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1. Introduction

Studying a complex system usually involves figuring out how different parts of the system interact
with each other. If two processes, described by random variables X and Y , interact with each other
to bring about a third one, S, it is natural to ask for the contribution of the single processes. We
might distinguish unique contributions of X and Y from redundant ones. Additionally, there might be a
component that can be produced only byX and Y acting together: this is what we will call synergy in the
following. Attempts to measure synergy were already undertaken in several fields. When investigating
neural codes, S is the stimulus, and one asks how the information about the stimulus is encoded in neural
representations X and Y [1]. When studying gene regulation in systems biology, S could be the target
gene, and one might ask for synergy between transcription factors X and Y [2]. For the behavior of an
autonomous system S, one could ask to which extent it is influenced by its own state history X or the
environment Y [3].

Williams and Beer proposed the partial information lattice as a framework to achieve such an
information decomposition starting from the redundant part, i.e., the shared information. It is based
on a list of axioms that any reasonable measure for shared information should fulfill [4]. The lattice
alone, however, does not determine the actual values of the different components, but just the structure
of the decomposition. In the bivariate case, there are four functions (redundancy, synergy and unique
information of X and Y , respectively), related by three linear conditions. Thus, to complete the theory,
it suffices to provide a definition for one of these functions. In [4], Williams and Beer also proposed
a measure Imin for shared information. This measure Imin was, however, criticized as unintuitive [5,6],
and several alternatives were proposed [7,8], but only for the bivariate case so far.

In this paper, we do not want to propose another measure. Instead, we want to relate the recent work on
information decomposition to work on information decompositions based on projections on exponential
families containing only up to k-th order interactions [2,9–11]. We focus on the synergy aspect
and compare both approaches for two instructive examples: the AND gate and multivariate Gaussian
distributions. We start with reviewing the construction of the partial information lattice by Williams
and Beer [4] and discussing the terms for the bivariate case in more detail. In particular, we show how
synergy appears in this framework and how it is related to other information measures. In Section 2.2,
we recall the exponential families of k-th-order interactions and the corresponding projections and how
they can be used to decompose information. In Section 3, we provide the definitions of specific synergy
measures, on the one hand side, in the frame work of the partial information lattice, and on the other side,
in the framework of interaction spaces, and discuss their properties. In Section 4, we compare the two
measures for specific examples and conclude the paper by discussing the significance of the difference
between the two measures for analyzing complex systems.

2. Information Decomposition

Let X1, . . . , Xn, S be random variables. We are mostly interested in two settings. In the discrete
setting, all random variables have finite state spaces. In the Gaussian setting, all random variables have
continuous state spaces, and their joint distribution is a multivariate Gaussian.
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For discrete random variables, information-theoretic quantities, such as entropy and mutual
information, are canonically defined. For example, the entropy of a discrete random variable X is given
by H(X) = −

∑
x p(x) log p(x), and the mutual information of two discrete random variables is:

MI(X : Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

The conditional mutual information is defined accordingly as:

MI(X : Y |Z) =
∑
x,y,z

p(x, y|z)p(z) log
p(x, y|z)

p(x|z)p(y|z)

For continuous random variables, there is no canonical entropy function. Instead, there is differential
entropy, which is computed with respect to some reference measure dx:

H(X) = −
∫
x

p(x) log p(x)dx

where p now denotes the probability density of X with respect to dx. Taking the Lebesgue measure, the
entropy of an m-dimensional Gaussian random vector with covariance matrix ΣX is given by:

H(X) =
1

2
log |ΣX |+

1

2
m log(2πe)

where |ΣX | denotes the determinant of ΣX . This entropy is not invariant under coordinate
transformations. In fact, if A ∈ Rm×m, then the covariance matrix of AX is given by AΣXA

t, and
so the entropy of AX is given by:

H(AX) = H(X) + log |A|

In contrast, the mutual information of continuous random variables does not depend on the choice of a
reference measure. The relation MI(X : Y ) = H(X) + H(Y ) − H(X, Y ) shows that, for Gaussian
random vectors with covariance matrices ΣX ,ΣY and with a joint multivariate Gaussian distribution with
joint covariance matrix ΣX,Y ,

MI(X : Y ) =
1

2
log
|ΣX | · |ΣY |
|ΣX,Y |

and it is easy to check directly that this is independent of linear transformations of X and Y (of course,
here, one should not apply a linear transformation to the total vector (X, Y ) that mixes components of X
and Y ).

2.1. Partial Information Lattice

We want to analyze how the information that X1, . . . , Xn have about S is distributed
among X1, . . . , Xn. In Shannon’s theory of information, the total amount of information about S
contained in X1, . . . , Xn is quantified by the mutual information:

MI(S : X1, . . . , Xn) (1)
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We are looking for a way to write MI(S : X1, . . . , Xn) as a sum of non-negative functions with a
good interpretation in terms of how the information is distributed, e.g., redundantly or synergistically,
among X1, . . . , Xn. For example, as we have mentioned in the Introduction and as we will see
later, several suggestions have been made to measure the total synergy of X1, . . . , Xn in terms of a
function Synergy(S : X1; . . . ;Xn). When starting with such a function, the idea of the information
decomposition is to further decompose the difference:

MI(S : X1, . . . , Xn)− Synergy(S : X1; . . . ;Xn) (2)

as a sum of non-negative functions. The additional advantage of such a complete information
decomposition would be to give a better interpretation of the difference (2), apart from the tautological
interpretation that it just measures “everything but the synergy.” Throughout the paper, we will use the
following notation: the left argument of the information quantities, the target variable S, is divided by a
colon from the right arguments. The semicolon separates the different arguments on the right side, while
comma-separated random variables are treated as a single vector-valued argument.

When looking for such an information decomposition, the first question is what terms to expect. In
the case n = 2, this may seem quite easy, and it seems to be common sense to expect a decomposition
of the form:

MI(S : X1, X2) = SI(S : X1;X2) + UI(S : X1 \X2) + UI(S : X2 \X1) + CI(S : X1;X2) (3)

into four terms corresponding to the redundant (or shared) information SI(S : X1;X2), the unique
information UI(S : X1 \X2) and UI(S : X2 \X1) of X1 and X2, respectively, and the synergistic (or
complementary) information CI(S : X1;X2).

However, when n > 2, it seems less clear in which different ways X1, . . . , Xn may interact with each
other, combining redundant, unique and synergistic effects.

As a solution, Williams and Beer proposed the partial information framework. We explain the idea
only briefly here and refer to [4] for more detailed explanations. The basic idea is to construct such a
decomposition purely in terms of a function for shared information I∩(S : X1; . . . ;Xn) that measures the
redundant information about S contained in X1, . . . , Xn. Clearly, such a function should be symmetric
in permutations of X1, . . . , Xn. In a second step, I∩ is also used to measure the redundant information
I∩(S : A1; . . . ;Ak) about S contained in combinations A1, . . . , Ak of the original random variables (that
is, A1, . . . , Ak are random vectors whose components are among {X1, . . . , Xn}). Moreover, Williams
and Beer proposed that I∩ should satisfy the following monotonicity property:

I∩(S : A1; . . . ;Ak;Ak+1) ≤ I∩(S : A1; . . . ;Ak) , with equality if Ai ⊆ Ak+1 for some i ≤ k

(where the inclusion Ai ⊆ Ak+1 means that any component of Ai is also a component of Ak+1).
The monotonicity property shows that it suffices to consider the function I∩ in the case where

A1, . . . , Ak form an antichain; that is, Ai 6⊆ Aj for all i 6= j. The set of antichains is partially ordered by
the relation:

(B1, . . . , Bl) � (A1, . . . , Ak) :⇐⇒ for each j = 1, . . . , k, there exists i ≤ l with Bi ⊆ Aj
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and, again by the monotonicity property, I∩ is a monotone function with respect to this partial order.
This partial order actually makes the set of antichains into a lattice.

If (B1, . . . , Bl) � (A1, . . . , Ak), then the difference I∩(S : A1; . . . ;Ak) − I∩(S : B1; . . . ;Bl)

quantifies the information contained in all Ai, but not contained in some Bl. The idea of Williams
and Beer can be summarized by saying that all information can be classified according to within which
antichains it is contained. Thus, the third step is to write:

I∩(S : A1; . . . ;Ak) =
∑

(B1,...,Bl)�(A1,...,Ak)

I∂(S : B1; . . . ;Bl)

where the function I∂ is uniquely defined as the Möbius transform of I∩ on the lattice of antichains.
For example, the PI lattices for n = 2 and n = 3 are given in Figure 1. For n = 2, it is easy to make

the connection with (3): The partial measures are:

I∂(S : (X1, X2)) = CI(S : X1;X2)

I∂(S : X1) = UI(S : X1 \X2)

I∂(S : X2) = UI(S : X2 \X1)

I∂(S : X1;X2) = SI(S : X1;X2)

and the redundancy measure satisfies:

I∩(S : (X1, X2)) = MI(S : X1, X2) = CI(S : X1;X2) + UI(S : X1 \X2)

+ UI(S : X2 \X1) + SI(S : X1;X2)

I∩(S : X1) = MI(S : X1) = UI(S : X1 \X2) + SI(S : X1;X2)

I∩(S : X2) = MI(S : X2) = UI(S : X2 \X1) + SI(S : X1;X2)

I∩(S : X1;X2) = SI(S : X1;X2)

(4)

From (4) and the chain rule for the mutual information:

MI(S : X1, X2) = MI(S : X2) +MI(S : X1|X2)

follows immediately

MI(S : X1|X2) = UI(S : X1 \X2) + CI(S : X1;X2) (5)

Even if I∩ is non-negative (as it should be as an information quantity), it is not immediate that the
function I∂ is also non-negative. This additional requirement was called local positivity in [5].

While the PI lattice is a beautiful framework, so far, there has been no convincing proposal of how
the function I∩ should be defined. There have been some proposals of functions I∩(S : X1;X2) with
up to two arguments, so-called bivariate information decompositions [7,8], but so far, only two general
information decompositions are known. Williams and Beer defined a function Imin that satisfies local
positivity, but, as mentioned above, it was found to give unintuitive values in many examples [5,6].
In [5], Imin was compared with the function:

IMMI(S : A1; . . . ;Ak) = min
i
MI(S : Ai) (6)
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which was called minimum mutual information (MMI) in [12] (originally, it was denoted by II in [5]).
This function has many nice mathematical properties, including local positivity. However, IMMI clearly
does not have the right interpretation as measuring the shared information, since IMMI only compares
the different amounts of information of S and Ai, without checking whether the measured information is
really the “same” information [5]. However, for Gaussian random variables, IMMI might actually lead
to a reasonable information decomposition (as discussed in [12] for the case n = 2).

(a)

{X1, X2}

{X1} {X2}

{X1}{X2}

(b) 123

12 13 23

12|13 12|23 13|23

1 2 3 12|13|23

1|23 2|13 3|12

1|2 1|3 2|3

1|2|3

Figure 1. (a) The PI lattice for two random variables; (b) the PI lattice for n = 3. For
brevity, every antichain is indicated by juxtaposing the components of its elements, separated
by bars |. For example, 12|13|23 stands for the antichain {X1, X2}, {X1, X3}, {X2, X3}.

2.2. Interaction Spaces

An alternative approach to quantify synergy comes from the idea that synergy among interacting
systems has to do with interactions beyond simple pair interactions. We slightly change the notation and
now analyze the interaction of n + 1 random variables X0, X1, . . . , Xn. Later, we will put X0 = S in
order to compare the setting of interaction spaces with the setting of information decompositions.

For simplicity, we restrict ourselves here to the discrete setting. Let
(
X
k

)
be the set of all subsets

A ⊆ {X0, . . . , Xn} of cardinality |A| = k. The exponential family of k-th order interactions E (k) of
random variables X0, X1, . . . , Xn consists of all distributions of the form:

p(x0, . . . , xn) =
∏

A∈(Xk)

ΨA(x0, . . . , xn)

where ΨA is a strictly positive function that only depends on those xi withXi ∈ A. Taking the logarithm,
this is equivalent to saying that:

p(x0, . . . , xn) = exp

 ∑
A∈(Xk)

ψA(x0, . . . , xn)


where, again, each function ψA only depends on those xi with Xi ∈ A. This second representation
corresponds to the Gibbs–Boltzmann distribution used in statistical mechanics, and it also explains the
name exponential family. Clearly, E (1) ⊆ E (2) ⊆ . . . ⊆ E (n) ⊆ E (n+1).
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The set E (k) is not closed (for k > 0), in the sense that there are probability distributions outside of
E (k) that can be approximated arbitrarily well by k-th order interaction distributions. Thus, we denote
by E (k) the closure of E (k) (technically speaking, for probability spaces, there are different notions of
approximation and of closure, but in the finite discrete case, they all agree; for example, one may take
the induced topology by considering a probability distribution as a vector of real numbers). For example,
E (k) contains distributions that can be written as products of non-negative functions ΨA with zeros. In
particular, E (n+1) consists of all possible joint distributions of X0, . . . , Xn. However, for 1 < k ≤ n,
the closure of E (k) also contains functions that do not factorize at all (see Section 2.3 in [13] and the
references therein).

Given an arbitrary joint distribution p of X0, . . . , Xn, we might ask for the best approximation of p
by a k-th order interaction distribution q. It is customary to measure the approximation error in terms of
the Kullback–Leibler divergence:

D(p‖q) =
∑

x0,...,xn

p(x0, . . . , xn) log
p(x0, . . . , xn)

q(x0, . . . , xn)
.

There are many relations between the KL divergence and exponential families. We need the following
properties:

Proposition 1. (1). Let E be an exponential family, and let p be an arbitrary distribution. Then, there is
a unique distribution pE in the closure of E that best approximates p, in the sense that:

D(p‖pE) = D(p‖E) := inf
q∈E

D(p‖q).

pE is called the rI-projection of p to E .
(2). If E ⊆ E ′ are two exponential families, then:

D(p‖E) = D(p‖E ′) +D(pE ′‖E)

See [9,14] for a proof and further properties of exponential families. The second identity is also called
the Pythagorean theorem for exponential families.

In the following, we will abbreviate q(k) := pE(k) . For example, q(n+1) = p. For n ≥ k > 1, there is
no general formula for q(k). For k = 1, one can show that:

q(1)(x0, . . . , xn) = p(X0 = x0) · p(X1 = x1) · . . . · p(Xn = xn)

Thus, D(p‖q(1)) =
∑n

i=0H(Xi) − H(X0, . . . , Xn) equals the multi-information [15] (also known as
total correlation [16]) of X0, . . . , Xn. Applying the Pythagorean theorem n − 1 times to the hierarchy
E (1) ⊆ E (2) ⊆ . . . ⊆ E (n), it follows that:

D(p‖q(1)) = D(p‖q(n)) +D(q(n)‖q(n−1)) + · · ·+D(q(2)‖q(1))

This equation decomposes the multi-information into terms corresponding to different interaction orders.
This decomposition was introduced in [9] and studied for several examples in [10] or [17] with the
single terms called connected information or interaction complexities, respectively. The idea that synergy
should capture everything beyond pair interactions motivates us to define:

S(2)(X0; . . . ;Xn) := D(p‖q(2)) = D(p‖q(n)) +D(q(n)‖q(n−1)) + · · ·+D(q(3)‖q(2))
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as a measure of synergy. In this interpretation, the synergy of X0, . . . , Xn is a part of the
multi-information of X0, . . . , Xn. The last sum shows that the hierarchy of interaction families gives
a finer decomposition of S(2) into terms that may be interpreted as “synergy of a fixed order”. In the case
n = 3 that we will study later, there is only one term, since p = q(3) in this case. Using the maximum
entropy principle behind exponential families [14], the function S(2) can also be expressed as:

S(2)(S;X;Y ) = max
q∈∆

(2)
p

Hq(S, Y,X)−H(S, Y,X)

where:

∆(2)
p ={r(x0, . . . , xn) | r(xi, xj) = p(xi, xj) for all i, j = 0, . . . , n}

denotes the set of all joint distributions r of X0, . . . , Xn that have the same pair marginals as p.
In contrast, the partial information lattice provides a decomposition of the mutual information and

not the multi-information. However, a decomposition of the mutual information MI(X0 : X1, . . . , Xn)

can be achieved in a similar spirit as follows. Let
(
X
k

)
0

be the set of all subsets A ⊆ {X0, . . . , Xn} of
cardinality |A| = k that contain X0, and let Ê (k) be the set of all probability distributions of the form:

p(x0, . . . , xn) =
∏

A∈(Xk)0

ΨA(x0, . . . , xn) ·Ψ[n](x1, . . . , xn)

where the ΨA are as above and where Ψ[n] is a function that only depends on x1, . . . , xn. As above, each
Ê (k) is an exponential family.

We will abbreviate q̂(k) := pÊ(k) . Again, for general k, there is no formula for q̂(k), but for k = 1, one
can show that:

q̂(1)(x0, . . . , xn) = p(X0 = x0) · p(X1 = x1, . . . , Xn = xn)

Therefore, D(p‖q̂(1)) = MI(X0 : X1, . . . , Xn) Moreover, by the Pythagorean theorem,

D(p‖q̂(1)) = D(p‖q̂(n)) +D(q̂(n)‖q̂(n−1)) + · · ·+D(q̂(2)‖q̂(1))

Thus, we obtain a decomposition of the mutual information MI(X0 : X1, . . . , Xn).
Again, one can group together all terms except the last term that corresponds to the pair interactions

and define:

Ŝ(2)(X0 : X1; . . . ;Xn) := D(p‖q̂(2)) = D(p‖q̂(n)) +D(q̂(n)‖q̂(n−1)) + · · ·+D(q̂(3)‖q̂(2))

as a measure of synergy. In this interpretation, synergy is a part of the mutual information MI(S :

X0, . . . , Xn). Using the maximum entropy principle behind exponential families [14], the function Ŝ(2)

can also be expressed as:

Ŝ(2)(S;X;Y ) = max
q∈∆̂

(2)
p

Hq(S, Y,X)−H(S, Y,X)

where:

∆̂(2)
p = {r(x0, . . . , xn) | r(x0, xi) = p(x0, xi) for all i = 1, . . . , n and r(x1, . . . , rxn) = p(x1, . . . , xn)}
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denotes the set of all joint distributions r of X0, . . . , Xn that have the same pair marginals as p and for
which, additionally, the marginal distribution for X1, . . . , Xn is the same as for p.

While the exponential families E (k) are symmetric in all random variables X0, . . . , Xn, in the
definition of Ê (k), the variable X0 plays a special role. This is reminiscent of the special role of S in
the information decomposition framework, when the goal is to decompose the information about S.
Thus, also in Ŝ(2), the variable X0 is special.

There are some relations between the hierarchies E (1) ⊆ E (2) ⊆ . . . ⊆ E (n) and Ê (1) ⊆ Ê (2) ⊆ . . .

⊆ Ê (n).
By definition, E (i) ⊆ Ê (i) for i = 1, . . . , n, and thus:

D(p‖q̂(i)) = D(p‖Ê (i)) ≥ D(p‖E (i)) = D(p‖q(i))

In particular, S(2)(X0; . . . ;Xn) ≥ Ŝ(2)(X0 : X1; . . . ;Xn). Moreover, E (n) = Ê (n), which implies:

D(p‖q̂(n)) = D(p‖Ê (n)) = D(p‖E (n)) = D(p‖q(n))

In particular, for n = 2, this shows S(2)(S;X;Y ) = Ŝ(2)(S : X;Y ).
The case n = 2, k = 2 is also the case that we are most interested in later for the following reasons.

First, for n = 2, the terms in the partial information lattice have an intuitively clear interpretation.
Second, while there are not many examples of full information decompositions for n > 2, there exist
at least two proposals for reasonable measures of shared, unique and complementary information [7,8],
which allow a direct comparison with measures based on the decompositions using the interaction spaces.

While the symmetric hierarchy of the families E (k) is classical, to our best knowledge, the alternative
hierarchy of the families Ê (k) has not been studied before. We do not want to analyze this second
hierarchy in detail here, but we just want to demonstrate that the framework of interaction exponential
families is flexible enough to give a nice decomposition of mutual information, which can naturally be
compared with the information decomposition framework. In this paper, in any case, we only consider
cases where E (k) = Ê (k).

It is possible to generalize the definitions of the interaction exponential families to continuous random
variables, but there are some technical issues to be solved. For example, the corresponding exponential
families will be infinite-dimensional. We will not do this here in detail, since we only need the following
observation later: any Gaussian distribution can be described by pair-interactions. Therefore, when p is
a multivariate normal distribution, then q(2) = q̂(2) = p.

3. Measures of Synergy and Their Properties

Synergy or complementary information is very often considered as a core property of complex
systems, being strongly related to “emergence” and the idea of the “whole being more than the sum
of its parts”. In this section, we discuss three approaches to formalize this idea. We first introduce a
classical function called WholeMinusSum synergy in [6], which reduces to the interaction information
or (up to the sign) co-information when n = 2. This function can become negative. It is sensitive to
redundancy, as well as synergy, and its sign tells which kind of information dominates. In Section 3.2,
we recall the definition of the measure of synergy C̃I from [8] that comes from a (bivariate) information
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decomposition. In Section 3.3, we compare C̃I with the synergy defined from the interaction spaces
in Section 2.2.

3.1. WholeMinusSum Synergy

WholeMinusSum synergy is the difference between joint mutual information between explaining
variables and the target variables and the sum of the pairwise mutual information. Griffith and Koch [6]
trace it back to [18–20]. In the n = 2 case, this reduces to:

SWMS(S : X;Y ) = MI(S : X, Y )−MI(S : X)−MI(S : Y )

= MI(S : Y |X)−MI(S : Y )

= −H(S, Y,X) +H(X, Y ) +H(S,X) +H(S, Y )−H(S)−H(X)−H(Y )

= −CoI(S,X, Y ) (7)

with CoI(S,X, Y ) being the co-information [21] or interaction information [22]. This measure of
synergy was used, e.g., in [1] to study synergy in neural population codes. As one can easily see from
Equation (4), for any information decomposition, SWMS is the difference between the complementary
and the shared information:

SWMS(S : X;Y ) = CI(S : X;Y )− SI(S : X;Y ) (8)

Therefore, the WholeMinusSum synergy is a lower bound for the complementary information in the
partial information lattice. Obviously it can become also negative, which makes it a deficient measure
for synergy. However, it fulfills the condition of strong symmetry, i.e., it is not only invariant with respect
to permutation of X and Y , but to permutations of all three arguments.

3.2. Synergy from Unique Information

In [8], it was proposed to use the following function as a measure of synergy:

C̃I(S : X;Y ) = MI(S : X;Y )− min
q∈∆p

MIq(S : X;Y ) (9)

where:
∆p = {q(s, x, y) | q(s, x) = p(s, x) ∧ q(s, y) = p(s, y)}

denotes the set of all joint distributions of S,X, Y that have the same pair marginals as p for the pairs
(S,X) and (S, Y ). Originally, this function was motivated from considerations about decision problems.
The basic idea is that unique information should be observable in the sense that there should be a decision
problem in which this unique information is advantageous. One crucial property is the idea that the
amount of unique information should only depend on the marginal distributions of the pairs (S,X)

and (S, Y ), i.e.:

(∗) The functions ŨI(S : X \ Y ) and ŨI(S : Y \X) are constant on ∆p.
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These thoughts lead to a formula for unique information ŨI , from which formulas for S̃I and the above
formula for C̃I can be derived. Thus, in particular, C̃I is part of a (non-negative) bivariate information
decomposition. While it is not easy to see directly that S̃I is non-negative, it follows right from the
definition that C̃I is non-negative.

Heuristically, the formula for C̃I also encodes the idea that synergy has to do with pair interactions,
here in the form of pair marginals. Namely, the joint distribution is compared with all other distributions
that have the same marginals for the pairs (S,X) and (S, Y ). In Section 3.3, we will see how this is
related to the synergy function S(2) coming from the interaction decomposition.

The same measure of synergy was proposed in [6], without any operational justification, and
generalized to n > 2 variables as follows:

C̃I(S : X1; . . . ;Xn) = MI(S : X1, . . . , Xn)− min
q∈∆p

MIq(S : X1, . . . , Xn)

where now:
∆p = {q(s, x1, . . . , xn) | q(s, xi) = p(s, xi) for i = 1, . . . , n}

3.3. Synergy from Maximum Entropy Arguments

Quantifying synergy using maximum entropy projections on k-th-order interaction spaces can be
viewed as a more direct approach of quantifying the extent that “a system is more than the sum of its
parts” [11] than the WholeMinusSum (WMS) synergy discussed above. Surprisingly, we are not aware
of any publication using this approach to define explicitly a measure of synergy, but the idea seems to
be common and is proposed, for instance, in [2]. Consider the joint probability distribution p(s, x, y).
Synergy should quantify dependencies among S, Y,X that cannot be explained by pairwise interactions.
Therefore, one considers:

S(2)(S;X;Y ) = D(p‖E (2))

as a measure of synergy.
In [10], S(2)(S;X;Y ) was discussed under the name “connected information” I(3)

C , but it was not
considered as a measure of synergy. Synergy was measured instead by the WMS synergy measure (7).

Comparing C̃I(S : X;Y ) and S(2)(S;X;Y ), we see that:

1. Both quantities are by definition ≥ 0.

2. S(2)(S;X;Y ) is symmetric with respect to permutation of all of its arguments, in contrast to
C̃I(S : X;Y ).

3. S(2)(S;X;Y ) ≤ C̃I(S : X;Y ), because ∆
(2)
p ⊆ ∆p and:

S(2)(S;X;Y ) = MI(S : X, Y )− min
q(2)∈∆

(2)
p

MIq(2)(S : X, Y )

C̃I(S : X;Y ) = MI(S : X, Y )− min
q∈∆p

MIq(S : X, Y )

In fact, as shown in [8], any measure CI of complementary information that comes from an
information decomposition and that satisfies property (∗) must satisfy C̃I(S : X;Y ) ≤ CI(S :

X;Y ), and thus, the inequality:
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S(2)(S;X;Y ) ≤ CI(S : X;Y )

also holds in this more general setting.

However, we will show in the next section that if S(2)(S;X;Y ) is considered as a synergy measure in
the information decomposition [8], one gets negative values for the corresponding shared information,
which we will denote by SI(2)(S;X, Y ).

4. Examples

4.1. An Instructive Example: AND

Table 1. Joint probabilities for the AND example and corresponding values of selected
entropies.

X Y S p

0 0 0 1
4

0 1 0 1
4

1 0 0 1
4

1 1 1 1
4

H(S) = 2 log 2− 3

4
log 3

H(S,X) =
3

2
log 2

H(S,X, Y ) = 2 log 2

MI(S : X) =
3

2
log 2− 3

4
log 3

MI(S : X|Y ) =
1

2
log 2

Let X and Y be independent binary random variables with p(0) = p(1) = 1
2

and S = X AND Y .
Because the marginal distributions of the pairs (S,X) and (S, Y ) are identical (by symmetry), in this
example, there is no unique information [8] (Corollary 8), and therefore, by (5),

C̃I(S : X;Y ) = MI(S : X|Y ) =
1

2
log 2 = 0.5 bit

In this example, the co-information is:

CoI(S;X;Y ) = SI(S : X;Y )− CI(S : X;Y ) (10)

= MI(S : X)−MI(S : X|Y )

= log 2− 3

4
log 3 ≈ −0.1887 bit

Thus, the shared information is S̃I(S : X;Y ) = 3
2

log 2 − 3
4

log 3 ≈ 0.3113 bit and the WMS synergy
is SWMS(S : X;Y ) ≈ 0.1887 bit. On the other hand, in the AND case, the joint probability distribution
p(s, x, y) is already fully determined by the marginal distributions p(x, y), p(s, y) and p(s, x); that is,
∆

(2)
p = {p} (see, e.g., [10]). Therefore,

S(2)(S;X;Y ) = 0
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If we now consider S(2) as a measure CI(2) for the complementary information in the information
decomposition (4), we see from (10) that the corresponding shared information becomes negative:

SI(2) = CoI + CI(2) = −0.1887 bits < 0

4.2. Gaussian Random Variables: When Should Synergy Vanish?

Let p(s, x, y) be a multivariate Gaussian distribution. As mentioned above, S(2)(S;X;Y ) = 0.
What about C̃I? As shown by [12], the result is that one of the two unique pieces of information ŨI

always vanishes. Let rSX and rSY denote the correlation coefficients between S and X and S and Y ,
respectively. If |rSX | ≤ |rSY |, then X has no unique information about S, i.e.: ŨI(S : X \ Y ) = 0,
and therefore, C̃I(S : X;Y ) = MI(S : X|Y ). This was shown in [12] using explicit computations
with semi-definite matrices. Here, we give a more conceptual argument involving simple properties of
Gaussian random variables and general properties of ŨI .

For any ρ ∈ R, let Xρ = Y + ρε, where ε denotes Gaussian noise, which is independent of X , Y
and S. Then, Xρ is independent of S given Y , and so, |rSXρ| ≤ |rSY |. It is easy to check that rSXρ is a
continuous function of ρ, with rSX0 = rSY and rSXρ → 0 as ρ → ∞. In particular, there exists a value
ρ0 ∈ R, such that rSX = rSXρ0

. Let X ′ = σX
σXρ0

Xρ0 . Then, the pair (X ′, S) has the same distribution as

the pair (X,S) (since X ′ has the same variance as X and since the two pairs have the same correlation
coefficient). Thus, ŨI(S : X \ Y ) = ŨI(S : X ′ \ Y ). Moreover, since MI(S : X ′|Y ) = 0, it follows
from (5) that ŨI(S : X ′ \ Y ) = 0.

In summary, assuming that |rSX | ≤ |rSY |, we arrive at the following formulas:

S̃I(S : X;Y ) = MI(S : X) =
1

2
log
(
1− r2

SX

)
ŨI(S : X \ Y ) = 0

ŨI(S : Y \X) = MI(S : Y )−MI(S : X) =
1

2
log

(
1− r2

SX

1− r2
SY

)
C̃I(S : X;Y ) = MI(S : XY )−MI(S : Y ) = MI(S : X|Y )

=
1

2
log

(
(1− r2

SY )(1− r2
XY )

1− (r2
SX + r2

SY + r2
XY ) + 2rSXrSY rXY

)
Thus, for Gaussian random variables, S̃I agrees with IMMI . In fact, any information decomposition
according to the PI lattice satisfies SI(S : X;Y ) ≤ IMMI(S : X;Y ) [4]. Moreover, any information
decomposition that satisfies (∗) satisfies SI(S : X;Y ) ≥ S̃I(S : X;Y ) ( Lemma 3 in [8]), and thus, all
such information decompositions agree in the Gaussian case (this was first observed by [12]). In [12], it
is shown that this result generalizes to the case where X and Y are Gaussian random vectors. The proof
of this result basically shows that the above argument also works in this more general case.

The fact that, for Gaussian distributions, all bivariate information decompositions (that satisfy (∗))
agree with the IMMI decomposition suggests that the information decomposition based on IMMI may
also be sensible for Gaussian distributions for larger values of n.

Here, we do not pursue this line of thought. Instead, we want to provide another interpretation of
synergy CI(S : X;Y ) in the Gaussian case. Based on the apparent simplicity of Gaussians where all
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information measures are obtained from the correlation coefficients, one could be led to the conclusion
that there should be no synergy (recall that S(2)(S;X;Y ) vanishes). On the other hand, SWMS(S :

X;Y ) = CI(S : X;Y )− SI(S : X;Y ) can be positive for Gaussian variables, and thus, synergy must
be positive, as well (see [12]; for a simple example, choose 0 < rSX = rSY = r < 1/

√
2 and rXY = 0;

then SWMS(S : X;Y ) = 1
2

log 1−r2
1−2r2

> 0).
To better understand this situation, we regress S on X and Y , i.e., we write S = αX + βY + σε for

some coefficients α,β and normally distributed noise ε that is independent of X and Y . Let us again
assume that |rSX | < |rSY |. From CI(S : X;Y ) = MI(S : X|Y ), we see that synergy vanishes if
and only if S and X are conditionally independent given Y . Since all distributions are Gaussian and
information measures do not depend on the mean values, this condition can be checked by computing
the conditional variances Var[S|X, Y ] = σ2 and Var[S|Y ] = α2Var[X|Y ] + σ2. We see that these
distributions agree, and thus, S is conditionally independent of X given Y if Var[X|Y ] = 0, i.e., X
is a function of Y and effectively the same variable or if α = 0. Positive synergy arises whenever X
contributes to S with a non-trivial coefficient α 6= 0. This is a very reasonable interpretation and shows
that the synergy measure CI(S : X;Y ) nicely captures the intuition of X and Y acting together to bring
about S.

5. Discussion and Conclusions

We think that using maximum entropy projections on k-th-order interaction spaces can be viewed as a
direct approach of quantifying the extent that “a system is more than the sum of its parts” [11]. According
to this view, synergy requires and manifests itself in the presence of higher-order interactions, which can
be quantified using projections on the exponential families of k-th order interactions. While this idea
is not new, it has, to our knowledge, not been explicitly formulated as a definition of synergy before.
However, the synergy measure S(2) based on the projection on the exponential family of distributions
with only pairwise interactions is not compatible with the partial information lattice framework, because
it does not yield a non-negative information decomposition, as we have shown in the examples. The
reason why we believe that it is important to have a complete non-negative information decomposition is
that, in addition to a formula for synergy, it would give us an interpretation of the “remainder” MI(S :

X1, . . . , Xn)−Synergy. In the bivariate case, C̃I(S : X;Y ) provides a synergy measure, which complies
with the information decomposition.

One could argue that the vanishing S(2) for multivariate Gaussians reflects their “simplicity” in the
sense that they can be transformed into independent sub-processes by a linear transformation. In contrast,
this simplicity is reflected in the information decomposition by the fact that one of the unique information
always vanishes. Since the WholeMinusSum synergy (or co-information) can be positive for Gaussian
distributions, it is not possible to define an information decomposition for Gaussian variables that puts
the synergy to zero.

Overall, our results suggest that intuition about synergy should be based on information processing
rather than higher-order dependencies. While higher-order dependencies, as captured by the measure
S(2)(S : X;Y ), are part of the synergy, i.e., S(2)(S : X;Y ) ≤ CI(S : X;Y ), they are not required as
demonstrated in our AND example and the case of Gaussian random variables. Especially, the latter
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example leads to the intuitive insight that synergy arises when multiple inputs X, Y are processed
simultaneously to compute the target S. Interestingly, the nature of this processing is less important
and can be rather simple, i.e., the output is literally just “the sum of its inputs”. In this sense, we believe
that our negative result, regarding the non-negativity of S(2)(S : X;Y ), provides important insights into
the nature of synergy in the partial information decomposition. It is up to future work to develop a better
understanding of the relationship between the presence of higher-order dependencies and synergy.
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