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Abstract
One possibility for the statistical evaluation of trends in epidemiological exposure studies is the use
of a trend test for data organized in a 2 × k contingency table. Commonly, the exposure data are
naturally grouped or continuous exposure data are appropriately categorized. The trend test
should be sensitive to any shape of the exposure-response relationship. Commonly, a global trend
test only determines whether there is a trend or not. Once a trend is seen it is important to identify
the likely shape of the exposure-response relationship. This paper introduces a best contrast
approach and an alternative approach based on order-restricted information criteria for the model
selection of a particular exposure-response relationship. For the simple change point alternative H1
: π1 = ...= πq <πq+1 = ... = πk an appropriate approach for the identification of a global trend as well
as for the most likely shape of that exposure-response relationship is characterized by simulation
and demonstrated for real data examples. Power and simultaneous confidence intervals can be
estimated as well. If the conditions are fulfilled to transform the exposure-response data into a 2
× k table, a simple approach for identification of a global trend and its elementary shape is available
for epidemiologists.

Introduction
Statistical trend analysis is an important component of
epidemiological exposure studies. Here, "trend" simply
means the demonstration of any monotone relationship
between the response rate and the continuous exposure.
For example, the association between all major types of
childhood cancer and exposure to magnetic fields from
high voltage installations was analyzed by Lausen et al. [1]
using the data shown in Table 1, where the original con-
tinuous exposure data (Olsen et al., [2]) were categorized.

Although this example is seriously unbalanced, real epide-
miological exposure studies with many unexposed or low-

exposure cases but few high-exposure cases can be found.
The appropriate evaluation of such epidemiological expo-
sure studies is a statistical challenge. Many similar exam-
ples can be found in the literature, e.g. a case-control study
for respiratory cancer possibly caused by long-term expo-
sure to coke oven emissions [3].

In exposure studies, an unexposed group, E1, is com-
monly compared with several exposure groups, E2,..., Ek.
The outcome of the study is the number of cases suffering
from the disease being investigated, such as a specific
tumor, and the number of observations without the dis-
ease (controls), i.e. the risk of disease in each category of
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exposure. One important objective in exposure epidemi-
ology is causation; the demonstration of a global expo-
sure-response relationship represents one of the causation
criteria, according to Hill [4]. A global trend test leads to
identification of a trend, whereas model selection allows
inference of the likelihood of a particular elementary
model.

The sampling strategy of epidemiological exposure stud-
ies is either a cohort study, in which a 2 × k contingency
table represents the data, or a case-control study, in which
two multinomial distributions are compared. However,
the likelihood ratio test of identical multinomials against
the elementary odds ratios alternative, for a sufficient total
number of observations, is equivalent to the comparison
of the k independent binomial proportions against a sim-
ple ordered alternative (Agresti and Coull, [5]; Hothorn et
al., [6]). Therefore, it is appropriate to evaluate both
designs by means of an asymptotic trend test for a 2 × k
contingency table.

Numerous methods, including model-based (e.g. Royston
et al., [7]) and test-based approaches (e.g. Dosemeci and
Benichou, [8]), are used to analyze exposure-response
relationships. A basic problem is that the shape of the
exposure-response is unknown a priori and is an outcome
of the study. However, the choice of model or test greatly
depends on the shape of the exposure-response. There-
fore, a broad class of models or tests should be used, but
that, in turn, leads to a model selection dilemma. Model
selection is an intricate component of statistical problems.
Model selection in this case is not the objective, but is only
a tool for identifying the correct trend from several possi-
ble elementary alternatives. An alternative hypothesis can
be decomposed into its underlying elementary alterna-

tives, e.g. the simple order alternative H1: π1 ≤ π2 ≤ π3 can

be decomposed into the three elementary hypotheses 

: π1 = π2 <π3,  : π1 <π2 = π3,  : π1 <π2 <π3.

The p-value, a commonly used outcome of a trend test, is
frequently insufficient for epidemiological studies. Infor-
mation concerning the shape of the exposure-response
and/or a measure of the magnitude of the effect, such as
relative risks or odds ratios, is desirable for a significant
trend. Thus, the level of the false positive decision rate (α)
should be controlled. In addition, an approach with a
minimum false negative decision rate (β) (respective max-
imum power π = 1 - β) for the global test decision and a
maximum correct decision rate for the selected model
should be identified. The correct classification rate, the
proportion of correctly identified elementary alternatives,
is used as a major performance measure later on.

The exposure in case-control studies is frequently meas-
ured on a continuous scale. Categorization at pre-selected
cut-off points of a small number of ordered categories is
common; for example, four categories of trihalomethane
exposure (Jones et al., [9]), or three categories of lifetime
dose of hair dye (Benavente et al., [10]). Inappropriately
chosen cut-off points dramatically reduce the power of the
trend test (Greenland, [11]). Some exposures are naturally
grouped, for example 2–3 cups of coffee per day, by the
impreciseness of the definitions, such as "cup" and "cof-
fee" (Ascherio et al., [12]). An example of ordinal defini-
tion of the exposure is given in a case-control study of
Norwegian nickel refinery workers (Grimsrud et al., [13]).
The exposure-related associations between smoking-
adjusted lung cancer rates and cumulative exposure to dif-
ferent forms of nickel used the categories "low,"
"medium," and "high."

The best approach, in terms of both power and interpreta-
tion, occurs when a single cut-off point exists and is
known a priori, resulting in a two-sample test "above" vs.
"below" the cut-off point. This is because an odds ratio
and its one-sided confidence interval can be estimated.
The trend test approach discussed here is designed for nat-
urally grouped exposure with a single change point. For
continuous exposure models a continuous covariate can
be used. However, the choice of an appropriate model –
such as linear, logistic, or other – remains open and
model selection influences the inference.

In this paper, a trend test for the comparison of k ordered
binomial proportions using a change point alternative is
presented. Either a single change point is directly of inter-
est or the change point alternative is pivotal, i.e. many
other elementary monotone alternatives can be generated
from it. The concept of multiple contrasts is used because
of the simplicity and the availability of the distribution
under the alternative. After a significant trend test, infor-
mation is provided that determines which contrast was
the "best," and therefore, which exposure-response shape
describes the data most accurately. Alternatively, an infor-
mation criterion-based approach for the likelihood ratio

H1
1

H1
2 H1

3

Table 1: Child cancer and magnetic fields

Exposure/μ Tesla j ncancer nno cancer nj pj RRj1

0–0.05 1 1698 4759 6457 0.263 -
0.051–0.101 2 0 9 9 0 0.000
0.101-0.15 3 2 3 5 0.4 1.525
0.151-.20 4 1 3 4 0.25 0.953
0.201-0.25 5 1 3 4 0.25 0.953
0.251-0.30 6 0 4 4 0 0.000
0.301-0.35 7 0 2 2 0 0.000
0.351-0.85 8 1 0 2 0.5 1.906
0.851-1.6 9 2 0 2 1 3.812

>1.61 10 2 0 2 1 3.812

(pj ... estimated proportion, RRj1 ... relative risk to unexposed)
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test under monotone order-restriction according to
Anraku [14] is examined.

Therefore, the primary objective of this paper is not just
describing the exposure-response relationship but also
identifying the most likely elementary exposure-response
model with a control of the false model classification rate.

Analysis
Global tests on exposure-response relationships
The number of diseased and healthy persons for each
exposure group, Ej, are organized in the following 2 × k
table, where Index 1 denotes the group without exposure.

The estimator for the proportions per exposure group is pj
= nj1/nj. j = 1,..., k, the total is p = n.1/n.., and the expected
values for the proportions are denoted as πj. The hypoth-
eses system for a monotone order is:

H0: π1 = π2 = ... = πk against

H1: π1 ≤ π2 ≤ ... ≤ πk with at least one strict inequality.

For simplicity, assume increasing effects with increased
exposure; analogously, a directional decision for a
decrease is possible.

There are an extensive number of publications concerning
order-restricted tests, including the analysis of 2 × k con-
tingency tables (e.g. Agresti and Coull, [5]; Leuraud and
Benichou, [15]). However, no uniformly powerful trend
test exists for all possible alternative shapes. The possible
shapes can be seen as different equality-inequality pat-
terns of H1. This can be seen for an extreme convex shape

{0, 0, 0, π}. Clearly, the "Helmert's contrast" is most pow-
erful because of the optimal pooling of all the lower expo-
sures and the comparison with the high exposure: p4 - (p1

+ p2 + p3)/3. However, power for Helmert's contrast is

greatly reduced for the extreme concave shape {0, π, π, π}.
The shape of the exposure-response relationship is
unknown a priori. Irrespective of numerous recent alter-
native proposals, the likelihood ratio test represents an
appropriate solution for this situation. This test is numer-
ically complicated, particularly concerning its distribution

under the alternative, which is needed for power/sample
size calculations (Robertson et al., [16]). The multiple
contrast test according to Bretz and Hothorn [17] approx-
imates its power and is simpler. There are 2k-1 different
shapes for k exposure groups, and for each shape a con-

trast with a minimum false negative rate (β) can be
defined. The idea is to select the best contrast, which is
sensitive for a certain shape. The best contrast is simply
tested by a maximum test. Because the proportions pj are

asymptotically normally distributed, their linear combi-

nation (denoted as contrast)  is also normally dis-

tributed, and therefore, the single contrast test statistic

 is asymptotically normally

distributed, where ∑j cj = 0 guarantees a level α test under

the null hypothesis. Different variance estimators can be
used, but to keep the problem simple, the commonly used
pooled estimator p is used here. Asymptotic test versions
are used throughout. The contrast coefficients, cj, are spe-

cific for each contrast test; for example the Helmert's con-
trast [ci = -1; j = 1,..., k - 1 and ck = k]. A multiple contrast

test is the maximum of s pre-defined single contrast tests

, i = 1,..., s where ci = (ci1,...,

cik) is a k vector of contrasts. Under the null hypotheses,

the joint distribution of the linear contrast tests tSingleC(ci)

i = 1,..., s is an s-variate normal distribution with a zero
vector of means and a non-product-moment correlation
matrix. The correlation between two arbitrary contrasts, a
= (a1,..., ak) and b = (b1,..., bk), is

.

This so-called isotonic contrast approach, based on s = 7
contrasts, for the balanced design with four exposure
groups is demonstrated in Table 3.

However, the correct classification rates for the most likely
elementary alternative (shape of the exposure-response)
were found to be unsatisfactory for isotonic contrasts
(Hothorn et al., [6]). Therefore, a special case of order-
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Table 2: Principle of 2 by k tables for epidemiological exposure 
studies

E1 .... Ek Total

Disease n11 ... nk1 n.1
No disease n10 ... nk0 n.0
Sample size n1. ... nk. n..
Page 3 of 10
(page number not for citation purposes)



Epidemiologic Perspectives & Innovations 2009, 6:1 http://www.epi-perspectives.com/content/6/1/1
restricted inference is considered for step shapes only and
denoted as a change point alternative (Hirotsu and
Marumo, [18]). Two situations should be considered: i)
threshold level studies assuming that an exposure-
response reveals a single change point, which can be char-
acterized by a lower part, an upper part, and an abrupt
change between both; and ii) exposure-response studies
with continuous exposure data where the change point
alternative is a special and substantial component of the
all-pattern alternative, which can simplify the evaluation.
In some epidemiological problems this question arises.
An example of a threshold level study is a diabetes study
(Pastor-Barriuso et al., [19]) with the relationship
between 2-hour plasma glucose and mortality, where the
following questions were formulated: i) Does a certain
glucose level exists that markedly increases the mortality
risk? ii) Can this change point be estimated? Proposals in
the literature are directed only at proof of the existence of
such a change point. However, epidemiologists not only
want to know that such a change exists, but also where
this change is located. Here it is demonstrated that the
estimation of the change point q is characterized by its
correct classification rate by means of multiple contrast
tests, that is, in a testing framework. The hypotheses sys-
tem for a change from q to q+1 is:

H0: π1 = π2 = ... = πk

H1: π1 = ... = πq <πq+1 = ... πk q ∈ (1,..., k - 1)

The above hypotheses system can be tested by multiple
step contrasts. Exactly (k-1) step contrasts are appropriate
for testing the above hypothesis:

Exactly three possible change points, q, exist for the simple
design with one unexposed and three exposure groups.
Exactly one contrast is power-optimal for the balanced
design of each change point:

"Power-optimal" simply means the maximum test statis-

tics because the  is normally distributed, and there-

fore, standardized. The tMultipleC is q-variate normally

distributed. The contrast coefficients, c, for q contrasts are
defined for the general unbalanced design (Hirotsu et al.,
[20]):

These step contrasts reveal a nice ability to transform the
k-sample problem into an unbalanced two-sample prob-
lem, which can be used later for estimation of the unad-
justed relative risk (or odds ratio) "above/below" the
change point. Moreover, the step contrasts belong to a
broader class of multiple contrasts. Isotonic contrasts
approximate the power of the likelihood ratio test for the
monotone ordered hypothesis. The bivariate up/down
proposals (Neuhaeuser and Hothorn, [21]; Stewart and
Ruberg, [22]) only use the two extreme contrasts (Table
3). Therefore, the change point alternative represents a
compromise for testing trends. It is much less dependent
on the power of the shape compared with the frequently
used single linear contrast test, although only k instead of
2k - 1 isotonic contrasts were used. The multiple contrast
test (above) is defined for differences of proportions, but
can be re-formulated for the relative risk, commonly used
in epidemiology (see Appendix A).

It seems that a multiple contrast test may be a different
approach to the commonly used logistic model. However,
a strong relationship between the multiple contrast test
and the score test in a logistic model exists, which allows
the correction for additional confounders (Hothorn et al.,
[6]).

Identification of the exposure-response shape
The trend tests distinguish only globally between the null
hypothesis and alternative hypotheses, based on the
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Table 3: Contrast coefficients for the balanced design with four 
exposures groups

Type of contrasts No. of contrasts Alternative Contrast cj

Isotonic 2k-1 π1 <π2 = π3 = π4 {-3 1 1 1}
π1 = π2 <π3 = π4 {-1 -1 1 1}
π1 = π2 = π3 <π4 {-1 -1 -1 3}
π1 <π2 <π3 <π4 {-3 -1 1 3}
π1 = π2 <π3 <π4 {-1 -1 0 2}
π1 <π2 = π3 <π4 {-1 0 0 1}
π1 <π2 <π3 = π4 {-2 0 1 1}

Change point k-1 π1 <π2 = π3 = π4 {-3 1 1 1}
π1 = π2 <π3 = π4 {-1 -1 1 1}
π1 = π2 = π3 <π4 {-1 -1 -1 3}

Up/down 2 π1 <π2 = π3 = π4 {-3 1 1 1}
π1 = π2 = π3 <π4 {-1 -1 -1 3}

Single (linear) 1 π1 <π2 <π3 <π4 {-3 -1 1 3}
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asymptotic distribution of the test statistics under the null
hypothesis. That is, either a trend exists or it does not.
However, the alternative hypothesis is not unique. For
example, the following three hypotheses are possible for
the change point alternative for a design with one unex-
posed and three exposure groups:

However, the global trend tests provide no answer as to
which particular alternative exists. Two different
approaches can be used to answer this question: i) the best
contrast approach; and ii) a model selection approach
based on the information criterion for order restriction.
This paper explores the identification of one of the possi-
ble k - 1 elementary alternatives; that is, a classification

into . Consequently, the correct classification

rate, or the proportion of correctly identified elementary
alternatives, is used as a performance measure later on.

The global test decision for the multiple contrast
approach is based on the maximum of all included single

contrasts , i = 1,..., s, where

each single contrast is power optimal for a particular type
of alternative (Table 3). Therefore, this maximum contrast
approach can be used as an estimator for the exposure-
response shape, where the classification is performed after

a significant trend test for control α. For example, two
alternatives are possible for a design with three exposure

groups: π1 = π2 <π3 or  : π1 <π2 = π3. Assume that the

number of diseased cases, n11,..., nk1, is drawn from k

binomial random variables with parameters πj and nj. A

possible exposure-response is described by a contrast vec-
tor, c = (c1,..., ck). The problem is to estimate the underly-

ing exposure-response relationship when s contrast

vectors are given. A simple estimator is the function Ψ :

(n11,..., nk1) → {1,..., s} which can be derived from the

associated contrast test, i.e.

. Then explore

variability of the simple estimator, Ψ1. How likely is each

of the s possible values under the observed data? This
question can be addressed via the parametric bootstrap.
Repeated realizations from k binomial distributions with
sample sizes nj. and the estimated success parameter pj =

nj1/nj. for j = 1,..., k are drawn.

• Draw B bootstrap samples

• Compute 

• Compute the relative frequency of each possible value
from 1,..., s

This is a measure for the variance of the estimator. Under
special circumstances, an improved estimator can be com-
puted by a majority voting according to Breiman [23] over

, where I denotes the indi-

cator function. This approach is designated the "paramet-
ric bootstrap best contrast" approach.

The model selection approach, based on the information
criterion for order-restriction of normally distributed var-
iables according to Anraku [14], can be modified for pro-
portions and the change point alternative. The AIC
criterion for the unrestricted maximum likelihood estima-

tor : (with l( ) = log-likelihood, p =

dimension of θ) was modified for order-restricted maxi-
mum likelihood estimators:

. The penalty term is calcu-

lated for each model using the level of probabilities under
an order-restriction. The explicit formulas for a design
with three exposure groups, such as the null-model M0

and the two change point models M1 and M2, are given in

Appendix B. The ORIC-approach represents a model esti-

mation approach, where model M0{H0: π1 = π2 = π3},

model M1 {  : π1 = π2 <π3}, or model M2 {  : π1 =

π2 <π3} will be estimated as a "best fitted" model.

Simulation study
The simulation study is structured in two parts: i) empiri-
cal comparison between the best-contrast approach and
the ORIC approach for a design with three groups; and ii)
investigation of the best contrast approach for more gen-
eral designs. Fifty thousand pseudo-random 2 × k tables (k
ranging from 3 to 7) were generated and 10,000 bootstrap
samples were drawn. Two criteria are used, the correct
classification rate – the empirical decision rate for the cor-
rect model – and the power.

Part I
The correct classification rates for the ORIC approach,
ORIC (M0, M1, M2), and the parametric bootstrap best
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contrast approach, Max(H1, H2), were compared for a
design with three exposure groups (in Table 4) for the
change point alternatives with different unexposed rates,
π1. From the first row in Table 4, where no differences
between the proportions were investigated, the main dif-
ference between both approaches becomes clear. The
ORIC approach, as an estimation approach, did not con-
trol for α. Only in 76% of the cases, not 95%, was M0
selected under the null hypothesis. On the other hand, the
best contrast test approach does control for α. Both
approaches reveal high correct classification rates, greater
than 90%, as long as the power is sufficient: either small
unexposed rates, π1, or large non-centrality parameters Δ
(Table I in Appendix C (available as additional file 1) and
larger sample sizes in Table II in Appendix C). This behav-
ior is similar to the power of trend tests of proportions
(Bretz and Hothorn, [17]). Due to the fact that the correct
classification rates of the best contrast approach are simi-
lar or superior to those of the ORIC approach with
decreasing π1, increasing Δ, and nj, the best contrast
approach is recommended because of its simplicity and
generalizability for use within the generalized linear
model.

Part II
For one selected change point alternative {π1, π1, π1, π1, π1
+ Δ } the best contrast approach was investigated for the
different dimensions k, different unexposed rates π1, and
several non-centrality parameters Δ, shown in Table 5.
With an increasing number of exposure groups, a slight
decrease of the correct classification rate occurs where the
power is slightly increasing. With a decreasing sample
size, a slight decrease of the correct classification rate
occurs where the power is substantially decreasing. The
well-known decrease of sensitivity with an increasing
unexposed rate from 2 × 2 table analysis holds true for
power and, less markedly, for the correct classification

rate. The effect size (non-centrality Δ) has much less
impact on the correct classification rate compared with its
well-known impact on power.

Table 6 demonstrates the decreasing correct classification
rate for change points q <<k. More important, from an epi-
demiological point of view, are the asymmetrical cumula-
tive false classification rates. False classification is
primarily from an overestimation instead of an underesti-
mation of the true change point, that is, it is very unlikely
to mistake a lower change point for the true one.

Extreme unbalanced exposure data
Particularly for environmental studies, much of the data is
for unexposed and low-to-medium exposures; only rarely
does data for high exposure exist. This is quite fortunate
from an ethical point of view. However, this results in
extremely unbalanced 2 × k tables and the statistical out-
come depends on the rare, high-level exposure data. In a
case-control study for respiratory cancer possibly caused
by long-term exposure to coke oven emissions, the sample
size was 10,198 in the unexposed group, but only 487
were in the highest exposure group (Costantino et al.,
[3]). A more extreme example was the study evaluating
the connection between childhood cancer and magnetic
fields from high voltage installations. The sample size was
2 in the highest exposure group, but 6,457 in the unex-
posed group (Table 1). The power decreases greatly for
extremely unbalanced designs and accordingly the correct
classification rate also decreases. If the total sample size is
increased to achieve the same power, then the correct clas-
sification would be of the same magnitude as the bal-
anced case, see Table 7. The identification of a trend in
such a highly unbalanced design is complicated. A signif-
icant trend may depend on only these few cases, and the
size and power of unbalanced designs differ greatly from
those in balanced designs. In unbalanced designs with
smaller change points, the correct classification rate
increases if the resulting two-sample test is less unbal-
anced (as a result of the related step contrast). A change
point at a high exposure that is based on rare data is very
vague, however it becomes more stable when medium-to-
high exposure from additional data are obtained.

Unbalanced designs, where the smallest sample size
occurs in the informative groups (large change point s),
reveal a clearly reduced classification rate. However, that
decrease, compared with the balanced design, is much
weaker than the related power loss. A further reduction
occurs for the "in-between" change points as long as the
sample size of the pooled informative groups is still
smaller than the lower exposure groups. A further sub-
stantial increase of the sample size for the unexposed
group had almost no influence on the classification rate.

Table 4: Correct classification rates for several spontaneous 
rates π0

πj True Change q ORIC(M0, M1, M2) Max(H1, H2)

M0 M1 M2 H1 H2

0.3/0.3/0.3 0 .758 .112 .129 .514 .486
0.1/0.1/0.3 2 .001 .979 .021 .987 .004
0.1/0.3/0.3 1 .001 .020 .980 .030 .961
0.2/0.2/0.4 2 .002 .958 .041 .936 .023
0.2/0.4/0.4 1 .005 .029 .967 .040 .926
0.3/0.3/0.5 2 .006 .940 .054 .906 .034
0.3/0.5/0.5 1 .004 .053 .943 .044 .882
0.4/0.4/0.6 2 .009 .940 .052 .887 .036
0.4/0.6/0.6 1 .009 .053 .940 .039 .885

(nj. = 100,  : π0 = π1 <π2,  : π0 <π1 = π2) (bold indicate correct 

classification)

H1
1 H1

2
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Since a sample size of nj = 1 is possible, in principle, for
this approach, the impact of the continuous exposure cat-
egorization can be demonstrated quantitatively with
respect to power and classification rate. When a single
change point exists, the best approach is the categoriza-
tion below or above this change point. The true alternative
is never known a priori when dealing with real data.
Therefore, appropriate categorization may be helpful and
inappropriate categorization can greatly reduce the sensi-
tivity.

The asymptotic power for the change point alternative is
available (Bretz and Hothorn, [17]). Based on an R-code,
the power can be calculated for an arbitrary sample size
pattern, which shapes the exposure response and dimen-
sions k. Power estimation for unbalanced designs can be
found in [6] whereas a serious power loss can be observed
when the sample size in the informative high exposure
groups is very small compared with the sample size in the
unexposed or low exposure groups.

Evaluation of the example
The p-value for the global trend test (change point alterna-
tive) and the classification rate of the best contrast
approach is determined using an implementation of the
proposed procedures in R (R Development Core Team,
[24]). The most likely change point, q, and simultaneous
confidence intervals for the related change point contrasts

can be calculated for the 2 × k contingency table data. A
marginal confidence interval can be estimated for each
elementary contrast because it represents a linear combi-
nation of the proportions pj. Simultaneous confidence
intervals for the maximum of several contrasts can be esti-
mated using a multivariate normal distribution. A
detailed description for the estimation of simultaneous
confidence intervals for several multiple contrast tests can
be found in [25] where the particular problems for bino-
mial data were described recently [26]. The software is
available as the R library bindosres as additional file 2. This
file can be installed in the private R program via "Install
packages from local zip files",

The magnet field cancer data in Table 8 revealed a change
point q = 8 with a classification rate of 0.74 (p-value for a
global trend = 0.002). The cumulative false classification
of 0.26 is nearly concentrated on q = 7. The maximum
simultaneous lower confidence limit is for the sub-set [10
vs. {1, 2, 3, 4, 5, 6, 7, 8, 9}] and seems to be medically rel-
evant with 0.563, but differs only a little from that of sub-
set {10, 9} vs. {1, 2, 3, 4, 5, 6, 7, 8} that is related to the
change point. The analysis of the continuous data using
maximally selected rank statistics gave a cut-point of 0.45
μTesla1. However, above this cut-point only six cancer
cases with an exposure of 0.51, 0.73, 1.0, 1.59, 1.66, and
1.72, and two cases without cancer with exposures 0.73
and 0.83 μ Tesla were available. A careful interpretation is

Table 5: Correct classification rates and power for several dimensions, sample sizes, unexposed rates, and non-centralities

Dimension k 3 4 5 6 7

Correct classif. rate .992 .987 .977 .971 .971
Power .828 .845 .861 .899 .889

Sample size nj. 25 50 75 100 125
Correct classif. rate .809 .973 .978 .987 .989
Power .393 .618 .742 .845 .903

Unexpos. rate Π1 .01 .06 .11 .16 .20
Correct classif. rate .987 .903 .817 .767 .766
Power .845 .488 .373 .312 .266

Non-centrality Δ 0.03 0.05 0.07 0.09 0.11
Correct classif. rate .953 .973 .985 .994 .998
Power .479 .773 .904 .972 .991

Table 6: Asymmetrical cumulative false classification rates

Alternative True Change H1 H2 H3 H4 H5 Cum. over. Cum. under.

.01/.01/.01/.01/.01/.07 5 .000 .000 .001 .027 .972 - 0.028

.01/.01/.01/.01/.07/.07 4 .000 .002 .012 .847 .139 0.139 0.014

.01/.01/.01/.07/.07/.07 3 .000 .011 .819 .119 .051 0.17 0.011

.01/.01/.07/.07/.07/.07 2 .004 .809 .117 .038 .032 0.187 0.004

.01/.07/.07/.07/.07/.07 1 .711 .135 .052 .050 .053 0.29 -

(nj = 100; bold indicate correct classification)
Page 7 of 10
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recommended: i) the correct classification rate is not high,
ii) a high change point was identified, iii) above the
change point are only 4 of 6,491 cases, and iv) the spon-
taneous rate of 0.263 is rather high. More examples and
their interpretation can be found in Hothorn et al., [6].

Conclusion
Trend tests for the analysis of 2 × k tables using epidemio-
logical exposure data are described to identify the change
point alternatives. Not only is the identification of a trend
of interest important, but also the information regarding
the particular types of alternatives. The best contrast
approach for the multiple contrast test is useful for identi-
fying the type of alternative or the change point, whereas
a parametric bootstrap is suitable for an assessment of the
variability. Both the bootstrapped best contrast and the
ORIC approach are appropriate for different dimensions,
non-centralities, sample sizes, and the unexposed group
rates (due to the asymmetry in binomial testing). The con-
sequences of unbalanced designs – of a large number in
the unexposed or low exposure groups and a small
number in the high exposure groups – can be calculated

depending on the expected shape. Simultaneous confi-
dence intervals for the change point alternative are also
available.

Approaches that test a global trend in epidemiological
exposure data and also provide information on the pat-
tern of the exposure-response relationship are rare. The
most competitive approach is the fractional polynomials
model [7], which is a specific multivariable regression
approach.

Most epidemiological studies are characterized not only
by the primary exposure factor but also by several covari-
ates, such as gender, age, occupational status, and compet-
ing risk characteristics. Therefore, the best contrast
approach within the framework of the generalized linear
model is recently available [27]. Using the related R
library (multcomp), real data can be evaluated using the
contrast option "Changepoint" [28].

The suitability of such a simple change point alternative in
epidemiological exposure studies should be critically dis-

Table 7: Correct classification rates for extreme unbalanced designs

Sample sizes N Alternative Power Correct classif. rate

200/200/200/200 800 .05/.05/.05/.10 .682 .935
540/200/40/20 800 .05/.05/.05/.10 .251 .758
200/200/200/200 800 .05/.05/.10/.10 .792 .831
540/200/40/20 800 .05/.05/.10/.10 .425 .687
200/200/200/200 800 .05/.10/.10/.10 .603 .783
540/200/40/20 800 .05/.10/.10/.10 .755 .854
400/400/400/400 1600 .05/.05/.05/.10 .915 .971
1340/200/40/20 1600 .05/.05/.05/.10 .266 .749
400/400/400/400 1600 .05/.05/.10/.10 .968 .916
1340/200/40/20 1600 .05/.05/.10/.10 .438 .667
400/400/400/400 1600 .05/.10/.10/.10 .903 .904
1340/200/40/20 1600 .05/.10/.10/.10 .832 .883

9740/200/40/20 10000 .05/.05/.05/.10 .252 .702

Table 8: Child cancer and magnetic fields

Exposure/μ Tesla j pj Pattern Lower confidence limit

0–0.05 1 0.263 {10,9,8,7,6,5,4,3,2} vs.1 -.716
0.051–0.101 2 0 {10,9,8,7,6,5,4,3} vs.{1,2} -.410
0.101-0.15 3 0.4 {10,9,8,7,6,5,4} vs.{1,2,3} -.327
0.151-.20 4 0.25 {10,9,8,7,6,5} vs.{1,2,3,4} -.246
0.201-0.25 5 0.25 {10,9,8,7,6} vs.{1,2,3,4,5} -.139
0.251-0.30 6 0 {10,9,8,7} vs.{1,2,3,4,5,6} .108
0.301-0.35 7 0 {10,9,8} vs.{1,2,3,4,5,6,7} .343
0.351-0.85 8 0.5 {10,9} vs.{1,2,3,4,5,6,7,8} .534

0.851-1.6 9 1 10 vs.{1,2,3,4,5,6,7,8,9} .563
>1.61 10 1
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cussed and some real data examples tested. Clearly, such
a change point test describes the exposure-response of the
population only. Further investigations are required to
demonstrate that this simple approach can be utilized to
estimate the center of the individual-level change point
distribution. Moreover, the above approach is not limited
to change point alternatives: other trend alternatives, such
as Williams-type trends [29], can be assumed as well.
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Appendix A
Formulation contrast tests for the relative risk

The estimators for the relative risk (RR) of each exposure
group versus unexposed (j = 1) are:

 The single contrast tests can

be formulated for relative risks, for example for the reverse

Helmert's contrast: 

For general contrasts hold true

Appendix B
The ORIC approach for three binomials and the change
point alternative. The three models are:

M0{H0: π1 = π2 = π3}, M1 {  : π1 = π2 <π3}, M2 {  :

π1 <π2 = π3}. The likelihood is

. With the expected values πj and their crude estimators:

, , 

The  are the maximum likelihood estimates under the

simple order restriction: . The like-

lihood for the null-model M0 is:

 where  provided

wj = nj

The likelihood for the model M1 is:

where , for

and

The likelihood for the model M2 is:

where  for

and

The model-specific ORIC are: ORIC(Mr) = log L ( ) -

penalty(Mr).
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With

w(M0) = n1. + n2. + n3.

w(M1) = n1. + n2., n3.

w(M2) = n1., n2 + n3.

Because P{1,1, w(M0)} = 1 ORIC(M0) =

L( ) - 1

Because

Because
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