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Abstract. In this contribution, an atomic force microscope
is modelled and in this context, a non-linear coupled 3-D-
boundary value problem is solved numerically using the fi-
nite element method. The coupling of this system is done by
using the Maxwell stress tensor. In general, an iterative weak
coupling is used, where the two physical problems are solved
separately. However, this method does not necessarily guar-
antee convergence of the nonlinear computation. Hence, this
contribution shows the possibility of solving the multiphysi-
cal problem by a strong coupling, which is also referred to as
monolithic approach. The electrostatic field and the mechan-
ical displacements are calculated simultaneously by solving
only one system of equation. Since the Maxwell stress tensor
depends nonlinearly on the potential, the solution is solved it-
eratively by the Newton method.

1 Motivation

Due to the tremendous development of science in the field
of nanotechnology over the last years, microsystems can in-
creasingly be used on many levels. Compared to macrosys-
tems, the advantage lies in cost savings (less consumption
of materials, parallel production) and efficiency (low energy
and power requirements allow autonomous systems). Ap-
plications for these microsystems are primarily medical and
security systems, life sciences and logistics. This process
makes the use of high resolution instrumentation and its op-
timisation indispensable to produce these systems. In this
context, scanning probe microscopy (SPM) has been devel-
oped to be the most appropriate procedure. Here a sample
is scanned pointwise using a probe. The resulting measure-
ments are assembled and used to finally produce an image
of the object to be measured in terms of the considered in-
teractions. Since atomically small structures are measured,
the process is highly error liable due to various interferences,
which makes the interpretation of the results difficult. The

Correspondence to:J. Freitag
(freitag@tet.uni-hannover.de)

aim of this work is to simulate the measurement process to
reflect the impact of such measurement errors and eliminate
them from the measurements data.

2 Scanning Probe Microscopy

The existing types of SPMs differ in the kind of interaction
(electric, magnetic, etc.) between the tip and the sample.
This contribution is considered with the atomic force micro-
scope (AFM). The AFM was developed in 1986 and mea-
sures atomic forces on a nanometer scale. With a resolution
from 0.1 to 10 nm and a scanning velocity from 0.5 to 10
lines per second, it could last 20 min until a digital picture
emerges. The AFM consists of a cantilever spring with a
sharp tip on the end, which is ideally conical and has a diam-
eter of one atom (Fig.1). During the process of measuring,
the tip navigates above the sample, leading to the potential
difference. The cantilever deflects due to the adhesive in-
teractions. This change on the position of the cantilever is
tracked by a laserbeam, which points at a position sensitive
photodetektor. This signal is transformed and results finally
in a picture that shows the sample surface.

3 Approach

The first step of the approach, is to model the AFM with
the preprocessor GiD (including geometry, meshing, assign
materials and boundary conditions).

The physical process is idealised by partial differential
equations, whereas the coupling of the mechanical and the
electrostatical field is performed by the Maxwell stress ten-
sor. To solve the partial differential equations, the Finite El-
ement Method (FEM) is used (Reddy, 1993). In this con-
text, the elements definitions and the solving of the system of
equations are programmed in Matlab. In former studies the
electrostatic and mechanical equations were considered to be
weak coupled, which means that the mechanical and elec-
trostatical forces are calculated separately (Helmich, 2007;
Bala, 2008; Greiff, 2009). In this case convergence of the
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Fig. 1. Principle of an atomic force microscope (Atomic Force Mi-
croscope, 2009).

solution is not guaranteed. In this contribution, the partial
differential equations are solved by a strong coupled formu-
lation (Fig.2). If the linearisation of the nonlinear differential
equations is consistent, the starting values of the degrees of
freedom are near to the solution values and the convergence
is guaranteed. At last the postprocessing is done with GiD.

4 Computational methods

The equation describing the electrostatical part (Kuepf-
mueller, 2006) is given by the reduced form of the Maxwell
equation

div(D) = 0, (1)

because of the non-existence of free charges.D denotes the
electric flux density. The constitutive equations are given by

D = ε0 E (2)

and

E = −grad(ϕ) (3)

with the electrical permittivityε0, the electrostatic fieldE
and the electrostatic potentialϕ. The mechanical problem is
described by the balance of linear momentum

div(σ )+ρb= ρv̇, (4)

however no inertia forcesρb or volume forcesρv̇ are consid-
ered (Wriggers, 2001). Therefore the strong formulation of
the balance of linear monumentum is written as

div(σ ) = 0. (5)

σ denotes a stress tensor that is given by

σ = σM
+σC, (6)
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Fig. 2. Process of strong coupling versus weak coupling.

with the Cauchy stress tensorσC and the Maxwell stress ten-
sor σM . The Cauchy stress tensor is computed by a linear
relation to strains, which is referred to as Hooke’s law

σC
= C ε. (7)

C denotes the elastic constitutive tensor. The strain tensor

ε = grads(u) =
1

2
(grad(u)+gradt (u)), (8)

is assumed by the symmetrical part of the displacement gra-
dient. The Maxwell stress tensorσM is given by

σM
ij = ε0

(
EiEj −

1

2
ElElδij

)
. (9)

δij denotes the Kroneker delta with

δij = 1, for i = j

δij = 0, for i 6= j.
(10)

4.1 Variational formulations

In the following, the weak forms of the mechanical and the
electrostatical part of the system are presented. For the me-
chanical part the strong form (5) is multiplied with the test
functionηu, and then integrated over the calculation domain
�∫
�

div(σC) ·ηu d� = 0. (11)

Using partial integration and the Gauss’ theorem we get∫
0

(σC n) ·ηu d0−

∫
�

σ grads(ηu) d� = 0, (12)
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whereas on the boundary0 only the Maxwell stress tensor
and in the region� only the Cauchy stress tensor acts,∫
0

(σM n) ·ηu d0−

∫
�

σ grads(ηu) d� = 0. (13)

Substituting Eqs. (7) and (8), the result for the weak form of
the mechanical problem is given by

Ru =

∫
0

(σM n) ·ηu d0−

∫
�

grads(u) C grads(ηu) d� = 0.

(14)

The strong form of the electrostatical part combines Eqs. (1),
(2) and (3) to

div(−ε0 grad(ϕ)) = 0. (15)

Equivalent to the derivation of the mechanical weak form,
the electrostatical weak form is described by

Rϕ =

∫
�

grad(ϕ) ε0 grad(ηϕ) d� = 0. (16)

4.2 Linearisation

The degrees of freedom of the coupled 3-D problem are
firstly the three components of the displacement vectorux ,
uy anduz and secondly the potentialϕ. Since the weak form
of the balance of linear momentum depends nonlinearly on
the E-field, a direct solution of the multiphysical problem is
not possible. This is justified by the use of the Maxwell stress
tensor. Thus, the system is solved iteratively by the Newton
algorithm. This leads to the coupled system of equations[ ∂Ru

∂u
dRu
dϕ

∂Rϕ

∂u
dRϕ

dϕ

][
1u
1ϕ

]
=

[
−Ru
−Rϕ

]
. (17)

The derivatives ofRϕ andRu can be written as follows:

∂Ru

∂u
·1u =̂ −

∫
�

grads(1u) C grads(ηu) d�, (18)

dRϕ

dϕ
1ϕ =̂

∫
�

grad(1ϕ) ε0 grad(ηϕ) d� (19)

and

dRu

dϕ
1ϕ =̂

∫
0

({
dσM

dϕ
1ϕ

}
n
)

·ηu d0. (20)

As a first approach in this contribution we define that the
electrostatic field is independent of the idealised displace-
ment variable. This leads to

∂Rϕ

∂u
= 0. (21)

The results of the derivatives, that are included in the stiff-
ness matrix in Eq. (17) are described here in a simplified
form. While the term on the left side is present in discretized
form, the term on the right side is determined in an analyt-
ical form. Equation (20) is solved by the derivative of the
Maxwell stress tensor with respect to the electrostatic poten-
tial ϕ. Using the chain rule we get

dσM
ij

dϕ
1ϕ =̂

∂σM
ij

∂Ek︸ ︷︷ ︸
Aijk

grad(1ϕ)k, (22)

whereAijk is a third order tensor, that can be solved by par-
tial derivation ofσM

ij with respect toEk. The results ofAijk

are

Aij1 =

Ex Ey Ez

Ey −Ex 0

Ez 0 −Ex

, (23)

Aij2 =

−Ey Ex 0

Ex Ey Ez

0 Ez −Ey

 (24)

and

Aij3 =

−Ez 0 Ex

0 −Ez Ey

Ex Ey Ez

. (25)

With implementation of the linear shape functions, the con-
cept of isoparametric elements and Gaussian quadrature, the
system now can be solve.

5 AFM-modell

For this computation a cantilever with a length of 115 µm
and height and width of 1 µm was modelled. The length of
the conical tip is 0.5 µm. The young’s modulus E is 300 GPa
(silicon nitride Si3N4) and the Poisson ratioν is set to 0.24
(Rombach, 2009). For the finite element mesh, tetrahedral
elements where used with overall 3245 nodes and 147 575
elements. On the left hand side, the cantilever is fixed in all
directions. In this area, a potential of 10 V is given and on the
bottom (to model a sample) a potential of 0 V. In the first step
of this project, a sample with a flat surface is selected for the
verification of the formulations. The coupling is computed
on the boundaries of the cantilever.

6 Computational results

Figure4 shows the potential distribution in a slice through
the three-dimensional calculation model. Here, the increased
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Fig. 3. Displacement of an AFM in [µm].

Fig. 4. Potential distribution of an AFM in [V].

gradient is clearly visible at the tip of the cantilever. This is
shown significantly by the representation of the electrostatic
field in Fig. 5. The combination of the mechanical loads
and the electrostatic field by using the Maxwell stress tensor
leads to relatively large forces, that act on the tip of the can-
tilever. The resulting deflection of the cantilever is shown in
Fig. 3. On the other boundaries that link the Cantilever with
the surrounding medium, the electrostatic field tends against
the value 0, and thus the mechanical loads become negligi-
ble. To minimize the computing time, it can be considered to
restrict the calculation field to an area around the tip, since
mechanical loads are negligible outside this area.

7 Conclusions

In this contribution the electromechanical coupling of a
working AFM was solved by using FEM. As a first approach,
the electrostatic field was adopted as independent of the dis-
placement. Therefore, it is necessary to extend this proce-
dure. Furthermore, the presented results of strong coupling
should be compared with those of weak coupling.
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Fig. 5. Electrostatic field of an AFM in [V/µm].
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