (ϑ, ϕ), as given in Eq. (8). This
leads to a quadruple of modified spherical harmonicsY

M i
n,m

that exhibits a distinct modulation with respect to the spatial
coordinatesϑ andϕ, as shown in Eq. (9). Using the met-
ric coefficients given in Eq. (8) the original spherical wave
function of the exampleY3,1 (ϑ, ϕ), as depicted in Fig.3,
yields the set of modulated harmonicsY

M i
3,1 (ϑ, ϕ), as shown

in Fig. 5. Equation (9) shows the new, functional depen-
dence between Eq. (4) and the metric coefficients according
to Eq. (8):{

Y
e,M i
n,m

Y
o,M i
n,m

}
= Mi (ϑ, ϕ) ·

{
Y e

n,m (ϑ, ϕ)

Y o
n,m (ϑ, ϕ)

}
, (9)

with i = 1, ..., 4.

In case of comparing different SME field approxmations by
complex vector coefficients (a m

n , b m
n ), the equality of the

underlying spherical harmonics between different field ap-
proaches is fundamental. Obviously, this is only realisable
when the field approaches are based on the same spectra of
spherical harmonicsYn,m (ϑ, ϕ). Applying Eqs. (8) and (9) in
order to map the surface current distribution to spherical co-
ordinates and replacing the magnetic vector potentialA (r)

in Eq. (7) by the expression given in Eq. (6) yields:[
Eϑ

Eϕ

]
= K(r)

∞∑
n=0

n∑
m=0

j n
· (10){[

a
n,m
x · Y

e,M1
n,m (ϑ, ϕ) + a

n,m
y · Y

e,M2
n,m (ϑ, ϕ)

a
n,m
x · Y

e,M3
n,m (ϑ, ϕ) + a

n,m
y · Y

e,M4
n,m (ϑ, ϕ)

]

+

[
b

n,m
x · Y

o,M1
n,m (ϑ, ϕ) + b

n,m
y · Y

o,M2
n,m (ϑ, ϕ)

b
n,m
x · Y

o,M3
n,m (ϑ, ϕ) + b

n,m
y · Y

o,M4
n,m (ϑ, ϕ)

]}
,
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Table 2. Coordinate plane dependency of the SME vector coefficient excitation

n = 0 n = 1 n = 2

a 0
0 b 0

0 a 0
1 b 0

1 a 1
1 b 1

1 a 0
2 b 0

2 a 1
2 b 1

2 a 2
2 b 2

2
xy x - - - x x x - - - x x
xz x - x - x - x - x - x -
yz x - x - - x x - - x x x

index i 1 2 3 4 5 6 7 8 9 10 11 12

0 20 40 60 80 100 120 140 160 180
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Fig. 6. Associated Legendre polynomialsP m
n depending on the

elevation angleϑ ′ of the underlying coordinate system.

whereK(r) merges the total radial functional dependency.
In Eq. (6), a n,m

x,y andb
n,m
x,y correspond to the vector expansion

coefficients of the spherical field approach that can be di-
rectly computed from Eq. (11) using the surface current dis-
tribution on the antenna, as derived from the FEM solution.

Applying Fraunhofer relation, given by Eq. (7), to the elec-
tric far-fields, the obtained SME field approximation accord-
ing to Eq. (10) is complete but its compactness is reduced
due to the adaption of the spherical harmonics, which was
inevitable in order to perform the requested coordinate trans-
form. In detail, the next section focuses on the characterisa-
tion of antenna’s surface currents in terms of complex modal
vector expansion coefficientsa m

n , b m
n .

3.4 Modal characteristics of planar, log.-per. antennas

In this section the representation of the antenna’s surface cur-
rent distributionJ s in terms of SME vector coefficientsa m

n
andb m

n will be extensively analysed by evaluating the fol-
lowing integral equation:{

a m
n

b m
n

}
=

∫∫
(A′)

Nm
n · J s

(
r ′

)
· jn(kr ′)

·P m
n

(
cosϑ ′

)
·

{
cos

(
mϕ′

)
sin

(
mϕ′

) }
dA′ . (11)

frequency [GHz]

ra
di

us
 r'

 [m
m

]

n = 0

frequency [GHz]

n = 1

Fig. 7. Vector coefficient weighting characterized by spherical
Bessel functionsjn(kr ′).

Besides the already established expressions in Eq. (11), jn
denotes a spherical Bessel function that has to be integrated
across the entire planar antenna footprint.jn performs a scal-
ing of the surface currentJ s

(
r ′

)
in dependence of its opera-

tional frequency and the positionr ′. Subsequently, the com-
putation of the vector expansion coefficientsa m

n andb m
n will

be carried out for antenna elements located in parallel to the
xy-plane. In this context the argument of the associated Leg-
endre polynomialsP m

n remains unchanged due to a constant
elevation angleϑ ′

= 0 in the wholexy−plane.
In Fig. 6 the associated Legendre polynomialsP m

n for dif-
ferent field expansion degrees and orders are depicted for
the complete range of the elevation angleϑ ′. Nulls of dis-
crete Legendre polynomials lead to a distinct fade-out of cer-
tain modal vector coefficients in thexy-plane in combination
with the nulls of the trigonometric functions. Table2 shows
a complete set of vector expansion coefficients up to a maxi-
mum degreen = 2 for surface current distributions limited to
one of the three main planes of the cartesian coordinate sys-
tem. Considering the symmetry relationship of the spherical
eigenfunctions, thexy−plane might be the optimum choice
with respect to an optimum far-field approximation.

Yet another modal characteristic is expressed by the spher-
ical Bessel functionjn(kr ′), resulting in a radius- and
frequency-dependent weighting factors. In Fig.7 the am-
plitude scaling of the vector expansion coefficientsa m

n and
b m

n is analyzed with respect to a variable radiusr ′ in an in-
terval from 5 to 50 mm that covers the entire footprint of the
antenna and the operational frequency range of the antennas
from 1.0 to 6.0 GHz.

In Fig. 7 the spherical Bessel functionjn(kr ′) is evaluated
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for the first two consecutive SME degreesn = 0, 1 that il-
lustrate the wavelike amplitude scaling of vector expansion
coefficients with increasing radius of the antenna element
and increasing frequency. Thus, the vector coefficienta 0

0
accounts for a maximum power allocation to the near-field
sources close to the antenna center, whereas subsequent co-
efficients of the series expansion (as shown for SME degree
n = 1) emphasize regions that are aligned offset the center.
As can be seen from Fig.7, additional regions on the an-
tenna surface exist, where the spherical Bessel function van-
ishes for a given frequency point. Therefore current sources
for this given combination of location on the antenna surface
and operational frequency do not contribute to the overall far-
field radiation due to the fact that they are suppressed by the
properties of the spherical Bessel functionjn(kr ′).

4 Verification and convergence analysis

In this section the verification of the spherical eigenfield ap-
proach is aspired and will be combined with an analysis of
the convergence behaviour of the series expansion in terms of
limiting the upper expansion degree to a finite valueN . Only
in this case a distinct numerical evaluation of the given SME
approximation can be accomplished. The results derived by
the SME expansion of the surface current distribution will
be compared to the far-field (FF) results that were computed
using a conventional moment-based calculation of Eq. (5).

According toChen and Simpson(1991) the root-mean-
square (RMS) erroreRMS is used for the analysis in order
to evaluate the exactness of the far-field quantities as derived
from SME with the reference results. The RMS error com-
putes the deviation between the far-field quantities for both
electric field componentsE ϑ andE ϕ in every requested far-
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)
of a trape-

zoidal antenna (M = 5, f = 2.5 GHz) in free space.

field point, as follows:

eRMS =

[
1

KL

K∑
k=1

L∑
l=1

{ (12)

(
C ref

ϑ (ϑk, ϕl) − C
comp
ϑ (ϑk, ϕl)

)2

+

(
C ref

ϕ (ϑk, ϕl) − C
comp
ϕ (ϑk, ϕl)

)2
}]1/2

with C
ref,comp
ϑ,ϕ (ϑk, ϕl) =

∣∣∣E ref,comp
ϑ,ϕ (ϑk, ϕl)

∣∣∣∣∣∣max
{
E

ref,comp
ϑ,ϕ

}∣∣∣ ,

whereC
ref,comp
ϑ,ϕ denotes the normalized radiation character-

istics in terms of the co- (CP) and cross-polarized (XP) com-
ponents of the far-field of the related antenna element. In
this context, the RMS error gives the total amount of field
error in terms of one singular value regardless in which com-
ponent or direction the field deviation occurs. In Fig.8 the
RMS error in dB is evaluated and depicted for a log.-per.
four-arm antenna withM = 5 periods of trapezoidal unit cell
in the considered frequency range from 1.0 to 6.0 GHz for
different SME expansion degreesN .

As shown in Fig.8, the spherical field approximation ex-
hibits an erratic error behaviour with an increasing degree
N of the field expansion. Whereas the RMS error ranges
above−20 dB for expansion degreesN = 0, 1 the error is
significantly reduced by applying expansion degreesN =

2, 3 and provides an already excellent far-field approxima-
tion with a marginal value of the RMS error ranging below
eRMS < −25 dB over the entire frequency range of opera-
tion. In addition, increasing the maximum SME degree up
to N = 10 just offers a slight error improvement. Obviously,
the discontinuities in the approximation depend on the dis-
crete, modal excitation behaviour due to the vector coeffi-
cient’s functional nulls, as exposed in Sect.3.4.
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Fig. 10. Normalized vector coefficients atf = 1.0 GHz for the an-
tenna structures withM = 1.5

Furthermore, in Fig.9 the various radiation characteristics
of the considered trapezoidal antenna are depicted, as utilized
for the RMS error analysis that was shown in Fig.8. The nor-
malized antenna radiation patterns are depicted in the distinct
far-field cutting plane ofϕ = 90◦ at an operational frequency
of f = 2.5 GHz and separated with respect to its co- (ϑ-) and
cross-polarized (ϕ-) far-field components. This diagram di-
rectly highlights angular regions with a very high degree of
field approximation and marks other regions that mainly con-
tribute to an enhanced RMS error.

Figure9 demonstrates the excellent copolar SME field ap-
proximation that is already obtained for very small degrees
N ≥ 0 in antenna main beam direction atϑ = 0◦. Even the
radiation pattern nulls atϑ = 90◦ andϑ = 270◦ are approx-
imated almost perfectly. This is a remarkable property of
the field expansion with modulated spherical harmonics as
shown in Sect.3.3 due to the fact that the original spherical
harmonicY e

0,0(ϑ, ϕ) represents a sphere in spherical coordi-
natesϑ andϕ and therefore provides no nulls at the angular
positionsϑ = 90◦ andϑ = 270◦. In contrast, the cross-polar
field componentC ϕ exhibits an attenuation by about 35 dB
in antenna main beam direction and requires an SME field
approximation of a higher degree. Therefore the cross polar
component of the far-field exhibits a lower convergence be-
haviour than the co-polar componentC ϑ . An improvement
of the far-field approximation is obtained in terms of an in-
creasing degree of the field expansion.

Recapitulating this Section, the chosen spherical current-
based eigenfield approach was verified and analyzed in terms
of its field convergence behaviour, providing a basis for a sig-
nificant parameter reduction with respect to the computation
of antenna radiation fields and therefore may yield a much
faster numerical evaluation.
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Fig. 11. Normalized vector coefficients atf = 2.5 GHz for the an-
tenna structures withM = 1, 5

5 Modal four-arm trapezoidal antenna analysis

As demonstrated in Sect.3.4, the entire antenna’s source re-
gion can be completely specified by vector coefficients of
a spherical mode expansion. E.g. applying an approxima-
tion with a maximum degreeN = 2 of the field expansion
incorporating 12 SME vector coefficients yields an accept-
able field approximation for both components of the far-field.
Hence, the SME-based antenna analysis may be reduced to
an in-depth consideration of the related modal SME vector
coefficients as an equivalent source for far-field radiation.

For this purpose the extraction of dominant modal vec-
tor coefficientsa m

n andb m
n will be identified and compared

by means of the complex vector norm
∥∥a m

n

∥∥ and
∥∥b m

n

∥∥, as
follows:

{∥∥a m
n

∥∥∥∥b m
n

∥∥}
=

√√√√√√
{∣∣a nm

x

∣∣2∣∣b nm
x

∣∣2
}

+


∣∣∣a nm

y

∣∣∣2∣∣∣b nm
y

∣∣∣2
 . (13)

Furthermore, the complex vector norm given by Eq. (13) is
normalized to the dominant coefficient, which is given by
a 0

0. The real values are logarithmically scaled and depicted
in Figs.10 to 12 for three different exclusive frequencies of
1.0, 2.5 and 6.0 GHz, respectively. The analysis is conducted
for two trapezoidal antennas with a variable number of basis
function periodsM = 1 andM = 5, as given in Sect.2. The
abscissa scaling is given in terms of an index valuei accord-
ing to Table2 with its respective vector coefficients.

Besides the magnitude of the vector coefficienta 0
0 (in-

dex 1) the evaluation of Figs.10 to 12 points out three dom-
inant coefficients, namelya 0

2 (index 7),a 2
2 (index 11) and

b 2
2 (index 12). The magnitude of the other two excited

coefficientsa 1
1 (index 5) andb 1

1 (index 6) is significantly
weaker with a level of about−20 dB compared to the refer-
ence modea 0

0.
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Fig. 12. Normalized vector coefficients atf = 6.0 GHz for the an-
tenna structures withM = 1, 5

From f = 1.0 GHz depicted in Fig.10 to f = 6.0 GHz
shown in Fig. 12 the modal vector differences between
both trapezoidal antennas are noticeable decreasing. The
variation especially atf = 1.0 GHz between the two vec-
tor magnitudes is related to the reflections at the end of
the arms. Otherwise, atf = 6.0 GHz both antenna geome-
tries operate in their frequency-independent radiation be-
haviour which can be seen from the almost identical mag-
nitudes of the normalized vector coefficients (see Fig.12).
In Fig. 11 at f = 2.5 GHz the structure withM = 5 periods
radiates in a frequency-independent travelling wave mode,
whereas the second structure withM = 1 periods of the
trapezoidal unit cell is still predominated by resonant radi-
ation characteristics.

As shown in this section, the consideration and the anal-
ysis of four dominant current-based vector quantities allows
a deeper insight into the radiation behaviour of planar, trape-
zoidal antennas, combined with a faster numerical far-field
antenna analysis due to a significant parameter reduction
compared to conventional methods.

6 Conclusions

In this paper, planar frequency-independent log.-per. trape-
zoidal antenna structures are analysed by means of surface
current distribution and a spherical eigenfield approach. An-
tennas of that kind are characterized by a high impedance
bandwidth combined with a dual linear-polarized radiation
behaviour which can be favorably used in future MIMO-
and multimode diversity communication systems. The gen-
eralized spherical mode expansion was adapted and veri-
fied by different convergence criteria with respect to field-
quantities as derived from conventional full-wave analysis
applying the FEM. Leading to a significant parameter re-

duction and a complete coordinate separation between the
sources in the near-field and the requested far-field region,
a modified spherical wave expansion was accomplished that
yielded a description of antenna radiation fields by means of
a distinct and solely antenna-dependent set of complex ex-
pansion coefficients. The radiation behaviour analysis of two
different trapezoidal antenna structures was accomplished by
comparing the two distinct sets of modal expansion coeffi-
cients that were directly related to the operational mode of
the antenna, in order to highlight the intermediate relation-
ship between the set of vector expansion coefficients and the
shape of the antenna, respectively. Furthermore, inKlemp
et al. (2006) this kind of current-based SME technique is
utilized to deduce equations for a modal antenna correla-
tion analysis in terms of MIMO transmission schemes using
trapezoidal planar antennas with dual linear excitation.

References

Bruning, J. H. and Lo, Y. T.: Multiple Scattering of EM Waves by
Spheres Part I-Multipole Expansion and Ray-Optical Solutions,
IEEE Transactions on Antennas and Propagation, 19, 378–390,
1971.

Chen, Y. and Simpson, T.: Radiation Pattern Analysis of Arbitrary
Wire Antennas Using Spherical Mode Expansions with Vector
Coefficients, IEEE Transactions on Antennas and Propagation,
39, 1716–1721, 1991.

Chen, Y., Simpson, T. L., and Ho, T. Q.: Highly efficient technique
for solving radiation and scattering problems, IEE Proc.-H, 139,
7–10, 1992.

Jensen, M. A. and Wallace, J. W.: A Review of Antennas and Prop-
agation in MIMO Wireless Communications, 52, 2810–2824,
2004.

Klemp, O. and Eul, H.: Radiation Pattern Analysis of Antenna Sys-
tems for MIMO and Diversity Configurations, Adv. Radio Scie.,
3, 157–165, 2005.

Klemp, O., Schultz, M., and Eul, H.: Novel logarithmically periodic
planar antennas for broadband polarization diversity reception,
Int. J. Electron. Commun. (AEUE), 59, 268–277, 2005.

Klemp, O., Armbrecht, G., and Eul, H.: Computation of Antenna
Pattern Correlation and MIMO Performance by means of Surface
Current Distribution and Spherical Wave Theory, Accepted for
publication in Adv. Radio Scie., 2006.

Ludwig, A. C.: Near-Field Far-Field Transformations Using
Spherical-Wave Expansions, IEEE Transactions on Antennas
and Propagation, 19, 214–220, 1971.

Narasimhan, M. S., Christopher, S., and Varadarangan, K.: Modal
Behavior of Spherical Waves from a Source of EM Radiation
with Application to Spherical Scanning, 33, 350–354, 1985.

Potter, P. D.: Application of Spherical Wave Therory to
Cassegrainian-Fed Paraboloids, IEEE Transactions on Antennas
and Propagation, 15, 727–736, 1967.

Stratton, J. A.: Electromagnetic Theory, McGraw Hill, New York,
1941.

Werner, D. H. and Mittra, R.: Frontiers in Electromagnetics, IEEE
Press Series on Microwave Technology and RF, New York, 2000.

Adv. Radio Sci., 4, 25–32, 2006 www.adv-radio-sci.net/4/25/2006/


