
Advances in Radio Science, 3, 359–363, 2005
SRef-ID: 1684-9973/ars/2005-3-359
© Copernicus GmbH 2005

Advances in
Radio Science

Design and Analysis of Fully Integrated Differential VCOs

M. Prochaska, A. Belski, and W. Mathis

University of Hannover, Institute of Electromagnetic Theory and Microwave Technology, Appelstraße 9A,
30167 Hannover, Germany

Abstract. Oscillators play a decisive role for electronic
equipment in many fields – like communication, navigation
or data processing. Especially oscillators are key building
blocks in integrated transceivers for wired and wireless com-
munication systems. In this context the study of fully inte-
grated differential VCOs has received attention. In this paper
we present an analytic analysis of the steady state oscillation
of integrated differential VCOs which is based on a nonlin-
ear model of the oscillator. The outcomes of this are design
formulas for the amplitude as well as the stability of the oscil-
lator which take the nonlinearity of the circuit into account.

1 Introduction

The demand for ever-higher frequencies and higher levels of
integration poses a challenge for the design and implemen-
tation of high frequency oscillators. This holds especially
in communication area, for example for UMTS receivers, or
data acquisition devices like flash ADCs. Since at gigahertz
frequencies most off-chip solutions are rendered impractical,
on-die solutions are necessary. Recent developments in the
field of semiconductor technology lead to the realizability
of integrated LC-Tank differential VCOs (Fig. 1) (van den
Tang et al., 2003). Due to the easy implementation of the
differential operation and relatively good phase noise, differ-
ential VCOs play a decisive role for application (Hajimiri,
1999) – for example in high speed PLL circuits. In this pa-
per a bifurcation analysis of integrated LC oscillators is pre-
sented. By using symbolic algorithms, which we have im-
plemented by computer algebra, we analyze the stability as
well as we calculate an approximate amplitude. By using
analytic methods we can provide a functional dependence of
the results on circuit parameters. Our analysis leads to design
formulas which can directly be used for the implementation
of LC-Tank oscillators.

2 Nonlinear Analysis

For the analysis and the design of electrical oscillators mostly
linear models are used. It is one of the most important
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restrictions of the linearization that the amplitude is not com-
putable (Tietze and Schenk, 2004). On this account for the
calculation of an approximate amplitude are several “ad hoc”
methods – e.g. harmonic balance – are common practice
(Odyniec, 2002). But the difference between the nonlinear
oscillatory system and its linearization is more fundamental.
The nonlinearity of an oscillator is an integral part of its func-
tionality (Mathis, 2000). So we use a nonlinear approach in
order to take the complete behavior of nonlinear components
into account.

The mathematical justification for the significance of the
nonlinearity is given by the Hartman Grobman Theorem
(Guckenheimer and Holmes, 1983): It is well-known that a
nonlinear dynamic system is stable, if its linear part has only
eigenvalues with negative real parts. If at least one eigen-
value has a positive real part, an oscillatory circuit is un-
stable. In those cases a system is called hyperbolic. It is
an also well-establish condition for a steady state oscillation
that a system has a pair of conjugate complex eigenvalues
with vanishing real parts. Related criteria were presented by
Barkhausen and Nyquist (Tietze and Schenk, 2004; Odyniec,
2002; Parzen, 1983). In this case a circuit model is called
a non-hyperbolic system. The Hartman Grobman Theorem
tells us that, if a system is non hyperbolic, we cannot neglect
the nonlinearity. The neglect of the nolinearity leads to a loss
of accuracy of the underlying circuit model. Thus the neces-
sity of a nonlinear analysis of oscillators is originated in the
Hartman Grobman Theorem. On this account we present a
nonlinear design methodology for integrated LC-Tank oscil-
lators.

So it is suitable to model electrical oscillators by using a
nonlinear dynamic system

ẋ = f(x), (1)

wheref:Rn
→Rnandx∈Rn. The vectorx corresponds to time

depending currents or voltages of the circuit whilef is a
nonlinear vector field containing the influence of the gain el-
ement.

3 Andronov Hopf Theorem

In order to apply the Andronov Hopf Theorem it is useful to
get an overview of the possible solutions. A planar nonlinear
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Abstract 

Oscillators play a decisive role for electronic equipment in many fields – like communication, navigation or 
data processing. Especially oscillators are key building blocks in integrated transceivers for wired and wireless 
communication systems. In this context the study of fully integrated differential VCOs has received attention. 
In this paper we present an analytic analysis of the steady state oscillation of integrated differential VCOs 
which is based on a nonlinear model of the oscillator. The outcomes of this are design formulas for the ampli-
tude as well as the stability of the oscillator which take the nonlinearity of the circuit into account.  
 

1 Introduction  

The demand for ever-higher frequencies and higher 
levels of integration poses a challenge for the design 
and implementation of high frequency oscillators. 
This holds especially in communication area, for ex-
ample for UMTS receivers, or data acquisition de-
vices like flash ADCs. Since at gigahertz frequencies 
most off-chip solutions are rendered impractical, on-
die solutions are necessary. Recent developments in 
the field of semiconductor technology lead to the re-
alizability of integrated LC-Tank differential VCOs 
(Fig. 1) [1]. Due to the easy implementation of the 
differential operation and relatively good phase noise, 
differential VCOs play a decisive role for application 
[2] – for example in high speed PLL circuits. In this 
paper a bifurcation analysis of integrated LC oscilla-
tors is presented. By using symbolic algorithms, 
which we have implemented by computer algebra, we 
analyze the stability as well as we calculate an ap-
proximate amplitude. By using analytic methods we 
can provide a functional dependence of the results on 
circuit parameters. Our analysis leads to design for-
mulas which can directly be used for the implementa-
tion of LC-Tank oscillators. 
 
2 Nonlinear Analysis 

For the analysis and the design of electrical oscilla-
tors mostly linear models are used. It is one of the 
most important restrictions of the linearization that 
the amplitude is not computable [3]. On this account 
for the calculation of an approximate amplitude are 
several “ad hoc” methods - e.g. harmonic balance - 
are common practice [4]. But the difference between 
the nonlinear oscillatory system and its linearization 
is more fundamental. The nonlinearity of an oscilla-
tor is an integral part of its functionality [5]. So we 
use a nonlinear approach in order to take the com-
plete behavior of nonlinear components into account. 
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Figure 1.   Fully integrated LC-Tank VCO 
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parts. Related criteria were presented by Barkhausen 
and Nyquist [3], [4], [7]. In this case a circuit model 
is called a non-hyperbolic system. The Hartman 
Grobman Theorem tells us that, if a system is non 
hyperbolic, we cannot neglect the nonlinearity. The 
neglect of the nolinearity leads to a loss of accuracy 
of the underlying circuit model. Thus the necessity of 
a nonlinear analysis of oscillators is originated in the 
Hartman Grobman Theorem. On this account we pre-
sent a nonlinear design methodology for integrated 
LC-Tank oscillators. 

Fig. 1. Fully integrated LC-Tank VCO.

dynamical system has primarily two different types of solu-
tions: equilibrium points and periodic solutions. Equilibrium
points are the roots of the nonlinear fieldf(x) while periodic
solutions are close trajectories in the state space. If a periodic
solution is isolated, i.e. isolated in the sense that there are no
other close trajectories in its neighborhood, this curve will be
called a limit cycle. The relationship between an equilibrium
point and a limit cycle is given by the Andronov Hopf The-
orem. Originally this theorem was proved by Andronov in
1935 for the analysis of tube oscillators (Mathis, 1998). In
this context we consider a dynamic system which addition-
ally depends on the parameterµ:

ẋ = f(x, µ) (2)

For example,µ represents a component of the circuit like a
load resistor. Comprising, the Andronov Hopf Bifurcation
describes the birth of a limit cycle depending onµ in the
neighborhood of zero and under the following conditions:

– ∂f
∂x

∣∣∣ x̄ = 0,
µ = 0

has a pair of conjugate complex eigenvalues

– all other eigenvalues possess negative real parts

– d
dε

<λ1 (µ)|µ=0 > 0

– the equilibrium point is asymptotic stable

If these conditions are satisfied, there is a stable equilibrium
for (-µ1, 0) and a stable limit cycle for (0,µ2). Thus, the
Andronov-Hopf theorem is the basis for the operating mode
of oscillators (Mees and Chua, 1979).

4 Circuit Model

For a nonlinear analysis of LC-Tank oscillators modeling of
the tuning diodes, the bipolar transistors and the monolitic

So it is suitable to model electrical oscillators by us-
ing a nonlinear dynamic system  

 ( )=x f x� ,            (1) 

where f: n n→� � and n∈x � . The vector x corre-
sponds to time depending currents or voltages of the 
circuit while f is a nonlinear vector field containing 
the influence of the gain element. 
 
2 Andronov Hopf Theorem 

In order to apply the Andronov Hopf Theorem it is 
useful to get an overview of the possible solutions. A 
planar nonlinear dynamical system has primarily two 
different types of solutions: equilibrium points and 
periodic solutions. Equilibrium points are the roots of 
the nonlinear field f(x) while periodic solutions are 
close trajectories in the state space. If a periodic solu-
tion is isolated, i.e. isolated in the sense that there are 
no other close trajectories in its neighborhood, this 
curve will be called a limit cycle. The relationship 
between an equilibrium point and a limit cycle is 
given by the Andronov Hopf Theorem. Originally 
this theorem was proved by Andronov in 1935 for the 
analysis of tube oscillators [8]. In this context we 
consider a dynamic system which additionally de-
pends on the parameter µ: 

 ( , )µ=x f x�             (2) 

For example, µ represents a component of the circuit 
like a load resistor. Comprising, the Andronov Hopf 
Bifurcation describes the birth of a limit cycle de-
pending on µ in the neighborhood of zero and under 
the following conditions: 

• 
0,
0µ

=
=

∂
∂ x

f
x

 has a pair of conjugate complex eigenvalues 

• all other eigenvalues possess negative real parts 

• ( )1 =0

d
λ >0

dε µ
µℜ  

• the equilibrium point is asymptotic stable 

If these conditions are satisfied, there is a stable equi-
librium for (-µ1,0) and a stable limit cycle for (0, µ2). 
Thus, the Andronov-Hopf theorem is the basis for the 
operating mode of oscillators [9]. 
 
3 Circuit Model 

For a nonlinear analysis of LC-Tank oscillators mod-
eling of the tuning diodes, the bipolar transistors and 
the monolitic inductors is necessary. In order to get 
an adequate approximation of our model we shape 
the transistors by the Ebers-Moll model. We assume 

that both transistors are the same and that their pa-
rameters are sufficiently known. Furthermore, we ne-
glect the nonlinearity of tuning diodes which we ap-
proximate as ideal capacitors.  
The on-chip inductors perform a critical role in inte-
grated RF circuits, since their Quality factors are 
much lower than that of off-chip components. Since 
the model of integrated inductors depends primarily 
on the IC process and the implementation, it is not 
easy to specify a generally applicable model. More-
over, a suitable inductor model leads to heavy calcu-
lations of high-dimensional dynamical systems. For 
example, an adequate equivalent inductor model of 
an Octo-Coil, which can be used for the implementa-
tion of a fully integrated LC tuned VCO using a 
0.12µm CMOS process, consist of several dynamic 
components in a double-π-circuit (Fig. 2) [10]. That 
is why we represent the on-chip inductors by ideal 
electrical devices.  
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Figure 2.   Model of an Octo-Coil 
 
Strategies for the modelization of integrated induc-
tors are given in [11]-[13]. In [14] we have presented 
some ideas for the reduced order modeling of high 
dimensional oscillators. Fig. 3 shows a useful nonlin-
ear model for differential VCOs [15]. 

                     

Figure 3.   Fully integrated LC-Tank VCO 
 
In order to gain such equivalent circuit of cross-
coupled LC-Tank oscillators, first we calculate the 
bias-emitter voltage of the transistors. After that, we 
are able to find an equation for the current 
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3 Circuit Model 

For a nonlinear analysis of LC-Tank oscillators mod-
eling of the tuning diodes, the bipolar transistors and 
the monolitic inductors is necessary. In order to get 
an adequate approximation of our model we shape 
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inductors is necessary. In order to get an adequate approxi-
mation of our model we shape the transistors by the Ebers-
Moll model. We assume that both transistors are the same
and that their parameters are sufficiently known. Further-
more, we neglect the nonlinearity of tuning diodes which we
approximate as ideal capacitors.

The on-chip inductors perform a critical role in integrated
RF circuits, since their Quality factors are much lower than
that of off-chip components. Since the model of integrated
inductors depends primarily on the IC process and the im-
plementation, it is not easy to specify a generally applicable
model. Moreover, a suitable inductor model leads to heavy
calculations of high-dimensional dynamical systems. For ex-
ample, an adequate equivalent inductor model of an Octo-
Coil, which can be used for the implementation of a fully
integrated LC tuned VCO using a 0.12µm CMOS process,
consist of several dynamic components in a double-π-circuit
(Fig. 2) (Konstanznig et al.,2002). That is why we represent
the on-chip inductors by ideal electrical devices.

Strategies for the modelization of integrated inductors are
given in Arcioni et al. (1999), Brunch et al. (2002) and
Danesh and Long (2002). In Prochaska and Mathis (2004)
we have presented some ideas for the reduced order model-
ing of high dimensional oscillators. Figure 3 shows a useful
nonlinear model for differential VCOs (Buonomo and Schi-
avo, 2003).

In order to gain such equivalent circuit of cross-coupled
LC-Tank oscillators, first we calculate the bias-emitter volt-
age of the transistors. After that, we are able to find an equa-
tion for the current

i(v)=

αF I0

1+e
v/V
T

(
1+

1

βF

ev/VT

)
+

Is

αR

(
ev/V T −e−v/V T

)
+

Is

1+ev/V T[
αF

(
e−v/V T −e2v/V T

)
+

(
4−3αF −

1

αF

)(
1−ev/V T

)]
, (3)

which enables us to define a simple equivalent circuit. RNL
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represents the nonlinearity of the bipolar transistors. So we
can calculate the model of the oscillator(

dv
dt
diL
dt

)
=

(
−

1
RC

−
1
C

1
L

0

)(
v

iL

)
+

(
1
C

0

)
i(v). (4)

The model also shows that the popular maximally loaded
condition for the design of oscillatory circuits fails (Mathis
and Weghorst, 1995). In fact, Odyniec (2002) desribes the
general oscillator – i.e. the case of a non-maximum loading.

5 Analysis of the Stability

The Andronov Hopf Theorem tells us, that the linear part of
an oscillatory system, which is given by the JacobianDx f(0)
evaluated at the equilibrium point, has to have a pair of con-
jugate complex eigenvalues with vanishing real parts. The
equilibrium point of Eq. (4) is given byi=i(I0) andv=0. In
order to guarantee the existence of a pair of pure imaginary
eigenvalues, we have to calculate a multidimensional power
series of the nonlinear vector field of Eq. (4). We get(

dv
dt
diL
dt

)
=

(
−

1
RC

+
i′(I0)

C
−

1
C

1
L

0

)(
v

iL

)
+

(
1
C

i(I0)

0

)
, (5)

where only the linear part of the expansion is treated. If the
condition

i′(I0)

C
−

1

RC
= 0 (6)

holds, Eq. (5) has eigenvalues

λ1,2 = ±jω = ±j
1

√
LC

. (7)

The first condition given by the Andronov Hopf Theorem is
fulfilled which is equivalent to the Barkhausen condition. In
this case we find

I=I0=−
2((2αRVT −4I sR+4I sRαR) αF −I sRαR)

αRαF (−1+2αF ) R
. (8)

If we chooseI0=I the equilibrium point of Eq. (5) is in the
origin and so a necessary condition for the applicability of the
Andronov Hopf Theorem is also satisfied. The next point, we
have to proof that the equilibrium point is asymptotic stable.
For the further calculation it is useful to simplify the linear
and nonlinear part of our given system. The initial point for
the simplification is Eq. (5). The idea is to choose a coordi-
nate transformation so as to simplify the terms of the vector
field. In order to simplify the linear part off, we diagonalize
the linear part by

ẏ = Jy + T−1f̃(Ty), (9)

with the diagonal matrixJ=T−1AT , x=Ty andf̃ the nonlinear
part of f. The initial point of the analysis of stability of our
oscillator is Eq. (5), which can be rewritten as( dx1

dt
dx2
dt

)
=

(
µ(I0) −

1
C

1
L

0

)(
x1
x2

)
+

(
1
C

γ x3
1

0

)
, (10)

wherex=[viL]T and the bifurcation parameterµ is given by

µ(I0) =
i′(I0)

C
−

1

RC
(11)

and the constant

γ (I0) = −
1

48

I0

V 3
T

+
1

24

I0

V 3
T

αF +
1

3

IS

αRV 3
T

−
1

2

IS

V 3
T

αF +
1

6

IS

V 3
T

−
1

24

IS

αF V 3
T

. (12)

With T=[0 1; -1/C/ω0 0] we find:

ẏ =

(
0 jω0

−jω0 0

)
y +

(
0

−
1
C

γy3
1

)
. (13)

After that, in order to simplify the nonlinear terms we try
to find a sequence of coordinate transformations which re-
move terms of increasing degree from the Taylor series
(Mathis, 1995). So a dynamic system which has eigenval-
uesα(µ)±jω(µ) can be expressed in the so called Poincare
normal form

ẏ =

[
α (µ) ω (µ)

−ω (µ) α (µ)

]
y +

∞∑
i=1

(
y2

1+y2
2

)i
[

ai bi

−bi ai

] [
y1
y2

]
.(14)

The reader should note that the equilibrium point is asymp-
totical stable, if the so-called Poincare coefficienta1 is nega-
tive (a1<0). The calculation of the Poincare normal form of
Eq. (13) for µ=0 gives:

ẏ=

[
0 ω

−ω 0

]
y +

(
y2

1+y2
2

) [
−

3
8γ 0
0 −

3
8γ

] [
y1
y2

]
+O

(
‖y‖

5
)

. (15)

We get the Poincare coefficienta1=−3/8γ . For γ>0 the
equilibrium is asymptotic stable. So we can guarantee the
asymptotic stability of the equilibrium point. In order to
demonstrate the birth of a limit cycle vividly, we analyze the
product of the voltage and current of the nonlinear resistor
RNL iv=f (v, I0) which is shown in Figs. 4 and 5. If we
chooseI0=I , the termiv has locally a negative slope. When
iv is interpreted as power the negative slope indicates a nega-
tive differential resistor in the neighborhood of the zero solu-
tion. This leads to an oscillation since the loss of the circuit
will be compensated. It must be pointed out that Eq. (8) also
satisfies the conditiond( <λ1 (µ)|µ=0 )/dε>0 given by the
Andronov Hopf Theorem, which can be tested by an easy
computation.

6 Predicting of the Amplitude

In order to calculate the amplitude of a sinusoidal oscillator
it is suitable to transform the reduced system to polar coordi-
nates. Starting from Eq. (9) we obtain the following system
for µ=0 (y⇔(r, 2)):[

2̇

ṙ

]
=

[
ω

0

]
+ fPC(2, r) . (16)
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We get the Poincare coefficient a1=-3/8γ. For γ>0 the 
equilibrium is asymptotic stable. So we can guarantee 
the asymptotic stability of the equilibrium point. In 
order to demonstrate the birth of a limit cycle vividly, 
we analyze the product of the voltage and current of 
the nonlinear resistor RNL i v =f(v,I0) which is shown 
in Fig. 4. and Fig. 5. If we choose I0>I*, the term i v  
has locally a negative slope. When i v  is interpreted 
as power the negative slope indicates a negative dif-
ferential resistor in the neighborhood of the zero so-
lution. This leads to an oscillation since the loss of 
the circuit will be compensated. It must be pointed 
out that (8) also satisfies the condition 

( )1
µ=0

d( λ )/dε>0µℜ given by the Andronov Hopf 
Theorem, which can be tested by an easy computa-
tion. 
 
5 Predicting of the Amplitude 

In order to calculate the amplitude of a sinusoidal os-
cillator it is suitable to transform the reduced system 
to polar coordinates. Starting from (9) we obtain the 
following system for µ=0 (y ⇔ (r,Θ)): 

 PC

ω

= + ( ,r)
0r

Θ Θ
   
   

  
f

�

�

          (16) 

Since the equation r=0� is mostly a function of Θ, i.e. 
both equations of (16) are coupled; we cannot calcu-
late the amplitude directly. To produce a relief we use 
an average technique – a perturbation method [6]. 
Through this method the trajectory of the limit cycle 
of one period is averaged. Instead of popular “ad 
hoc” methods averaging is an analytic method; the 
error of the approximation can be calculated. By 
means of this technique it is our goal to eliminate the 
action of Θ in the second equation of (16). The 
method hinges on the identification of a small pa-
rameter ε which marks the perturbation. We assume 
that a LC circuit is perturbed by a small nonlinearity. 
So we get in Cartesian coordinates for a planar sys-
tem with µ=0 
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In polar coordinates we can write the following sys-
tem, where mostly both equations are coupled 
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By using a suitable transformation we find the aver-
aged system 
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Figure 4.   Analysis of the power i v  for I0>I* 
 

 
Figure 5.   The power i v  for I0<I* 
 
Here we have assumed that already one averaging 
gives a usable result. But sometimes a sequence of 
coordinate transformations is necessary. Then our 
approach, which is based upon Lie series, is advanta-
geous [18]. So we can transform (13) to polar coordi-
nates: 
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Since both equations of (20) are coupled averaging is 
necessary. We calculate 
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where already one averaging removes the terms de-
pending on Θ. The roots for 0r =� are 
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Fig. 4. Analysis of the poweriv for I0=I .

We get the Poincare coefficient a1=-3/8γ. For γ>0 the 
equilibrium is asymptotic stable. So we can guarantee 
the asymptotic stability of the equilibrium point. In 
order to demonstrate the birth of a limit cycle vividly, 
we analyze the product of the voltage and current of 
the nonlinear resistor RNL i v =f(v,I0) which is shown 
in Fig. 4. and Fig. 5. If we choose I0>I*, the term i v  
has locally a negative slope. When i v  is interpreted 
as power the negative slope indicates a negative dif-
ferential resistor in the neighborhood of the zero so-
lution. This leads to an oscillation since the loss of 
the circuit will be compensated. It must be pointed 
out that (8) also satisfies the condition 

( )1
µ=0

d( λ )/dε>0µℜ given by the Andronov Hopf 
Theorem, which can be tested by an easy computa-
tion. 
 
5 Predicting of the Amplitude 

In order to calculate the amplitude of a sinusoidal os-
cillator it is suitable to transform the reduced system 
to polar coordinates. Starting from (9) we obtain the 
following system for µ=0 (y ⇔ (r,Θ)): 
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Since the equation r=0� is mostly a function of Θ, i.e. 
both equations of (16) are coupled; we cannot calcu-
late the amplitude directly. To produce a relief we use 
an average technique – a perturbation method [6]. 
Through this method the trajectory of the limit cycle 
of one period is averaged. Instead of popular “ad 
hoc” methods averaging is an analytic method; the 
error of the approximation can be calculated. By 
means of this technique it is our goal to eliminate the 
action of Θ in the second equation of (16). The 
method hinges on the identification of a small pa-
rameter ε which marks the perturbation. We assume 
that a LC circuit is perturbed by a small nonlinearity. 
So we get in Cartesian coordinates for a planar sys-
tem with µ=0 
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Here we have assumed that already one averaging 
gives a usable result. But sometimes a sequence of 
coordinate transformations is necessary. Then our 
approach, which is based upon Lie series, is advanta-
geous [18]. So we can transform (13) to polar coordi-
nates: 
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Since both equations of (20) are coupled averaging is 
necessary. We calculate 
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where already one averaging removes the terms de-
pending on Θ. The roots for 0r =� are 
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Fig. 5. The poweriv for I0=I .

Since the equatioṅr=0is mostly a function of2, i.e. both
equations of Eq. (16) are coupled; we cannot calculate the
amplitude directly. To produce a relief we use an aver-
age technique – a perturbation method (Guckenheimer and
Holmes, 1983). Through this method the trajectory of the
limit cycle of one period is averaged. Instead of popular “ad
hoc” methods averaging is an analytic method; the error of
the approximation can be calculated. By means of this tech-
nique it is our goal to eliminate the action of2 in the second
equation of Eq. (16). The method hinges on the identification
of a small parameterε which marks the perturbation. We as-
sume that a LC circuit is perturbed by a small nonlinearity.
So we get in Cartesian coordinates for a planar system with
µ=0

ẏ=

[
0 ω

−ω 0

]
y+εfS(y) =Jy+εfS(y). (17)

In polar coordinates we can write the following system,
where mostly both equations are coupled[

2̇

ṙ

]
=

[
ω

0

]
+ ε

[
R(2, r)

T (2, r)

]
. (18)

The value 
1r =0 defines the averaged amplitude for an 

unstable equilibrium. If the Andronov Hopf Theorem 
is fulfilled, the oscillator has the amplitude

2r ,which 
depends on µ(I0) and the parameters of the transis-
tors. Thus, by means of current I0 the amplitude can 
be tuned in the neighborhood of the bifurcation point 
(Fig 6). Furthermore, (22) shows the dependence of 
the amplitude on the nonlinearity of the transistor. 
 

 
Figure 6.   Qualitative behavior of the amplitude 

1r =f(I0) in the neighborhood of the 
bifurcation point for µ>0 

 
6. Conclusion 

In this work we have presented a complete bifurca-
tion analysis of integrated differential LC oscillators. 
We have shown the analysis of the stability of the cir-
cuit as well as the calculation of an approximate am-
plitude. We have presented the results in an analytic 
form - designers are able to implement differential 
VCO by means of the given results even if other 
models of the components of the circuit are required. 
In this case possibly the calculations are more com-
plicated. However, our methodology can be used in 
the same way. So it represents a guide for the analysis 
and the design of electrical oscillators whereas the 
nonlinearities of circuit components are an integral 
part of the design process.  
It turns also out that geometric methods are powerful 
tools for investigations of nonlinear oscillators. Since 
they provide a survey of the solution set we get a 
deeper insight in the behavior of the network. In con-
trast to numerical computation the shown analytical 
methods have the advantage that the results are in-
terpretable by the parameters of the network. Fur-
thermore, we have implemented the geometric meth-
ods by means of computer algebra. Because of these 
routines the calculations proceed in an automated 
way. 
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By using a suitable transformation we find the averaged sys-
tem[

˙̄2
˙̄r

]
=

[
ω

0

]
+ ε

[
R̄( r̄)

T̄ ( r̄)

]
. (19)

Here we have assumed that already one averaging gives a
usable result. But sometimes a sequence of coordinate trans-
formations is necessary. Then our approach, which is based
upon Lie series, is advantageous (Mathis, 1987). So we can
transform Eq. (13) to polar coordinates:[

2̇

ṙ

]
=

[
ω0
0

]
+ ε

[
r2 sin2 cos2

rµ+µ cos2 2 + . . .

]
(20)

Since both equations of Eq. (20) are coupled averaging is
necessary. We calculate[

˙̄2
˙̄r

]
=

[
1

εr̄µ − ε 3
8γ r̄3

]
, (21)

where already one averaging removes the terms depending
on2. The roots foṙ̄r = 0 are

r̄1= 0, r̄2= ±

√
8

3

µ (I0)

γ (I0)
. (22)

The valuer̄1=0 defines the averaged amplitude for an unsta-
ble equilibrium. If the Andronov Hopf Theorem is fulfilled,
the oscillator has the amplitude|r̄2|,which depends onµ(I0)

and the parameters of the transistors. Thus, by means of cur-
rent I0 the amplitude can be tuned in the neighborhood of
the bifurcation point (Fig. 6). Furthermore, Eq. (22) shows
the dependence of the amplitude on the nonlinearity of the
transistor.

7 Conclusion

In this work we have presented a complete bifurcation anal-
ysis of integrated differential LC oscillators. We have shown
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the analysis of the stability of the circuit as well as the calcu-
lation of an approximate amplitude. We have presented the
results in an analytic form – designers are able to implement
differential VCO by means of the given results even if other
models of the components of the circuit are required. In this
case possibly the calculations are more complicated. How-
ever, our methodology can be used in the same way. So it
represents a guide for the analysis and the design of electrical
oscillators whereas the nonlinearities of circuit components
are an integral part of the design process.

It turns also out that geometric methods are powerful tools
for investigations of nonlinear oscillators. Since they provide
a survey of the solution set we get a deeper insight in the be-
havior of the network. In contrast to numerical computation
the shown analytical methods have the advantage that the re-
sults are interpretable by the parameters of the network. Fur-
thermore, we have implemented the geometric methods by
means of computer algebra. Because of these routines the
calculations proceed in an automated way.
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