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Abstract: Measurement uncertainty relations are lower bounds on the errors of any approximate
joint measurement of two or more quantum observables. The aim of this paper is to provide methods
to compute optimal bounds of this type. The basic method is semidefinite programming, which we
apply to arbitrary finite collections of projective observables on a finite dimensional Hilbert space.
The quantification of errors is based on an arbitrary cost function, which assigns a penalty to getting
result x rather than y, for any pair (x, y). This induces a notion of optimal transport cost for a pair of
probability distributions, and we include an Appendix with a short summary of optimal transport
theory as needed in our context. There are then different ways to form an overall figure of merit
from the comparison of distributions. We consider three, which are related to different physical
testing scenarios. The most thorough test compares the transport distances between the marginals
of a joint measurement and the reference observables for every input state. Less demanding is a test
just on the states for which a “true value” is known in the sense that the reference observable yields
a definite outcome. Finally, we can measure a deviation as a single expectation value by comparing
the two observables on the two parts of a maximally-entangled state. All three error quantities have
the property that they vanish if and only if the tested observable is equal to the reference. The theory
is illustrated with some characteristic examples.

Keywords: uncertainty relations; error-disturbance tradeoff; semidefinite programming;
optimal transport; measurement uncertainty

1. Introduction

Measurement uncertainty relations are quantitative expressions of complementarity. As Bohr
often emphasized, the predictions of quantum theory are always relative to some definite
experimental arrangement, and these settings often exclude each other. In particular, one has
to make a choice of measuring devices, and typically, quantum observables cannot be measured
simultaneously. This often used term is actually misleading, because time has nothing to do with it.
For a better formulation, recall that quantum experiments are always statistical, so the predictions
refer to the frequency with which one will see certain outcomes when the whole experiment is
repeated very often. Therefore, the issue is not simultaneous measurement of two observables, but
joint measurement in the same shot. That is, a device R is a joint measurement of observable A
with outcomes x ∈ X and observable B with outcomes y ∈ Y, if it produces outcomes of the form
(x, y) in such a way that if we ignore outcome y, the statistics of the x outcomes is always (i.e., for
every input state) the same as obtained with a measurement of A and symmetrically for ignoring x
and comparing to B. It is in this sense that non-commuting projection-valued observables fail to be
jointly measurable.
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However, this is not the end of the story. One is often interested in approximate joint
measurements. One such instance is Heisenberg’s famous γ-ray microscope [1], in which a particle’s
position is measured by probing it with light of some wavelength λ, which from the outset sets
a scale for the accuracy of this position measurement. Naturally, the particle’s momentum is
changed by the Compton scattering, so if we make a momentum measurement on the particles
after the interaction, we will find a different distribution from what would have been obtained
directly. Note that in this experiment, we get from every particle a position value and a momentum
value. Moreover, errors can be quantified by comparing the respective distributions with some
ideal reference: the accuracy of the microscope position measurement is judged by the degree of
agreement between the distribution obtained and the one an ideal position measurement would
give. Similarly, the disturbance of momentum is judged by comparing a directly measured distribution
with the one after the interaction. The same is true for the uncontrollable disturbance of momentum.
This refers to a scenario where we do not just measure momentum after the interaction, but try to
build a device that recovers the momentum in an optimal way, by making an arbitrary measurement
on the particle after the interaction, utilizing everything that is known about the microscope,
correcting all known systematic errors and even using the outcome of the position measurement.
The only requirement is that at the end of the experiment, for each individual shot, some value
of momentum must come out. Even then it is impossible to always reproduce the pre-microscope
distribution of momentum. The tradeoff between accuracy and disturbance is quantified by a
measurement uncertainty relation. Since it simply quantifies the impossibility of a joint exact
measurement, it simultaneously gives bounds on how an approximate momentum measurement
irretrievably disturbs position. The basic setup is shown in Figure 1.
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B
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ε(A′|A)

ε(B′|B)

ρ

ρ

Figure 1. Basic setup of measurement uncertainty relations. The approximate joint measurement R is
shown in the middle, with its array of output probabilities. The marginals A′ and B′ of this array are
compared to the output probabilities of the reference observables A and B, shown at the top and at the
bottom. The uncertainties ε(A′|A) and ε(B′|B) are quantitative measures for the difference between
these distributions.

Note that in this description of errors, we did not ever bring in a comparison with some
hypothetical “true value”. Indeed, it was noted already by Kennard [2] that such comparisons are
problematic in quantum mechanics. Even if one is willing to feign hypotheses about the true value
of position, as some hidden variable theorists will, an operational criterion for agreement will always
have to be based on statistical criteria, i.e., the comparison of distributions. Another fundamental
feature of this view of errors is that it provides a figure of merit for the comparison of two devices,
typically some ideal reference observable and an approximate version of it. An “accuracy” ε in this
sense is a promise that no matter which input state is chosen, the distributions will not deviate by
more than ε. Such a promise does not involve a particular state. This is in contrast to preparation
uncertainty relations, which quantify the impossibility to find a state for which the distributions of
two given observables (e.g., position and momentum) are both sharp.
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Measurement uncertainty relations in the sense described here were first introduced for position
and momentum in [3] and were initially largely ignored. A bit earlier, an attempt by Ozawa [4] to
quantify error-disturbance tradeoffs with state dependent and somewhat unfortunately chosen [5]
quantities had failed, partly for reasons already pointed out in [6]. When experiments confirmed
some predictions of the Ozawa approach (including the failure of the error-disturbance tradeoff), a
debate ensued [7–10]. Its unresolved part is whether a meaningful role for Ozawa’s definitions can
be found.

Technically, the computation of measurement uncertainty remained hard, since there were no
efficient methods to compute sharp bounds in generic cases. A direct computation along the lines of
the definition is not feasible, since it involves three nested optimization problems. The only explicit
solutions were for qubits [11–13], one case of angular momentum [14] and all cases with phase space
symmetry [7,15,16], in which the high symmetry allows the reduction to preparation uncertainty as
in [3,9]. The main aim of the current paper is to provide efficient algorithms for sharp measurement
uncertainty relations of generic observables, even without any symmetry.

In order to do that, we restrict the setting in some ways, but allow maximal generality in others.
We will restrict to finite dimensional systems and reference observables, which are projection valued
and non-degenerate. Thus, each of the ideal observables will basically be given by an orthonormal
basis in the same d-dimensional Hilbert space. The labels of this basis are the outcomes x ∈ X of
the measurement, where X is a set of d elements. We could choose all X = {1, . . . , d}, but it will
help to keep track of things using a separate set for each observable. Moreover, this includes the
choice X ⊂ R, the set of eigenvalues of some Hermitian operator. We allow not just two observables,
but any finite number n ≥ 2 of them. This makes some expressions easier to write down, since the
sum of an expression involving observable A and an analogous one for observable B becomes an
indexed sum. We also allow much generality in the way errors are quantified. In earlier works, we
relied on two elements to be chosen for each observable, namely a metric D on the outcome set and
an error exponent α, distinguishing, say, absolute (α = 1), root-mean-square (α = 2) and maximal
(α = ∞) deviations. Deviations were then averages of D(x, y)α. Here, we generalize further to an
arbitrary cost function c : X × X → R, which we take to be positive and zero exactly on the diagonal
(e.g., c(x, y) = D(x, y)α), but not necessarily symmetric. Again, this generality comes mostly as a
simplification of notation. For a reference observable A with outcome set X and an approximate
version A′ with the same outcome set, this defines an error ε(A′|A). Our aim is to provide algorithms
for computing the uncertainty diagram associated with such data, of which Figure 2 gives an example.
The given data for such a diagram are n projection valued observables A1, . . . , An, with outcome
sets Xi, for each of which we are given also a cost function ci : Xi × Xi → R for quantifying errors.
An approximate joint measurement is then an observable R with outcome set X1 × . . . × Xn, and
hence, with POVMelements R(x1, . . . , xn), where xi ∈ Xi. By ignoring every output, but one, we get
the n marginal observables:

A′i(xi) = ∑
x1,...,xi−1,xi+1,...,xn

R(x1, . . . , xn) (1)

and a corresponding tuple:
~ε(R) =

(
ε(A′1|A1), . . . , ε(A′n|An)

)
(2)

of errors. The set of such tuples, as R runs over all joint measurements, is the uncertainty region.
The surface bounding this set from below describes the uncertainty tradeoffs. For n = 2, we call it the
tradeoff curve. Measurement uncertainty is the phenomenon that, for general reference observables
Ai, the uncertainty region is bounded away from the origin. In principle, there are many ways to
express this mathematically, from a complete characterization of the exact tradeoff curve, which is
usually hard to get, to bounds that are simpler to state, but suboptimal. Linear bounds will play a
special role in this paper.
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Figure 2. Uncertainty regions for three reference observables, namely the angular momentum
components L1, L2, L3 for spin 1, each with outcome set X = {−1, 0,+1} and the choice
c(x, y) = (x− y)2 for the cost function. The three regions indicated correspond to the different overall
figures of merit εM(A′|A) ≥ εC(A′|A) ≥ εE(A′|A) described in Section 2.

We will consider three ways to build a single error quantity out of the comparison of
distributions, denoted by εM(A′|A), εC(A′|A) and εE(A′|A). These will be defined in Section 2.
For every choice of observables and cost functions, each will give an uncertainty region, denoted
by UM, UC and UE, respectively. Since they are all based on the same cost function c, they are
directly comparable (see Figure 2). We show in Section 3 that the three regions are convex and hence
characterized completely by linear bounds. In Section 4, we show how to calculate the optimal linear
lower bounds by semidefinite programs. Finally, an Appendix collects the basic information on the
beautiful theory of optimal transport, which is needed in Sections 2.1 and 4.1.

2. Deviation Measures for Observables

Here, we define the measures we use to quantify how well an observable A′ approximates a
desired observable A. In this section, we do not use the marginal condition Equation (1), so A′ is
an arbitrary observable with the same outcome set X as A, i.e., we drop all indices i identifying the
different observables. Our error quantities are operational in the sense that each is motivated by
an experimental setup, which will in particular provide a natural way to measure them. All error
definitions are based on the same cost function c : X× X → R, where c(x, y) is the “cost” of getting a
result x ∈ X, when y ∈ X would have been correct. The only assumptions are that c(x, y) ≥ 0 with
c(x, y) = 0 iff x = y.

As described above, we consider a quantum system with Hilbert space Cd. As a reference
observable A, we allow any complete von Neumann measurement on this system, that is any
observable whose set X of possible measurement outcomes has size |X| = d and whose POVM
elements A(y) ∈ B(Cd) (y ∈ X) are mutually orthogonal projectors of rank 1; we can then also
write A(y) = |φy〉〈φy| with an orthonormal basis {φy} of Cd. For the approximating observable A′,
the POVM elements A′(x) (with x ∈ X) are arbitrary with A′(x) ≥ 0 and ∑x∈X A(x) = 1.

The comparison will be based on a comparison of output distributions, for which we use the
following notations: given a quantum state ρ on this system, i.e., an operator with ρ ≥ 0 and
tr ρ = 1, and an observable, such as A, we will denote the outcome distribution by ρA,
so (ρA)(y) := tr(ρAy). This is a probability distribution on the outcome set X and can be determined
physically as the empirical outcome distribution after many experiments.
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For comparing just two probability distributions p : X → R+ and q : X → R+, a canonical
choice is the “minimum transport cost”:

č(p, q) := inf
γ

{
∑
xy

c(x, y)γ(x, y)
∣∣ γ couples p to q

}
(3)

where the infimum runs over the set of all couplings or “transport plans” γ : X × X → R+ of p to
q, i.e., the set of all probability distributions γ satisfying the marginal conditions ∑y γ(x, y) = p(x)
and ∑x γ(x, y) = q(y). The motivations for this notion and the methods to compute it efficiently
are described in the Appendix. Since X is finite, the infimum is over a compact set, so it is always
attained. Moreover, since we assumed c ≥ 0 and c(x, y) = 0 ⇔ x = y, we also have č(p, q) ≥ 0 with
equality iff p = q. If one of the distributions, say q, is concentrated on a point ỹ, only one coupling
exists, namely γ(x, y) = p(x)δyỹ. In this case, we abbreviate č(p, q) = č(p, ỹ), and get:

č(p, ỹ) = ∑
x

p(x)c(x, ỹ) (4)

i.e., the average cost of moving all of the points x distributed according to p to ỹ.

2.1. Maximal Measurement Error εM(A′|A)

The worst case error over all input states is:

εM(A′|A) := sup
ρ

{
č(ρA′, ρA)

∣∣ ρ quantum state on Cd} (5)

which we call the maximal error. Note that, like the cost function c and the transport costs č, the
measure εM(A′|A) need not be symmetric in its arguments, which is sensible, as the reference
and approximating observables have distinct roles. Similar definitions for the deviation of an
approximating measurement from an ideal one have been made, for specific cost functions, in [7,9]
and [14] before.

The definition Equation (5) makes sense even if the reference observable A is not a von Neumann
measurement. Instead, the only requirement is that A and A′ be general observables with the same
(finite) outcome set X, not necessarily of size d. All of our results below that involve only the maximal
measurement error immediately generalize to this case, as well.

One can see that it is expensive to determine the quantity εM(A′|A) experimentally according to
the definition: one would have to measure and compare (see Figure 3) the outcome statistics ρA′ and
ρA for all possible input states ρ, which form a continuous set. The following definition of observable
deviation alleviates this burden.

A

A′

εM(A′|A)

ρ

ρ

Figure 3. For the maximal measurement error εM(A′|A) the transport distance of output distributions
is maximized over all input states ρ.
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2.2. Calibration Error εC(A′|A)

Calibration (see Figure 4) is a process by which one tests a measuring device on inputs
(or measured objects) for which the “true value” is known. Even in quantum mechanics, we can
set this up by demanding that the measurement of the reference observable on the input state gives
a sharp value y. In a general scenario with continuous outcomes, this can only be asked with a
finite error δ, which goes to zero at the end [7], but in the present finite scenario, we can just demand
(ρA)(y) = 1. Since, for every outcome y of a von Neumann measurement, there is only one state with
this property (namely ρ = |φy〉〈φy|), we can simplify even further, and define the calibration error by:

εC(A′|A) := sup
y,ρ
{č(ρA′, y)

∣∣ tr(ρA(y)) = 1} = max
y ∑

x
〈φy|A′(x)|φy〉 c(x, y) (6)

Note that the calibration idea only makes sense when there are sufficiently many states for which
the reference observable has deterministic outcomes, i.e., for projective observables A.

A

A′

εC(A′|A)
y

y

|φy〉〈φy|

|φy〉〈φy|

Figure 4. For the calibration error εC(A′|A), the input state is constrained to the eigenstates of A, say
with sharp A-value y, and the cost of moving the A′-distribution to y is maximized over y.

A closely related quantity has recently been proposed by Appleby [10]. It is formulated for real
valued quantities with cost function c(x, y) = (x − y)2 and has the virtue that it can be expressed
entirely in terms of first and second moments of the probability distributions involved. Therefore, for
any ρ, let m and v be the mean and variance of ρA and v′ the mean quadratic deviation of ρA′ from m.
Then, Appleby defines:

εD(A′|A) = sup
ρ
(
√

v′ −
√

v)2 (7)

Here, we added the square to make Appleby’s quantity comparable to our variance-like
(rather than standard deviation-like) quantities and chose the letter D, because Appleby calls this
the D-error. Since in the supremum, we have also the states for which A has a sharp distribution
(i.e., v = 0), we clearly have εD(A′|A) ≥ εC(A′|A). On the other hand, let Φ(x) = t(x − m)2

and Ψ(y) = t/(1− t)(y−m)2. Then, one easily checks that Φ(x) − Ψ(y) ≤ (x − y)2, so (Φ, Ψ) is
a pricing scheme in the sense defined in the Appendix. Therefore:

č(ρA′, ρA) ≥∑
x
(ρA′)(x)Φ(x)−∑

y
(ρA)(y)Ψ(y) = t v′ − t

1− t
v (8)

Maximizing this expression over t gives exactly Equation (7). Therefore,

εC(A′|A) ≤ εD(A′|A) ≤ εM(A′|A) .

2.3. Entangled Reference Error εE(A′|A)

In quantum information theory, a standard way of providing a reference state for later
comparison is by applying a channel or observable to one half of a maximally-entangled system.
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Two observables would be compared by measuring them (or suitable modifications) on the two
parts of a maximally-entangled system (see Figure 5). Let us denote the entangled vector by
Ω = d−1/2 ∑k |kk〉. Since later, we will look at several distinct reference observables, the basis
kets |k〉 in this expression have no special relation to A or its eigenbasis φy. We denote by XT

the transpose of an operator X in the |k〉 basis, and by AT the observable with POVM elements
A(y)T = |φy〉〈φy|, where φy is the complex conjugate of φy in |k〉-basis. These transposes are needed
due to the well-known relation (X ⊗ 1)Ω = (1⊗ XT)Ω. We now consider an experiment, in which
A′ is measured on the first part and AT on the second part of the entangled system, so we get the
outcome pair (x, y) with probability:

p(x, y) = 〈Ω|A′(x)⊗ A(y)T|Ω〉 = 〈Ω|A′(x)A(y)⊗ 1|Ω〉 = 1
d

tr
(

A′(x)A(y)
)

(9)

As A is a complete von Neumann measurement, this probability distribution is concentrated on
the diagonal (x = y) iff A′ = A, i.e., there are no errors of A′ relative to A. Averaging with the error
costs, we get a quantity we call the entangled reference error:

εE(A′|A) := ∑
xy

1
d

tr
(

A′(x)A(y)
)

c(x, y) (10)

Note that this quantity is measured as a single expectation value in the experiment with
source Ω. Moreover, when we later want to measure different such deviations for the various
marginals, the source and the tested joint measurement device can be kept fixed, and only the various
reference observables AT

i acting on the second part need to be adapted suitably.

A

Ω

A′

εE(A′|A)

Figure 5. The entangled reference error εE(A′|A) is a single expectation value, namely of the cost
c(x, y), where y is the output of AT and x the output of A′. Like the other error quantities, this
expectation vanishes iff A′ = A.

2.4. Summary and Comparison

The quantities εM(A′|A), εC(A′|A) and εE(A′|A) constitute three different ways to quantify the
deviation of an observable A′ from a projective reference observable A. Nevertheless, they are all
based on the same distance-like measure, the cost function c on the outcome set X. Therefore, it
makes sense to compare them quantitatively. Indeed, they are ordered as follows:

εM(A′|A) ≥ εC(A′|A) ≥ εE(A′|A) (11)

Here, the first inequality follows by restricting the supremum Equation (5) to states that are
sharp for A and the second by noting that the Equation (6) is the maximum of a function of y, of
which Equation (10) is the average.

Moreover, as we argued before in Equation (10), εE(A′|A) = 0 if and only if A = A′, which is
hence equivalent also to εM(A′|A) = 0 and εC(A′|A) = 0.
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3. Convexity of Uncertainty Diagrams

For two observables B1 and B2 with the same outcome set, we can easily realize their mixture
or convex combination B = tB1 + (1− t)B2 by flipping a coin with probability t for heads in each
instance and then apply B1 when heads is up and B2 otherwise. In terms of POVM elements, this
reads B(x) = tB1(x) + (1− t)B2(x). We show first that this mixing operation does not increase the
error quantities from Section 2.

Lemma 1. For L ∈ {M, D, C, E} the error quantity εL(B|A), is a convex function of B, i.e., for
B = tB1 + (1− t)B2 and t ∈ [0, 1]:

εL(B|A) ≤ t εL(B1|A) + (1− t) εL(B1|A) (12)

Proof. The basic fact used here is that the pointwise supremum of affine functions (i.e., those for
which equality holds in the definition of a convex function) is convex. This is geometrically obvious
and easily verified from the definitions. Hence, we only have to check that each of the error quantities
is indeed represented as a supremum of functions, which are affine in the observable B.

For L = E, we even get an affine function, because Equation (10) is linear in A′. For L = C,
Equation (6) has the required form. For L = M, Equation (5) is a supremum, but the function č is
defined as an infimum. However, we can use the duality theory described in the Appendix to write
it instead as a supremum over pricing schemes, of an expression that is just the expectation of Φ(x)
plus a constant and, therefore, an affine function. Finally, for Appleby’s case Equation (7), we get the
same supremum, but over the subset of pricing schemes (the quadratic ones).

The convexity of the error quantities distinguishes measurement from preparation uncertainty.
Indeed, the variances appearing in preparation uncertainty relations are typically concave functions,
because they arise from minimizing the expectation of (x − m)2 over m. Consequently, the
preparation uncertainty regions may have gaps and non-trivial behavior on the side of large
variances. The following proposition will show that measurement uncertainty regions are
better behaved.

For every cost function c on a set X, we can define a “radius” c∗, the largest transportation cost
from the uniform distribution (the “center” of the set of probability distributions) and a “diameter”
c∗, the largest transportation cost between any two distributions:

c∗ = max
y ∑

x
c(x, y)/d c∗ = maxxyc(x, y) (13)

Proposition 2. Let n observables Ai and cost functions ci be given, and define cM
i = cC

i = c∗i and cE
i = ci

∗.
Then, for L = {M, C, E}, the uncertainty regions UL is a convex set and has the following (monotonicity)
property: when ~x = (x1, . . . , xn) ∈ UL and ~y = (yi, . . . , yn) ∈ Rn are such that xi ≤ yi ≤ cL

i , then ~y ∈ UL.

Proof. Let us first clarify how to make the worst possible measurement B, according to the various
error criteria, for which we go back to the setting of Section 2, with just one observable A and cost
function c. In all cases, the worst measurement is one with constant and deterministic output, i.e.,
B(x) = δx∗ ,x1. For L = C and L = M, such a measurement will have εL(B|A) = maxy c(x∗, y), and
we can choose x∗ to make this equal to c∗ = cL. For L = E, we get instead the average, which is
maximized by c∗.

We can now make a given joint measurement R worse by replacing it partly by a bad one, say
for the first observable A1. That is, we set, for λ ∈ [0, 1],

R̃(x1, x2, . . . , xn) = λB1(x1) ∑
y1

R(y1, x2, . . . , xn) + (1− λ)R(x1, x2, . . . , xn) (14)
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Then, all marginals Ã′i for i 6= 1 are unchanged, but Ã′1(x1) = λB1(x1) + (1− λ)A′(x1). Now, as
λ changes from zero to one, the point in the uncertainty diagram will move continuously in the first
coordinate direction from~x to the point in which the first coordinate is replaced by its maximum value
(see Figure 6 (left)). Obviously, the same holds for every other coordinate direction, which proves the
monotonicity statement of the proposition.

~εL(R)

~εL(B1)
εL(A′1|A1)

εL(A′2|A2)c∗2

c∗1

~εL(R̃) ~εL(V)

~εL(R1)

εL(A′1|A1)

εL(A′2|A2)c∗2

c∗1

~εL(R2)~εL(R)

λ~εL(R1) + (1− λ)~εL(R2)

Figure 6. The blue shaded region corresponds to the monotonicity statement for ~εL(R). (Left) R̃
is a mixture of R and B1. We can also get an observable V by mixing the second marginal of R̃
with B2 and, thus, reach every point in the blue shaded region. (Right) ~εL(R) is componentwise
convex. Therefore, the mixture of the points~εL(R) and~εL(R) is always in the monotonicity region
corresponding to~εL(R).

Let R1 and R2 be two observables, and let R = λR1 + (1 − λ)R2 be their mixture.
For proving the convexity of UL, we will have to show that every point on the line between
~εL(R1) and ~εL(R2) can be attained by a tuple of errors corresponding to some allowed observable
(see Figure 6 (right)). Now, lemma 1 tells us that every component of ~εL(R) is convex, which
implies that ~εL(R) ≤ λ~εL(R1) + (1− λ)~εL(R2). However, by monotonicity, this also means that
λ~εL(R1) + (1− λ)~ε(R2) is in UL again, which shows the convexity of UL.

Example: Phase Space Pairs

As is plainly visible from Figure 2, the three error criteria considered here usually give different
results. However, under suitable circumstances, they all coincide. This is the case for conjugate pairs
related by Fourier transform [15]. The techniques needed to show this are the same as for the standard
position/momentum case [9,17] and, in addition, imply that the region for preparation uncertainty is
also the same.

In the finite case, there is not much to choose: we have to start from a finite abelian group, which
we think of as position space, and its dual group, which is then the analogue of momentum space.
The unitary connecting the two observables is the finite Fourier associated with the group. The cost
function needs to be translation invariant, i.e., c(x, y) = c(x − y). Then, by an averaging argument,
we find for all error measures that a covariant phase space observable minimizes measurement
uncertainty (all three versions). The marginals of such an observable can be simulated by first doing
the corresponding reference measurement and then adding some random noise. This implies [14]
that εM(A′|A) = εC(A′|A). However, we know more about this noise: it is independent of the
input state, so that the average and the maximum of the noise (as a function of the input) coincide,
i.e., εC(A′|A) = εE(A′|A). Finally, we know that the noise of the position marginal is distributed
according to the position distribution of a certain quantum state, which is, up to normalization and
a unitary parity inversion, the POVM element of the covariant phase space observable at the origin.
The same holds for the momentum noise. However, then the two noise quantities are exactly related
like the position and momentum distributions of a state, and the tradeoff curve for that problem is
exactly preparation uncertainty, with variance criteria based on the same cost function.
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If we choose the discrete metric for c, the uncertainty region depends only on the number d of
elements in the group we started from [15]. The largest ε for all quantities is the distance from a
maximally-mixed state to any pure state, which is ∆ = (1− 1/d). The exact tradeoff curve is then an
ellipse, touching the axes at the points (0, ∆) and (∆, 0). The resulting family of curves, parameterized
by d, is shown in Figure 7. In general, however, the tradeoff curve requires the solution of a non-trivial
family of ground state problems and cannot be given in closed form. For bit strings of length n and
the cost, some convex function of Hamming distance there is an expression for large n [15].

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ε(A′1|A1)

ε(A′2|A2)

Figure 7. The uncertainty tradeoff curves for discrete position/momentum pairs, with a discrete
metric. In this case, all uncertainty regions, also the one for preparation uncertainty, coincide.
The parameter of the above tradeoff curves is the order d = 2, 3, . . . , 10, · · · , ∞ of the underlying
abelian group.

4. Computing Uncertainty Regions via Semidefinite Programming

We show here how the uncertainty regions, and therefore, optimal uncertainty relations,
corresponding to each of the three error measures can actually be computed, for any given set of
projective observables A1, . . . , An and cost functions c1, . . . , cn. Our algorithms will come in the
form of semidefinite programs (SDPs) [18,19], facilitating efficient numerical computation of the
uncertainty regions via the many existing program packages to solve SDPs. Moreover, the accuracy
of such numerical results can be rigorously certified via the duality theory of SDPs. To obtain the
illustrations in this paper, we used the CVX package [20,21] under MATLAB.

As all of our uncertainty regions UL ⊂ Rn (for L = M, C, E) are convex and closed (Section 3),
they are completely characterized by their supporting hyperplanes (for a reference to convex
geometry, see [22]). Due to the monotonicity property stated in Proposition 2, some of these
hyperplanes just cut off the set parallel along the planes xi = cL

i . The only hyperplanes of interest are
those with nonnegative normal vectors ~w = (w1, . . . , wn) ∈ Rn

+ (see Figure 8). Each hyperplane is
completely specified by its “offset” bL(~w) away from the origin, and this function determines UL:

bL(~w) := inf
{
~w ·~ε

∣∣∣~ε ∈ UL

}
(15)

UL =
{
~ε ∈ Rn

∣∣∣ ∀~w ∈ Rn
+ ~w ·~ε ≥ bL(~w)

}
(16)
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εL(A′1|A1)

εL(A′2|A2)

UL

~w

c∗2

c∗1

Figure 8. The lower bound of the uncertainty region UL can be described by its supporting
hyperplanes (red line) with a normal vector ~w ∈ Rn

+.

In fact, due to homogeneity bL(t~w) = t bL(~w), we can restrict everywhere to the subset of vectors
~w ∈ Rn

+ that, for example, satisfy ∑i wi = 1, suggesting an interpretation of the wi as weights
of the different uncertainties εi. Our algorithms will, besides evaluating bL(~w), also allow one to
compute a (approximate) minimizer~ε, so that one can plot the boundary of the uncertainty region UL
by sampling over ~w, which is how the figures in this paper were obtained.

Let us further note that knowledge of bL(~w) for some ~w ∈ Rn
+ immediately yields a quantitative

uncertainty relation: every error tuple~ε ∈ UL attainable via a joint measurement is constrained by the
affine inequality ~w ·~ε ≥ bL(~w), meaning that some weighted average of the attainable error quantities
εi cannot become too small. When bL(~w) > 0 is strictly positive, this excludes in particular the zero
error point~ε = ~0. The obtained uncertainty relations are optimal in the sense that there exists~ε ∈ UL,
which attains strict equality ~w ·~ε = bL(~w).

Having reduced the computation of an uncertainty region essentially to determining bL(~w)

(possibly along with an optimizer~ε), we now treat each case L = M, C, E in turn.

4.1. Computing the Uncertainty Region UM

On the face of it, the computation of the offset bM(~w) looks daunting: expanding the definitions,
we obtain:

bM(~w) = inf
R

n

∑
i=1

wi sup
ρ

či(ρA′i, ρAi) (17)

where the infimum runs over all joint measurements R with outcome set X1 × . . . × Xn, inducing
the marginal observables A′i = A′i(R) according to Equation (1), and the supremum over all sets
of n quantum states ρ1, . . . , ρn and where the transport costs či(p, q) are given as a further infimum
Equation (3) over the couplings γi of p = ρA′i and q = ρAi.

The first simplification is to replace the infimum over each coupling γi, via a dual representation
of the transport costs, by a maximum over optimal pricing schemes (Φα, Ψα), which are certain pairs
of functions Φα, Ψα : Xi → R, where α runs over some finite label set Si. The characterization
and computation of the pairs (Φα, Ψα), which depend only on the chosen cost function ci on Xi,
are described in the Appendix. The simplified expression for the optimal transport costs is then:

či(p, q) = max
α∈Si

∑
x

Φα(x) p(x)−∑
y

Ψα(y)q(y) (18)
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We can then continue our computation of bM(~w):

bM(~w) = inf
R

∑
i

wi sup
ρ

max
α∈Si

(
∑
x

Φα(x) tr[ρA′i(x)]−∑
y

Ψα(y) tr[ρAi(y)]
)

(19)

= inf
R

∑
i

wi max
α∈Si

sup
ρ

tr
[
ρ
(
∑
x

Φα(x)A′i(x)−∑
y

Ψα(y)Ai(y)
)]

(20)

= inf
R

∑
i

wi max
α∈Si

λmax

(
∑
x

Φα(x)A′i(x)−∑
y

Ψα(y)Ai(y)
)

(21)

where λmax(Bi,α) denotes the maximum eigenvalue of a Hermitian operator Bi,α. Note that
λmax(Bi,α) = inf{µi | Bi,α ≤ µi1}, which one can also recognize as the dual formulation of the convex
optimization supρ tr(ρBi,α) over density matrices, so that:

max
α∈Si

λmax(Bi,α) = inf{µi | ∀α ∈ Si : Bi,α ≤ µi1} (22)

We obtain thus a single constrained minimization:

bM(~w) = inf
R,{µi}

{
∑

i
wiµi

∣∣ ∀i∀α ∈ Si : ∑
x

Φα(x)A′i(x)−∑
y

Ψα(y)Ai(y) ≤ µi1
}

(23)

Making the constraints on the POVM elements R(x1, . . . , xn) of the joint observable R explicit and
expressing the marginal observables A′i = A′i(R) directly in terms of them by Equation (1), we finally
obtain the following SDP representation for the quantity bM(~w):

bM(~w) = inf ∑i wiµi
with real variables µi and d× d-matrix variables R(x1, . . . , xn) subject to

µi1 ≥ ∑x1,...,xn Φα(xi) R(x1, . . . , xn)−∑y Ψα(y)A(y) ∀i ∀α ∈ Si

R(x1, . . . , xn) ≥ 0 ∀x1, . . . , xn

∑x1,...,xn R(x1, . . . , xn) = 1.

(24)

The derivation above shows further that, when wi > 0, the µi attaining the infimum equals
µi = supρ či(ρA′i, ρAi) = εM(A′i|Ai), where A′i is the marginal coming from a corresponding optimal
joint measurement R(xi, . . . , xn). Since numerical SDP solvers usually output an (approximate)
optimal variable assignment, one obtains in this way directly a boundary point ~ε = (µ1, . . . , µn)

of UM when all wi are strictly positive. If wi = 0 vanishes, a corresponding boundary point~ε can be
computed via εi = εM(A′i|Ai) = maxα∈Si λmax(∑x1,...,xn Φα(xi) R(x1, . . . , xn) − ∑y Ψα(y)A(y)) from
an optimal assignment for the POVM elements R(x1, . . . , xn).

For completeness, we also display the corresponding dual program [18] (note that strong duality
holds and the optima of both the primal and the dual problem are attained):

bM(~w) = sup tr[C]−∑i,α tr[Di,α ∑y Ψα(y)Ai(y)]
with d× d-matrix variables C and Di,α subject to:

C ≤ ∑i,α Φα(xi)Di,α ∀x1, . . . , xn

0 ≤ Di,α ∀i ∀α ∈ Si
wi = ∑α tr[Di,α] ∀i.

(25)
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4.2. Computing the Uncertainty Region UC

To compute the offset function bC(~w) for the calibration uncertainty region UC, we use the last
form in Equation (6) and recall that the projectors onto the sharp eigenstates of Ai (see Section 2.2) are
exactly the POVM elements Ai(x) for x ∈ Xi:

bC(~w) = inf
R

∑
i

wi max
y ∑

x
tr[A′i(x)Ai(y)]ci(x, y) (26)

= inf
R

∑
i

wi sup
{λi,y}

∑
y

λi,y ∑
x

tr[A′i(x)Ai(y)]ci(x, y) (27)

= inf
R

sup
{λi,y}

∑
x1,...,xn

tr
[

R(x1, . . . , xn)∑
i,y

wiλi,yci(xi, y)Ai(y)
]

(28)

where again, the infimum runs over all joint measurements R, inducing the marginals A′i, and we
have turned, for each i = 1, . . . , n, the maximum over y into a linear optimization over probabilities
λi,y ≥ 0 (y = 1, . . . , d) subject to the normalization constraint ∑y λi,y = 1. In the last step, we have
made the A′i explicit via Equation (1).

The first main step towards a tractable form is von Neumann’s minimax theorem [23,24]: as the
sets of joint measurements R and of probabilities {λi,y} are both convex and the optimization function
is an affine function of R and, separately, also an affine function of the {λi,y}, we can interchange the
infimum and the supremum:

bC(~w) = sup
{λi,y}

inf
R

∑
x1,...,xn

tr
[

R(x1, . . . , xn)∑
i,y

wiλi,yci(xi, y)Ai(y)
]

(29)

The second main step is to use SDP duality [19] to turn the constrained infimum over R into a
supremum, abbreviating the POVM elements as R(x1, . . . , xn) = Rξ :

inf
{Rξ}

{
∑
ξ

Rξ Bξ

∣∣∣ Rξ ≥ 0 ∀ξ, ∑
ξ

Rξ = 1

}
= sup

Y

{
tr[Y]

∣∣∣ Y ≤ Bξ ∀ξ
}

(30)

which is very similar to a dual formulation often employed in optimal ambiguous state
discrimination [25,26].

Putting everything together, we arrive at the following SDP representation for the offset
quantity bC(~w):

bC(~w) = sup tr[Y]
with real variables λi,y and a d× d-matrix variable Y subject to

Y ≤ ∑i,y wiλi,yci(xi, y)Ai(y) ∀x1, . . . , xn

λi,y ≥ 0 ∀i ∀y
∑y λi,y = 1 ∀i.

(31)

The dual SDP program reads (again, strong duality holds, and both optima are attained):

bC(~w) = inf ∑i wimi
with real variables mi and d× d-matrix variables R(x1, . . . , xn) subject to

mi ≥ ∑x1,...,xn tr
[
R(x1, . . . , xn)Ai(y)

]
ci(xi, y) ∀i ∀y

R(x1, . . . , xn) ≥ 0 ∀x1, . . . , xn

∑x1,...,xn R(x1, . . . , xn) = 1.

(32)
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This dual version can immediately be recognized as a translation of Equation (26) into SDP form,
via an alternative way of expressing the maximum over y (or via the linear programming dual of
sup{λi,y} from Equation (28)).

To compute a boundary point~ε of UC lying on the supporting hyperplane with normal vector ~w,
it is best to solve the dual SDP Equation (32) and to obtain~ε = (m1, . . . , mn) from an (approximate)
optimal assignment of the mi. Again, this works when wi > 0, whereas otherwise, one can compute
εi = maxy ∑x1,...,xn tr[R(x1, . . . , xn)Ai(y)]ci(xi, y) from an optimal assignment of the R(x1, . . . , xn).
From many primal-dual numerical SDP solvers (such as CVX [20,21]), one can alternatively obtain
optimal POVM elements R(x1, . . . , xn) also from solving the primal SDP Equation (31) as optimal
dual variables corresponding to the constraints Y ≤ . . . and compute~ε from there.

4.3. Computing the Uncertainty Region UE

As one can see by comparing the last expressions in the defining Equations (6) and (10),
respectively, the evaluation of bE(~w) is quite similar to Equation (26), except that the maximum over
y is replaced by a uniform average over y. This simply corresponds to fixing λi,y = 1/d for all i, y in
Equation (28), instead of taking the supremum. Therefore, the primal and dual SDPs for the offset
bE(~w) are:

bE(~w) = sup 1
d tr[Y]

with a d× d-matrix variable Y subject to
Y ≤ ∑i,y wici(xi, y)Ai(y) ∀x1, . . . , xn.

(33)

and:

bE(~w) = inf 1
d ∑i ∑y ∑x1,...,xn wi tr

[
R(x1, . . . , xn)Ai(y)

]
ci(xi, y)

with d× d-matrix variables R(x1, . . . , xn) subject to
R(x1, . . . , xn) ≥ 0 ∀x1, . . . , xn

∑x1,...,xn R(x1, . . . , xn) = 1.

(34)

The computation of a corresponding boundary point~ε ∈ UE is similar as above.

5. Conclusions

We have provided efficient methods for computing optimal measurement uncertainty bounds
in the case of finite observables. The extension to infinite dimensional and unbounded observables
would be very interesting. The SDP formulation is also a powerful tool for deriving further analytic
statements. This process has only just begun.
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Appendix A. Optimal Transport

Appendix A.1. Kantorovich Duality

In this Appendix, we collect the basic theory of optimal transport adapted to the finite setting
at hand. This eliminates all of the topological and measure theoretic fine points that can be found,
e.g., in Villani’s book [27], which we also recommend for extended proofs of the statements in our
summary. We slightly generalize the setting from the cost functions used in the main text of this paper:
we allow the two variables on which the cost function depends to range over different sets. This might
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actually be useful for comparing observables, which then need not have the same outcome sets.
Which outcomes are considered to be close or the same must be specified in terms of the cost function.
We introduce this generalization here less for the sake of applications rather than for a simplification
of the proofs, in particular for the book-keeping of paths in the proof of Lemma 5.

The basic setting is that of two finite sets X and Y and an arbitrary function c : X×Y → R, called
the cost function. The task is to optimize the transport of some distribution of stuff on X, described by
a distribution function p : X → R+, to a final distribution q : Y → R+ on Y when the transportation of
one unit of stuff from the point x to the point y costs c(x, y). In the first such scenario ever considered,
namely by Gaspar Monge, the “stuff” was earth, the distribution p a hill and q a fortress. Villani [27]
likes to phrase the scenario in terms of bread produced at bakeries x ∈ X to be delivered to cafés
y ∈ Y. This makes plain that optimal transport is sometimes considered a branch of mathematical
economics, and indeed, Leonid Kantorovich, who created much of the theory, received a Nobel prize
in economics. In our case, the “stuff” will be probability.

A transport plan (or coupling) will be a probability distribution γ : X × Y → R+, which encodes
how much stuff is moved from any x to any y. Since all of p is to be moved, ∑y γ(x, y) = p(x), and
since all stuff is to be delivered, ∑x γ(x, y) = q(y). Now, for any transport plan γ, we get a total cost
of ∑x,y γ(x, y)c(x, y), and we are interested in the optimum:

č(p, q) = inf
γ

{
∑
xy

c(x, y)γ(x, y)
∣∣ γ couples p to q

}
(A1)

This is called the primal problem, to which there is also a dual problem. In economic language, it
concerns pricing schemes, that is pairs of functions Φ : X → R and Ψ : Y → R satisfying the inequality:

Φ(x)−Ψ(y) ≤ c(x, y) for all x ∈ X, y ∈ Y (A2)

and demands to maximize:

ĉ(p, q) = sup
Φ,Ψ

{
∑
x

Φ(x)p(x)−∑
y

Ψ(y)q(y)
∣∣ (Φ, Ψ) is a pricing scheme

}
(A3)

In Villani’s example [27], think of a consortium of bakeries and cafés that is used to organize the
transport themselves according to some plan γ. Now, they are thinking of hiring a contractor, which
offers to do the job, charging Φ(x) for every unit picked up from bakery x and giving Ψ(y) to café y
on delivery (these numbers can be negative). Their offer is that this will reduce overall costs, since
their pricing scheme satisfies Equation (A2). Indeed, the overall charge to the consortium will be:

∑
x

Φ(x)p(x)−∑
y

Ψ(y)q(y) = ∑
xy

(
Φ(x)−Ψ(y)

)
γ(x, y) ≤∑

xy
c(x, y)γ(x, y) (A4)

Taking the sup on the left-hand side of this inequality (the company will try to maximize their
profits by adjusting the pricing scheme (Φ, Ψ)) and the inf on the right-hand side (the transport
plan γ was already optimized), we get ĉ(p, q) ≤ č(p, q). The general duality theory for linear
programs shows that the duality gap closes in this case since both optimization problems satisfy
Slater’s constraint qualification condition ([18] Section 5.3.2) [22], i.e., we actually always have:

ĉ(p, q) = č(p, q) (A5)

Therefore, the consortium will face the same transport costs in the end if the contractor chooses
an optimal pricing scheme (note that both the infimum and the supremum in the definitions of č and
ĉ, respectively, are attained as X and Y are finite sets).

What is especially interesting for us, however, is that the structure of the optimal solutions
for both variational problems is very special, and both problems can be reduced to a combinatorial
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optimization over finitely many possibilities, which furthermore can be constructed independently
of p and q. Indeed, pricing schemes and transport plans are both related to certain subsets of X × Y.
We define S(γ) ⊆ X × Y as the support of γ, i.e., the set of pairs on which γ(x, y) > 0. For a pricing
scheme (Φ, Ψ), we define the equality set E(Φ, Ψ) as the set of points (x, y) for which equality holds
in Equation (A2). Then, equality holds in Equation (A4) if and only if S(γ) ⊂ E(Φ, Ψ). Note that
for γ to satisfy the marginal condition for given p and q, its support S(γ) cannot become too small
(depending on p and q). On the other hand, E(Φ, Ψ) cannot be too large, because the resulting system
of equations for Φ(x) and Ψ(y) would become overdetermined and inconsistent. The kind of set for
which they meet is described in the following definition.

Definition 3. Let X, Y be finite sets and c : X×Y → R a function. Then, a subset Γ ⊂ X×Y
is called cyclically c-monotone (“ccm” for short), if for any sequence of distinct pairs
(x1, y1) ∈ Γ, . . . , (xn, yn) ∈ Γ, and any permutation π of {1, . . . , n} the inequality:

n

∑
i=1

c(xi, yi) ≤
n

∑
i=1

c(xi, yπi) (A6)

holds. When Γ is not properly contained in another cyclically c-monotone set, it is called maximally
cyclically c-monotone (“mccm” for short).

A basic example of a ccm set is the equality set E(Φ, Ψ) for any pricing scheme (Φ, Ψ). Indeed,
for (xi, yi) ∈ E(Φ, Ψ) and any permutation π, we have:

n

∑
i=1

c(xi, yi) =
n

∑
i=1

(
Φ(xi)−Ψ(yi)

)
) =

n

∑
i=1

(
Φ(xi)−Ψ(yπi)

)
≤

n

∑
i=1

c(xi, yπi) (A7)

The role of ccm sets in the variational problems Equations (A1) and (A3) is summarized in the
following proposition.

Proposition 4. Let X, Y, c, p, q be given as above. Then:

(1) A coupling γ minimizes Equation (A1) if and only if S(γ) is ccm.
(2) The dual problem Equation (A3) has a maximizer (Φ, Ψ) for which E(Φ, Ψ) is mccm.
(3) If Γ ⊆ X × Y is mccm, there is a pricing scheme (Φ, Ψ) with E(Φ, Ψ) = Γ, and (Φ, Ψ) is uniquely

determined by Γ up to the addition of the same constant to Φ and to Ψ.

Sketch of the proof.
(1) Suppose (xi, yi) ∈ S(γ) (i = 1, . . . , n), and let π be any permutation. Set δ = mini γ(xi, yi).
Then, we can modify γ by subtracting δ from any γ(xi, yi) and adding δ to γ(xi, yπi). This operation
keeps γ ≥ 0 and does not change the marginals. The target functional in the infimum Equation (A1)
is changed by δ times the difference of the two sides of Equation (A6). For a minimizer γ, this change
must be≥ 0, which gives inequality Equation (A6). For the converse, we need a Lemma, whose proof
will be sketched below.

Lemma 5. For any ccm set Γ, there is some pricing scheme (Φ, Ψ) with E(Φ, Ψ) ⊇ Γ.

By applying this to Γ = S(γ), we find that the duality gap closes for γ, i.e., equality holds in
Equation (A4), and hence, γ is a minimizer.
(2) Every subset, Γ ⊂ X × Y can be thought of as a bipartite graph with vertices X ∪ Y and an
edge joining x ∈ X and y ∈ Y iff (x, y) ∈ Γ (see Figure A1). We call Γ connected, if any two
vertices are linked by a sequence of edges. Consider now the equality set E(Φ, Ψ) of some pricing
scheme. We modify (Φ, Ψ) by picking some connected component and setting Φ′(x) = Φ(x) + a
and Ψ′(y) = Ψ(y) + a for all x, y in that component. If |a| is sufficiently small, (Φ′, Ψ′) will still
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satisfy all of the inequalities of Equation (A2), and E(Φ′, Ψ′) = E(Φ, Ψ). The target functional
in the optimization Equation (A3) depends linearly on a, so moving in the appropriate direction
will increase, or at least not decrease, it. We can continue until another one of the inequalities of
Equation (A2) becomes tight. At this point, E(Φ′, Ψ′) ) E(Φ, Ψ). This process can be continued
until the equality set E(Φ, Ψ) is connected. Then, (Φ, Ψ) is uniquely determined by E(Φ, Ψ) up to a
common constant.

1 11

3

2

1

3

2

3 33

44

3

1

1

2

2

3

3

4

4

X

Y

X Y

Figure A1. Representation of a subset Γ ⊂ X × Y (left) as a bipartite graph (right). The graph is a
connected tree.

It remains to show that connected equality sets E(Φ, Ψ) are mccm. Suppose that Γ ⊇ E(Φ, Ψ) is
ccm. Then, by Lemma 5, we can find a pricing scheme (Φ′, Ψ′) with E(Φ′, Ψ′) ⊇ E(Φ, Ψ). However,
using just the equalities in Equation (A2) coming from the connected E(Φ, Ψ), we already find that
Φ′ = Φ + a and Ψ′ = Ψ + a, so we must have E(Φ′, Ψ′) = E(Φ, Ψ).
(3) This is trivial from the proof of (2) that mccm sets are connected.

Proof sketch of Lemma 5. Our proof will give some additional information on the set of all pricing
schemes that satisfy E(Φ, Ψ) ⊃ Γ and Φ(x0) = 0 for some reference point x0 ∈ X to fix the otherwise
arbitrary additive constant. Namely we will explicitly construct the largest element (Φ+, Ψ+) of this
set and the smallest (Φ−, Ψ−), so that all other schemes (Φ, Ψ) satisfy:

Φ−(x) ≤ Φ(x) ≤ Φ+(x) and Ψ−(y) ≤ Ψ(y) ≤ Ψ+(y) (A8)

for all x ∈ X and y ∈ Y. The idea is to optimize the sums of certain costs over paths in X ∪Y.
We define a Γ-adapted path as a sequence of vertices z1, . . . , zn ∈ X ∪ Y such that the

zi ∈ X ⇒ (zi, zi+1) ∈ Γ, and zi ∈ Y ⇒ zi+1 ∈ X. For such a path, we define:

c(z1, . . . , zn) =
n−1

∑
i=1

c(zi, zi+1) (A9)

with the convention c(y, x) := −c(x, y) for x ∈ X, y ∈ Y. Then, Γ is ccm if and only if
c(z1, . . . , zn, z1) ≤ 0 for every Γ-adapted closed path. This is immediate for cyclic permutations and
follows for more general ones by cycle decomposition. The assertion of Lemma 5 is trivial if Γ = ∅,
so we can pick a point x0 ∈ X for which some edge (x0, y) ∈ Γ exists. Then, for any z ∈ X ∪ Y, we
define, for z 6= x0,

χ+(z) := − sup c(x0, . . . , z) and χ−(z) := sup c(z, . . . , x0) (A10)

where the suprema are over all Γ-adapted paths between the specified endpoints; we define
χ+(x0) := χ−(x0) := 0, and empty suprema are defined as −∞. Then, χ± are the maximal and
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minimal pricing schemes, when written as two functions Φ±(x) = χ±(x) and Ψ±(y) = χ±(y) for
x ∈ X and y ∈ Y.

For proving these assertions, consider paths of the type (x0, . . . , y, x). For this to be Γ-adapted,
there is no constraint on the last link, so:

− χ+(y)− c(x, y) ≤ −χ+(x), and sup
y

{
−χ+(y)− c(x, y)

}
= χ+(x) (A11)

Here, the inequality follows because the adapted paths x0 → x going via y as the last step are a
subclass of all adapted paths and give a smaller supremum. The second statement follows, because
for x 6= x0, there has to be some last step from Y to x. The inequality Equation (A11) also shows that
(Φ+, Ψ+) is a pricing scheme. The same argument applied to the decomposition of paths (x0, . . . , x, y)
with (x, y) ∈ Γ gives the inequality:

− χ+(x) + c(x, y) ≤ −χ+(y) for (x, y) ∈ Γ (A12)

Combined with inequality Equation (A11), we get that (Φ+, Ψ+) has equality set E(Φ+, Ψ+) at
least Γ. The corresponding statements for χ− follow by first considering paths (y, x, . . . , x0) and then
(x, y . . . , x0) with (x, y) ∈ Γ.

Finally, in order to show the inequalities Equation (A8), let (Φ, Ψ) be a tight pricing scheme with
Φ(x0) = 0 and E(Φ, Ψ) ⊃ Γ. Consider first any Γ-adapted path (x0, y0, x1, . . . , xn, y). Then,

c(x0, . . . , xn, y) =
n−1

∑
i=0

(
Φ(xi)−Ψ(yi)− c(xi+1, yi)

)
+Φ(xn)−Ψ(y)

= Φ(x0)−Ψ(y) +
n−1

∑
i=0

(
Φ(xi+1)−Ψ(yi)− c(xi+1, yi)

)
≤ Φ(x0)−Ψ(y) = −Ψ(y) (A13)

because the sum is term-wise non-positive due to the pricing scheme property. Hence, by taking the
supremum, we get χ+(y) ≥ Ψ(y). The other inequalities follow with the same arguments applied to
paths of the type (x0, . . . , yn, x), (x, y0, . . . , x0) and (y, x1, . . . , x0).

Let us summarize the consequences of Proposition 4 for the computation of minimal costs
Equation (A1). Given any cost function c, the first step is to enumerate the corresponding mccm
sets, say Γα, α ∈ S , for some finite label set S , and to compute for each of these the pricing scheme
(Φα, Ψα) (up to an overall additive constant; see Proposition 4). This step depends only on the chosen
cost function c. Then, for any distributions p, q, we get:

ĉ(p, q) = č(p, q) = max
α∈S ∑

x
Φα(x)p(x)−∑

y
Ψα(y)q(y) (A14)

This is very fast to compute, so the preparatory work of determining the (Φα, Ψα) is well
invested if many such expressions have to be computed. However, even more important for us is
that Equation (A14) simplifies the variational problem sufficiently, so that we can combine it with the
optimization over joint measurements (see Section 4.1). Of course, this leaves open the question of
how to determine all mccm sets for a cost function. Some remarks about this will be collected in the
next subsection.

Appendix A.2. How to Find All mccm Sets

We will begin with a basic algorithm for the general finite setting, in which X, Y and the
cost function c are arbitrary. Often, the task can be greatly simplified if more structure is given.
These simplifications will be described in the following sections.



Mathematics 2016, 4, 38 19 of 21

The basic algorithm will be a growth process for ccm subsets Γ ⊆ X × Y, which stops as
soon as Γ is connected (cf. the proof of Proposition 4(2)). After that, we can compute the unique
pricing scheme (Φ, Ψ) with equality on Γ by solving the system of linear equations with (x, y) ∈ Γ
from Equation (A2). This scheme may have additional equality pairs extending Γ to an mccm
set. Hence, the same (Φ, Ψ) and mccm sets may arise from another route of the growth process.
Nevertheless, we can stop the growth when Γ is connected and eliminate doubles as a last step of
the algorithm. The main part of the algorithm will thus aim at finding all connected ccm trees, where
by definition, a tree is a graph containing no cycles. We take each tree to be given by a list of edges
(x1, y1), . . . (xN , yN), which we take to be written in lexicographic ordering, relative to some arbitrary
numberings X = {1, . . . , |X|} and Y = {1, . . . , |Y|}. Hence, the first element in the list will be (1, y),
where y is the first element connected to 1 ∈ X.

At stage k of the algorithm, we will have a list of all possible initial sequences (x1, y1), . . . (xk, yk)

of lexicographically-ordered ccm trees. For each such sequence, the possible next elements will be
determined and all of the resulting edge-lists of length k + 1 form the next stage of the algorithm.
Now, suppose we have some list (x1, y1), . . . (xk, yk). What can the next pair (x′, y′) be? There are
two possibilities:

(1) x′ = xk is unchanged. Then, lexicographic ordering dictates that y′ > yk. Suppose that y′ is
already connected to some x < xk. Then, adding the edge (xk, y′) would imply that y′ could
be reached in two different ways from the starting node (x = 1). Since we are looking only for
trees, we must therefore restrict to only those y′ > yk that are yet unconnected.

(2) x is incremented. Since, in the end, all vertices x must lie in one connected component, the next
one has to be x′ = xk + 1. Since the graphs at any stage should be connected, y′ must be a
previously-connected Y-vertex.

With each new addition, we also check the ccm property of the resulting graph. The best way to
do this is to store with any graph the functions Φ, Ψ on the set of already connected nodes (starting
from Φ(1) = 0) and to update them with any growth step. We then only have to verify inequality
Equation (A2) for every new node paired with every old one. Since the equality set of any pricing
scheme is ccm, this is sufficient. The algorithm will stop as soon as all nodes are included, i.e., after
|X|+ |Y| − 1 steps.

Appendix A.3. The Linearly-Ordered Case

When we look at standard quantum observables, given by a Hermitian operator A, the outcomes
are understood to be the eigenvalues of A, i.e., real numbers. Moreover, we typically look at cost
functions, which depend on the difference (x− y) of two eigenvalues, i.e.,

c(x, y) = h
(
x− y

)
(A15)

For the Wasserstein distances, one uses h(t) = |t|α with α ≥ 1. The following Lemma allows, in
addition, arbitrary convex, not necessarily even functions h.

Lemma 6. Let h : R → R be convex and c be given by Equation (A15). Then, for x1 ≤ x2 and y1 ≤ y2,
we have:

c(x1, y1) + c(x2, y2) ≤ c(x1, y2) + c(x2, y1) (A16)

with strict inequality if h is strictly convex, x1 < x2 and y1 < y2.

Proof. Since x2 − x1 ≥ 0 and y2 − y1 ≥ 0, there exists λ ∈ [0, 1], such that
(1− λ)(x2 − x1) = λ(y2 − y1). This implies x1− y1 = λ(x1− y2)+ (1−λ)(x2− y1), so that convexity
of h gives c(x1, y1) = h(x1 − y1) ≤ λh(x1 − y2) + (1− λ)h(x2 − y1) = λc(x1, y2) + (1− λ)c(x2, y1).
The same choice of λ also implies x2 − y2 = (1 − λ)(x1 − y2) + λ(x2 − y1), so that similarly,
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c(x2, y2) ≤ (1− λ)c(x1, y2) + λc(x2, y1). Adding up the two inequalities yields the desired result.
If x1 < x2 and y1 < y2 are strict inequalities, then λ ∈ (0, 1), so that strict convexity of h gives a strict
overall inequality.

As a consequence, if Γ is a ccm set for the cost function c and (x1, y1) ∈ Γ, then all (x, y) ∈ Γ
satisfy either x ≤ x1 and y ≤ y1 or x ≥ x1 and y ≥ y1. Loosely speaking, while in Γ, one can only
move north-east or south-west, but never north-west or south-east.

This has immediate consequences for ccm sets: in each step in the lexicographically-ordered list
(see the algorithm in the previous subsection), one either has to increase x by one or increase y by one,
going from (1, 1) to the maximum. This is a simple drive on the Manhattan grid and is parameterized
by the instructions on whether to go north or east in every step. Of the |X|+ |Y| − 2 necessary steps,
|X| − 1 have to go in the east direction, so altogether, we will have at most:

r =

(
|X|+ |Y| − 2
|X| − 1

)
(A17)

mccm sets and pricing schemes. They are quickly enumerated without going through the full tree
search described in the previous subsection.

Appendix A.4. The Metric Case

Another case in which a little bit more can be said is the following ([27] Case 5.4, p. 56):

Lemma 7. Let X = Y, and consider a cost function c(x, y), which is a metric on X. Then:
(1) Optimal pricing schemes satisfy Φ = Ψ, and the Lipschitz condition |Φ(x)−Φ(y)| ≤ c(x, y).
(2) All mccm sets contain the diagonal.

Proof. Any pricing schemes satisfies Φ(x)− Ψ(x) ≤ c(x, x) = 0, i.e., Φ(x) ≤ Ψ(x). For an optimal
scheme, and y ∈ X, we can find x′, such that Ψ(y) = Φ(x′)− c(x′, y). Hence:

Ψ(y)−Ψ(x) ≤
(
Φ(x′)− c(x′, y)

)
+
(
c(x′, x)−Φ(x′)

)
≤ c(y, x) (A18)

By exchanging x and y, we get |Ψ(y)−Ψ(x)| ≤ c(y, x). Moreover, given x, some y will satisfy:

Φ(x) = Ψ(y) + c(x, y) ≥ Ψ(x) (A19)

which combined with the previous first inequality gives Φ = Ψ. In particular, every (x, x) belongs to
the equality set.

One even more special case is that of the discrete metric, c(x, y) = 1− δxy. In this case, it makes
no sense to look at error exponents, because c(x, y)α = c(x, y). Moreover, the Lipschitz condition
|Φ(x) − Φ(y)| ≤ c(x, y) is vacuous for x = y and, otherwise, only asserts that Φ(x) − Φ(y) ≤ 1,
which after adjustment of a constant just means that |Φ(x)| ≤ 1/2 for all x. Hence, the transportation
cost is just the `1 norm up to a factor, i.e.,

č(p, q) =
1
2

sup
|Φ|≤1

∑
x
(p(x)− q(x))Φ(x) =

1
2 ∑

x
|p(x)− q(x)| (A20)
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