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Supersymmetric noncommutative solitons

Olaf Lechtenfeld

Institut für Theoretische Physik, Leibniz Universität Hannover
Appelstraße 2, 30167 Hannover, Germany

E-mail: lechtenf@itp.uni-hannover.de

Abstract. I consider a supersymmetric Bogomolny-type model in 2+1 dimensions originating
from topological string theory. By a gauge fixing this model is reduced to a supersymmetric U(n)
chiral model with a Wess-Zumino-Witten-type term in 2+1 dimensions. After a noncommutative
extension of the model, I employ the dressing method to construct explicit multi-soliton
configurations on noncommutative R

2,1|2N .

1. Introduction

Self-dual Yang-Mills theory in 2+2 dimensions arises as the target-space dynamics of open
strings with N=2 worldsheet supersymmetry, whose topological nature renders the dynamics
integrable [1]. By dimensional reduction one arrives at a Bogomolny system for Yang-Mills-Higgs
in 2+1 dimensions, which can be gauge fixed to the modified U(n) chiral model known as the
Ward model [2]. This model, though not Lorentz invariant, is a rich testing ground for exact
multi-soliton and wave configurations which, upon dimensional and algebraic reduction, descend
to multi-solitons of various integrable systems in 2+0 and 1+1 dimensions, such as sine-Gordon.

The two most popular deformations, noncommutativity and supersymmetry, both preserve
this integrability. Moyal-deformed extensions of the above theories and their (mostly novel)
solitonic solutions have recently been studied in some detail [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The goal
of this talk is to add supersymmetry to the game. Yang-Mills theory in 2+2 dimensions admits
at most N=4 supersymmetries (16 supercharges), which limits the number of supersymmetries
in the 2+1 dimensional Yang-Mills-Higgs system to 2N=8. The Ward sigma model based on the
self-dual restriction inherits these supersymmetries. These 2N≤8 supersymmetric Ward models
are somewhat non-standard, because their R-symmetry is non-compact, and their target space
U(n) is not constrained by the presence of supersymmetry [13].

In this talk, which is based on [14], I will consider the supersymmetric noncommutative U(n)
Ward model and its multi-solitons, with up to 16 supercharges and a Moyal deformation only
of the two bosonic spatial coordinates. To this end, I shall remind you of N -extended self-dual
Yang-Mills theory in 2+2 dimensions, the related super Bogomolny system in 2+1 dimensions
and the corresponding Ward model, before implementing the standard Moyal deformation. In
the operator formulation, the dressing method will be employed to derive (second-stage) BPS
conditions and to solve them, finally constructing U(n) single- and multi-solitons including the
abelian case of U(1). I will end with an outlook on current and future work.
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2. N -extended SDYM theory in 2+2 dimensions

I begin with the four-dimensional Kleinian space R
2,2 with coordinates

(xµ) = (xa, t̃) = (t, x, y, t̃) where µ = 1, 2, 3, 4 and a = 1, 2, 3 . (2.1)

The signature (−+ +−) allows me to introduce real isotropic coordinates

x11̇ = 1
2(t− y) , x12̇ = 1

2(x+ t̃) , x21̇ = 1
2(x− t̃) , x22̇ = 1

2(t+ y) (2.2)

labelled by spinor indices α = 1, 2 and α̇ = 1̇, 2̇.

The self-duality equations for a u(n)-valued field strength (Fµν) on R
2,2 read

1
2εµνρσF

ρσ = Fµν ⇔ Fα̇β̇ = 0 ⇔ Fαα̇,ββ̇ = εα̇β̇ Fαβ (2.3)

and are first-order differential equations for the gauge potentials Aαα̇ ∈ u(n).

Let me add supersymmetry. For N ≤ 4, the field content of N -extended SDYM consists of

Aαα̇ → Fαβ , χi
α , φ[ij] , χ̃

[ijk]
α̇ , G

[ijkl]

α̇β̇
with i, j, k, l = 1, . . . ,N , (2.4)

where fields with an even (odd) number of spinor indices (anti)commute. Their helicities range
from +1 to −1. I refrain from writing the field equations here. It is convenient to introduce the
N -extended superspace R

2,2|4N ∋ (xαα̇, ηα̇
i , θ

iα) with derivatives

∂αα̇ := ∂
∂xαα̇ , ∂iα := ∂

∂θiα and ∂i
α̇ := ∂

∂ηα̇
i

, (2.5)

Diα = ∂iα + ηα̇
i ∂αα̇ and Di

α̇ = ∂i
α̇ + θiα∂αα̇ . (2.6)

An important subspace of R
2,2|4N is the chiral superspace R

2,2|2N ∋ (xαα̇−θiαηα̇
i , η

α̇
i ). It is

relevant because the N -extended SDYM equations can be rewritten in terms of superfields Aαα̇

and Ai
α̇ on R

2,2|2N . These chiral superfield potentials give rise to chiral superfield strengths,
whose leading components are the nonnegative helicity fields:

(Aαα̇, Ai
α̇) → (Fαβ , F i

α, F ij) ⊃ (Fαβ , χ
i
α, φ

ij) . (2.7)

Note that I employ calligraphic letters for chiral superfields. With the help of chiral superspace
covariant derivatives

∇αα̇ := ∂αα̇ +Aαα̇ and ∇i
α̇ := ∂i

α̇ +Ai
α̇ (2.8)

I can formulate N -extended self-duality as follows,

[∇αα̇,∇ββ̇] = εα̇β̇ Fαβ , [∇i
α̇,∇ββ̇] = εα̇β̇ F i

β , {∇i
α̇,∇j

β̇
} = εα̇β̇ F ij . (2.9)

These first-order equations may be viewed as the compatibility conditions of a linear system
for a GL(n,C)-valued superfield ψ(ζ), namely

ζα̇(∂αα̇ +Aαα̇)ψ(ζ) = 0 and ζα̇(∂i
α̇ +Ai

α̇)ψ(ζ) = 0 (2.10)

with a spectral parameter ζ ∈ CP 1 tucked into the spinor ζβ̇ =
(

1
ζ

)

or ζα̇ = εα̇β̇ζβ̇ =
(

ζ
−1

)

.
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3. 2N -extended Bogomolny system in 2+1 dimensions

Since the solitons I’d like to construct shall roam the noncommutative plane, I may dimensionally
reduce theN -extended SDYM system to a 2N -extended Bogomolny system one dimension lower.
In chiral superspace, this amounts to a reduction of R

2,2|2N to R
2,1|2N by demanding ∂t̃ = 0

on all (super)fields. Furthermore, in 2+1 dimensions we may identify dotted with undotted
spinor indices and replace α̇, β̇ → α, β. It is well known that the number of supersymmetries
doubles in the process, i.e. N → 2N . Therefore, we find a maximum of 8 supersymmetries in
this 2+1 dimensional Yang-Mills-Higgs system.

To be more explicit, I split the four coordinates into

x[αβ] = 1
2ε

αβ t̃ and x(αβ) =: yαβ with y11 = 1
2(t−y) , y12 = 1

2x , y22 = 1
2(t+y) (3.1)

and rewrite the spinorial derivations as

Diα = ∂iα + η
β
i ∂(αβ) and Di

α = ∂i
α + θiβ∂(αβ) . (3.2)

Likewise, the u(n) gauge potential decomposes as

Aαβ = A(αβ) +A[αβ] = A(αβ) − εαβ ϕ , (3.3)

introducing the Higgs field ϕ as the fourth component, and the covariant derivatives become

Dαβ := D(αβ) = ∂(αβ) + [A(αβ), · ] and D[αβ] = −εαβ [ϕ, · ] . (3.4)

The corresponding field strength

Fαβ, γδ = [Dαβ , Dγδ] = εαγ fβδ + εβδ fαγ with fαβ = fβα (3.5)

is entirely contained in the three components of fαβ but subject to the Bogomolny equation

fαβ + Dαβϕ = 0 , (3.6)

which implies the gauge and Higgs field equations of motion.

The 2N=8 supersymmetric extension of the above yields the dimensional reduction of the

N=4 SDYM equations. The coupled equations for the multiplet (Fαβ , χ
i
α, φ

[ij], χ̃
[ijk]
α , G

[ijkl]
αβ ) are

fαβ +Dαβϕ = 0 ,

Dαβ χ
iβ + εαβ [ϕ, χiβ ] = 0 ,

Dαβ D
αβφij + 2[ϕ, [ϕ, φij ]] + 2{χiα, χj

α} = 0 , (3.7)

Dαβ χ̃
β[ijk] − εαβ [ϕ, χ̃β[ijk]]− 6[χ[i

α, φ
jk]] = 0 ,

D γ
α G

[ijkl]
γβ + [ϕ,G

[ijkl]
αβ ] + 12{χ[i

α, χ̃
jkl]
β } − 18 [φ[ij , Dαβφ

kl]]− 18εαβ [φ[ij , [φkl], ϕ]] = 0 .
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4. 2N -extended U(n) Ward model in 2+1 dimensions

Again, it is convenient to pass to chiral superfields

(A(αβ), Ξ, Ai
α) ⊃ (A(αβ), ϕ, . . .) , (4.1)

which are functions of yαβ−θiαη
β
i and ηα

i and whose leading component in the ηα
i expansion

is indicated. Predictably, the linear system (2.10) dimensionally reduces to a linear system on
R

2,1|2N of the form

ζβ(∂(αβ) +A(αβ) − εαβΞ)ψ = 0 and ζα(∂i
α +Ai

α)ψ = 0 . (4.2)

The gauge freedom can be used to fix the asymptotic form of the GL(n,C)-valued auxiliary
chiral superfield ψ,

ψ(ζ) =







Φ−1 + O(ζ) for ζ → 0

1 + ζ−1Υ + O(ζ−2) for ζ →∞
(4.3)

defining the Yang-type and Leznov-type prepotentials Φ and Υ, respectively. Multiplying (4.2)
with ψ−1 and recalling that ζα =

(

ζ
−1

)

, the asymptotics implies that

A(21) − Ξ = 0 and A(22) = Φ−1∂t+yΦ = ∂xΥ =: A (4.4)

A(11) = 0 and A(12) + Ξ = Φ−1∂xΦ = ∂t−yΥ =: B (4.5)

Ai
1 = 0 and Ai

2 = Φ−1∂i
2Φ = ∂i

1Υ =: Ci (4.6)

and determines 2+N nonvanishing potentials A, B and Ci through either one of the two
prepotentials. With this notation, the gauge-fixed linear system (4.2) is spelled out as

(ζ∂x − ∂t+y −A)ψ = 0 , (ζ∂t−y − ∂x − B)ψ = 0 , (ζ∂i
1 − ∂i

2 − Ci)ψ = 0 . (4.7)

This linear system’s compatibility yields the 2N≤ 8 Bogomolny equations in superspace form,
which at the same time are equations of motion for the two prepotentials. For the Yang-type
prepotential Φ ∈ U(n) I obtain

∂x(Φ−1∂xΦ)− ∂t−y(Φ
−1∂t+yΦ) = 0 , (4.8)

∂i
1(Φ

−1∂xΦ)− ∂t−y(Φ
−1∂i

2Φ) = 0 , (4.9)

∂i
1(Φ

−1∂t+yΦ)− ∂x(Φ−1∂i
2Φ) = 0 , (4.10)

∂i
1(Φ

−1∂
j
2Φ) + ∂

j
1(Φ

−1∂i
2Φ) = 0 , (4.11)

which describes a supersymmetric extension of the Ward model – an integrable chiral sigma
model with WZW-like term – on R

2,1|2N . It is remarkable that this model enjoys up to eight
supersymmetries without any condition on its target space [13]. Alternatively, the equations of
motion for the Leznov-type prepotential Υ ∈ u(n) read

(∂2
x − ∂t+y∂t−y)Υ + [∂t−yΥ , ∂xΥ] = 0 , (4.12)

(∂i
2∂t−y − ∂i

1∂x)Υ + [∂i
1Υ , ∂t−yΥ] = 0 , (4.13)

(∂i
2∂x − ∂i

1∂t+y)Υ + [∂i
1Υ , ∂xΥ] = 0 , (4.14)

(∂i
2∂

j
1 + ∂

j
2∂

i
1)Υ + {∂i

1Υ , ∂
j
1Υ} = 0 (4.15)

and are merely quadratic.
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5. Moyal deformation

In the remainder of this talk I shall construct solitonic solutions to the supersymmetric Ward
model equations (4.8)–(4.11). The integrability of this model ensures the existence of multi-
soliton configurations, which can be found employing, e.g., the dressing method. To widen
the scope, I’d like to go one step further and subject the whole system to a noncommutative
deformation. It is known that the (nonsupersymmetric) Ward model can be Moyal-deformed
without losing its integrability [4, 5]. What is more, the deformation enormously enhances the
spectrum of solitons. In particular, it allows for the novel class of abelian solitons, which exist
even in the U(1) case. It is to be expected that the supersymmetric extension is compatible
with this situation, so that the deformed supersymmetric Ward solitons are, one the one hand,
superextensions of the known bosonic noncommutative Ward solitons and, on the other hand,
deformations of (possibly singular) commutative super-Ward solitons. In order to capture this
wider class of solitons, I introduce at this stage a purely spatial Moyal deformation of R

2,1 to
R

2,1
Θ with noncommutativity parameter Θ > 0. Commutative spacetime can always be recovered

by taking the limit Θ→ 0.

The deformation is effected by introducing the Moyal star product

(f ⋆ g)(x, θ, η) = f(xc, θ, η) exp{ i
2

←−
∂a Θab−→∂b} g(x, θ, η) (5.1)

for functions on R
2,1|4N , which for the coordinates yields

xa ⋆ xb − xb ⋆ xa = iΘab (5.2)

with all other star (anti)commutators vanishing. In particular, I choose not to deform the
Grassmann coordinates to form a Clifford algebra, although this could easily be implemented.
The noncommutativity is parametrized by the constant matrix (Θab) whose entries I take to be

Θxy = −Θyx =: Θ > 0 but Θtx = Θty = 0 . (5.3)

Hence, t as well as θiα and ηα
i remain (anti)commutative. For the complex coordinate

combinations z := x+ iy and z̄ := x− iy this reads

Θzz̄ = −Θz̄z = −2i Θ ⇒ z ⋆ z̄ − z̄ ⋆ z = 2 Θ . (5.4)

Important properties of the star product are

(f ⋆ g) ⋆ h = f ⋆ (g ⋆ h) and ∫d2z f ⋆ g = ∫d2z f g . (5.5)

Instead of deforming the product in function space, one may alternatively replace functions
by operators, which act on an auxiliary Fock space H. To the noncommuting coordinates z and
z̄ then correspond basic operators a and a† subject to the Heisenberg-algebra relation

[a , a†] = 1 . (5.6)

Their action on an orthonormal basis of ket states {|ℓ〉, ℓ ∈ N0} reads

a |ℓ〉 =
√
ℓ |ℓ−1〉 and a†|ℓ〉 =

√
ℓ+1 |ℓ+1〉 , (5.7)

which qualifies |0〉 as the vacuum state.
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Let me restrict myself to the chiral superspace R
2,1|2N . The correspondence between functions

f(t, z, z̄, ηα
i ) and operators f̂(t, ηα

i ) is made precise by the Moyal-Weyl map and its inverse,

f(t, z, z̄, ηα
i ) 7→ f̂(t, ηα

i ) = Weyl-ordered f
(

t,
√

2Θa,
√

2Θa†, ηα
i

)

, (5.8)

F⋆

(

t, z√
2Θ
, z̄√

2Θ
, ηα

i

)

←[ F̂ (t, ηα
i ) = F (t, a, a†, ηα

i ) . (5.9)

The crucial properties of this map are

f ⋆ g 7→ f̂ ĝ and
∫

dx dy f = 2πΘ TrHf̂ . (5.10)

On the level of the coordinates, one has

[t, x̂] = [t, ŷ] = 0 but [x̂, ŷ] = iΘ ⇒ [ẑ, ˆ̄z] = 2 Θ , (5.11)

which implies
ẑ =

√
2Θ a and ∂z̄f 7→ ∂̂z̄ f̂ = 1√

2Θ
[a , f̂ ] . (5.12)

6. Dressing method

In order to construct multi-soliton configurations, I shall employ the dressing method to build
up solutions to the gauge-fixed linear system (4.7). The latter, together with a gauge-compatible
reality condition, may be written as

ψ(xa, ηα
i , ζ)

[

ψ(xa, ηα
i , ζ̄)

]†
= 1 and (6.1)

ψ(∂t+y − ζ∂x)ψ† = A , ψ(∂x − ζ∂t−y)ψ
† = B , ψ(∂i

2 − ζ∂i
1)ψ

† = Ci . (6.2)

The result of iterating the dressing procedure is a multi-pole ansatz for the operator-valued
n×n matrix ψ,

ψm =
m−1
∏

ℓ=0

(

1 +
µm−ℓ − µ̄m−ℓ

ζ − µm−ℓ
Pm−ℓ

)

= 1 +
m

∑

k=1

ΛmkS
†
k

ζ − µk
, (6.3)

whose multiplicative and additive forms contain square matrices Pm−ℓ(x
a, ηα

i ) and rectangular
matrices Λmk(x

a, ηα
i ) and Sk(x

a, ηα
i ), respectively, which are to be determined. The complex

parameters µ1, µ2, . . . , µm tell the positions of the ζ-poles of the meromorphic function ψ. Such
poles must occur for a nontrivial ζ̄-independent function on CP 1.

Observe now that the right-hand sides of (6.1) and (6.2) are independent of ζ, which implies
that the residue of any ζ-pole on their right-hand sides must vanish. It suffices to consider the
residues at ζ=µ̄k, which for the additive form of (6.3) yields

(

1 +
m

∑

ℓ=1

ΛmℓS
†
ℓ

µ̄k − µℓ

)

Sk = 0 =
(

1 +
m

∑

ℓ=1

ΛmℓS
†
ℓ

µ̄k − µℓ

)

L̄
A,B,C
k Sk , (6.4)

where L̄A,B,C
k stands for either

L̄A
k = ∂t+y − µ̄k∂x , L̄B

k = µk(∂x − µ̄k∂t−y) or L̄C
k = ∂i

2 − µ̄k∂
i
1 . (6.5)
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7. Co-moving frames

The left equation in (6.4) is algebraic and will later be used to find Λmℓ. Assuming its validity
for the moment, the right equation is satisfied if I demand that Sk is an eigenobject of the 2+N
differential operators in (6.5). This requirement determines the dependence of Sk on t and on
one-half of the ηα

i . To see that, it is useful to pass, seperately for each value of k, from the
coordinates (t, x, y; η1

i , η
2
i ) to (complex) “co-moving coordinates” (wk, w̄k, sk; η

i
k, η̄

i
k) via

wk := 1
2(µ̄k+

1
µ̄k

)t+ x+ 1
2(µ̄k− 1

µ̄k
)y and ηi

k := η1
i + µ̄kη

2
i . (7.1)

It is easy to check that the operator version of wk obeys

[ŵk , ˆ̄wk] = 2νkν̄k Θ with νkν̄k = 4i
µk−µ̄k−µ−1

k
+µ̄−1

k

· µk−µ−1

k
−2i

µ̄k−µ̄−1

k
+2i

. (7.2)

This suggests me to define co-moving annihilation and creation operators,

ŵk =:
√

2Θ νk ck and ˆ̄wk =:
√

2Θ ν̄k c
†
k so that [ck , c

†
k] = 1 . (7.3)

These operators are all related to a and a† by inhomogeneous Bogoliubov transformations via
specific squeezing operators Uk(t) ∈ ISU(1,1), so that

ck |vk〉 = 0 defines a co-moving vacuum |vk〉 = Uk(t)|0〉 . (7.4)

For a given value of k, the co-moving coordinates define a “rest frame” through the condition
∂

∂sk
= 0, which linearly relates the coordinates x, y and t, so that one gets a straight trajectory

(x(t), y(t)) in the xy plane. Since these trajectories turn out to describe the motion of individual
lumps of energy in a generic multi-soliton configuration, I can compute their various velocities,

(ẋ(t) , ẏ(t))k ≡ (vx , vy)k = −
( µk + µ̄k

µkµ̄k + 1
,
µkµ̄k − 1

µkµ̄k + 1

)

, (7.5)

as a function of the corresponding pole positions. Clearly, there is no scattering. However, when
some of these velocities coincide, more general time dependence (including scattering) arises.
The relation between ~v and µ is depicted in Figure 1, and Figure 2 sketches the worldline of a
single soliton in the two coordinate frames.

8. BPS conditions

Recall the vanishing-residue conditions (6.4),

(

1 + Σk

)

Sk = 0 =
(

1 + Σk

)

L̄
A,B,C
k Sk , (8.1)

where Σk abbreviates the sum over ℓ. The left equation, which arose from the reality
condition (6.1), will be solved a bit later, using the multiplicative form of the ansatz (6.3).
For the right equation, which represents the linear system (6.2) and therefore the equation of
motion, the differential operators simplify in the co-moving coordinates to

L̄A
k = L̄B

k = (µk−µ̄k)
∂

∂w̄k
=: L̄k and L̄C

k = (µk−µ̄k)
∂

∂η̄i
k

=: L̄i
k . (8.2)

Essentially, this means that Sk does not depend on w̄k or η̄i
k. However, since (1 + Σk) is not

invertible, in view of the left equation in (8.1) slightly weaker conditions hold, namely

L̄k Sk = Sk Z̃k and L̄i
k Sk = Sk Z̃

i
k . (8.3)
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In the operator formulation of the Moyal deformation, these read1

ck Ŝk = Ŝk Ẑk and ∂
∂η̄i

k

Ŝk = Ŝk Ẑ
i
k . (8.4)

To unclutter the formulae I drop the hats and temporarily suppress the label k. The
noncommutative BPS equations then takes the form

c S = S Z and ∂
∂η̄i S = S Zi , (8.5)

where solutions Sk are parametrized by Z and Zi.

The goal is to find operator-valued n×r matrices S(c, c†, ηj , η̄j) for any choice of r×r matrices
Z(i)(c, c†, ηj , η̄j). Recall that n is determined by the group U(n) but r is arbitrary and in general
depends on k. The general solution to (8.5) is rather involved, but things simplify when I restrict
myself to holomorphic parameter matrices

Z = Z(c, ηj) and Zi = Zi(c, ηj) . (8.6)

9. Nonabelian BPS solutions

For holomorphic choices of Z and Zi I can write down the general solution to (8.5) as

S = R(c, ηi) :exp
{

Z(c, ηj) c† − c c†
}

: exp
{
∑

iZ
i(c, ηj) η̄i

}

Q(c, ηj) , (9.1)

where Rn×r and Qr×r are arbitrary holomorphic matrix functions of c and ηj and where the
colons signify normal ordering with respect to the (c, c†) algebra. It turns out that

S → S Γ and Z(i) → Γ−1Z(i) Γ (9.2)

does not change the final solution Φ or Υ and, hence, invertible right factors in the solution
(9.1) may be omitted. Without loss of generality, I therefore put Zi = 0. A regular matrix Q
allows me to simplify the solution (9.1) to

S = R(c, ηi) :exp
{

Z(c, ηj) c† − c c†
}

: (9.3)

and further to
S = R(c, ηi) (9.4)

if the normal-ordered exponential is invertible.

The prime example for the latter, holomorphic, case is

Z = 1r ⊗ c ⇔ [c , S] = 0 , (9.5)

which immediately sets S = R. For r<n I can interpret S as a map

S : C
r ⊗H →֒ C

n ⊗H , (9.6)

and (8.5) says that this embedding is stable under the action of c and of ∂
∂η̄i . The ensueing

solitons I call “nonabelian” because they require n ≥ 2 and in the commutative (Θ→0) limit
smoothly reproduce the undeformed (supersymmetric) Ward-model solitons.

1 The matrices Ŝk being rectangular, left multiplication by ck is the natural operator equivalent to the L̄k action.
However, one may instead use the adjoint ck action by redefining Ẑk.
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10. Abelian BPS solutions

The situation is different in the (more general) case where : e−c†(c−Z) : has a nonzero kernel. In
particular, this occurs whenever the r×r matrix Z is not operator-valued, i.e.

Z = Z(ηj) ⇒ : e−c†(c−Z) : = eZc† : e−c†c : = eZc† |v〉〈v| =: |Z〉〈v| , (10.1)

where I defined an r×r matrix |Z〉 of (unnormalized) coherent states (eigenstates of c), whose
parameters are still functions of the ηj . Recalling the freedom of right multiplication with Q,
the resulting solution reads

S = R(c, ηi) :e−c†(c−Z(ηj)) : Q(c, ηi) = R(Z, ηj) |Z〉〈∗| (10.2)

with an arbitrary r×r matrix 〈∗| of bras.

Clearly, the factor of |Z〉〈∗| may not be dropped here. However, I can strip off the 〈∗| piece
by generalizing S to any c-stable embedding Y →֒ C

n ⊗H. For dimY ≡ q < ∞ an embedding
is just an n×q array of kets,

|S〉 : C
q →֒ C

n ⊗H , (10.3)

and the BPS conditions (8.5) become

c |S〉 = |S〉Z(ηj) and ∂
∂η̄i |S〉 = |S〉Zi(ηj) . (10.4)

Please note that n = 1 is now possible, i.e. there exist novel solitons in the noncommutative
U(1) model! Keeping Zi = 0 and removing Q(ηi), the BPS solution takes the form

|S〉 = R(c, ηi) eZ(ηj)c† |v〉 = R(Z, ηj) |Z〉 . (10.5)

Generically, I can employ the right multiplication with Q to diagonalize

Z = diag (α1, . . . , αq) ⇒ |Z〉 = diag
(

|α1〉, . . . , |αq〉
)

with |αl〉 := eαl(ηj)c† |v〉 .
(10.6)

From the Moyal-Weyl correspondence |v〉〈v| ↔ 2 e−ww̄/Θ it is obvious that these solutions
become singular in the commutative (Θ→0) limit. Therefore, I call them “abelian solutions”.

11. One-soliton configuration

I now build up the full soliton comfigurations from the building blocks Sk or |Sk〉. Let me first
present the simplest case, namely m = 1, and suppress the index k. The ansatz (6.3) reduces to

ψ1 = 1 +
µ− µ̄
ζ − µ P = 1 +

Λ S†

ζ − µ . (11.1)

This is a good moment to work out the reality condition (6.1) in terms of the operator-valued
n×n matrix P . The vanishing of the residue at ζ=µ̄ immediately yields

P = P † = P 2 ⇒ P = T
1

T †T
T † or = |T 〉 1

〈T |T 〉 〈T | . (11.2)

Similarly, the linear system (6.2) is residue-free for

(1−P ) c P = 0 ⇒ c T = T Z or c |T 〉 = |T 〉Z , (11.3)

(1−P ) ∂
∂η̄i P = 0 ⇒ ∂

∂η̄i T = T Zi or ∂
∂η̄i |T 〉 = |T 〉Zi . (11.4)
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Comparison with (8.5) and (10.4) shows that T = S and Λ = (µ−µ̄)T 1
T †T

in this situation.
Borrowing from the previous two sections, I generically have

T = S = R(c, ηj)n×r , e.g. polynomials in (c, ηj) , (11.5)

|T 〉 = |S〉 = R(c, ηj)n×q

( |α1(ηj)〉
. . .

|αq(ηj)〉

)

q×q

. (11.6)

I remark that each matrix element of R enjoys an η-expansion

R(c, ηi) = R0(c) + ηiR[i](c) + ηiηjR[ij](c) + ηiηjηkR[ijk](c) + ηiηjηkηlR[ijkl](c) , (11.7)

and c acting on a coherent state |αl〉 may be replaced by its eigenvalue αl. From the above
expressions it is only a matter of diligence to obtain the prepotentials via

Φ = 1 − (1−µ
µ̄)P and Υ = (µ−µ̄)P (11.8)

and hence any other quantity one desires. Finally I remark that nonabelian and abelian solutions
are distinguished by the rank of the projector P : in the former case P has infinite rank in C

n⊗H
but finite matrix rank r in C

n, while in the latter case P is of finite rank q in C
n ⊗H.

12. N -extended multi-soliton configurations

The real benefit of integrability is the existence of multi-soliton solutions to our sigma-model
equations (4.8)–(4.11) or quadratic equations (4.12)–(4.15). The dressing method provides me
with an iterative scheme to build increasingly complex classical configurations, adding one lump
at a time. First, the ansatz (6.3) contains m pole positions µk, which we take from the lower
complex plane to exclude anti-solitons. Each µk gives rise to its own co-moving coordinate wk

and, via Moyal deformation, to a Heisenberg pair (ck, c
†
k) with its own vacuum |vk〉. Using the

additive form of the ansatz, I have shown how to build nonabelian or abelian BPS solutions Sk

or |Sk〉 on this vacuum. Second, the multiplicative form of the ansatz generates conditions on
the projectors Pk and thus on the corresponding Tk or |Tk〉. These conditions easily allow one
to relate Tk with Sk in general,

T1 = S1 and Tk =

{k−1
∏

ℓ=1

(

1 − µk−ℓ − µ̄k−ℓ

µk−ℓ − µ̄k
Pk−ℓ

)

}

Sk for k ≥ 2 , (12.1)

from which the projectors

Pk = Tk
1

T
†
kTk

T
†
k or Pk = |Tk〉

1

〈Tk|Tk〉
〈Tk| (12.2)

are readily expressed in terms of the matrices Rk and Z
(i)
k , whose size may vary with k. These

matrices contain all moduli of the multi-soliton configuration besides the “rapidities” µk. With
the projectors in hand, I do not need the form of the Λmk, and the prepotentials are known as

Φ =
m−1
∏

ℓ=0

(

1− (1−µm−ℓ

µ̄m−ℓ
)Pm−ℓ

)

and Υ =
m

∑

k=1

(µk−µ̄k)Pk . (12.3)

As the simplest example let me present the U(1) two-soliton (n=1, m=2) with ranks
q1 = q2 = 1. For n=1, the row matrix R in (11.6) affects only the normalization of the coherent
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states |αl〉 and is thus irrelevant. It remains the two rapidities µ1 and µ2 as well as two complex
coherent-state parameters α1 and α2, which may be functions of the Grassmann coordinates ηi.
The result of the given recipe eventually produces the Yang-type prepotential

Φ† = 1 − 1

1− µ|σ|2
[ µ11

µ1
|1〉〈1| +

µ22

µ2
|2〉〈2| − σµ

µ21

µ2
|1〉〈2| − σ̄µ

µ12

µ1
|2〉〈1|

]

(12.4)

with (k = 1, 2)

|k〉 ∝ |αk〉 , 〈k|k〉 = 1 , 〈1|2〉 =: σ , µij := µi−µ̄j , µ :=
µ11 µ22

µ12 µ21
, (12.5)

and the time dependence hides in the squeezing operators Uk(t) that relate the vacua |vk〉 (on
which the |αk〉 are built) to the reference vacuum |0〉 (see (7.4)).

13. Outlook

I have arrived at explicit multi-soliton configurations on R
2,1|2N , which formally look like the

solutions in the non-supersymmetric model, except for additional dependencies on the chiral
Grassmann coordinates ηi via the matrices Rk(ck, η

j
k) and the parameters αl

k(η
j
k) entering Sk

and |Sk〉. Furthermore, the Grassmann-odd components in any η-expansion, such as (11.7),
require the introduction of extraneous Grassmann-odd moduli εi, like in R = R0 + ηiεiR

′ + . . ..

As a simple example, consider the static abelian rank-one soliton (µ=− i↔ v=0), based on
a coherent state

|T 〉 = eα(ηi)a† |0〉 =
4

∑

p=0

α
p
b(a

†)p|αs〉 , (13.1)

with (subscripts referring to “body” and “soul”)

α(ηi) = αb + αs = αb + ηiα[i] + ηiηjα[ij] + ηiηjηkα[ijk] + ηiηjηkηlα[ijkl] . (13.2)

Simplifying to αb=0 so that α5 = α5
s = 0, the projector becomes

P =
(

∑4
p=0 p!(ᾱsαs)

p
)−1

4
∑

k,l=0

αk
s ᾱl

s

k!l! |k〉〈l| (13.3)

= (1− ᾱsαs + . . .)
(

|0〉〈0|+ αs|1〉〈0|+ ᾱs|0〉〈1|+ αsᾱs|1〉〈1|+ . . .
)

. (13.4)

For N=1, I must put αs = ηε with ε2 = 0 and get

P = |0〉〈0| + ηε |1〉〈0| − η̄ε̄ |0〉〈1| + ηη̄εε̄
(

|1〉〈1| − |0〉〈0|
)

. (13.5)

Employing the Moyal-Weyl map, this shows how the supersymmetric extension modifies the

profile of the basic soliton. I have also checked the simplest U(2) examples, e.g. T =
( α(η)

a+β(η)

)

,

with similar results. In all cases, the topological charge is determined by the body component
alone.

One would also like to investigate the energy density of such solitons. However, beyond the
static N=1 configurations, no action or energy functional is known for our N -extended sigma
models, so this remains a challenge.
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How about scattering? To learn about the lump-lump interaction inside a non-static multi-
soliton solution, I focus on the large-time asymptotics. It is easy to see that, in the (t, x, y)
frame, a moving lump yields

T
|t|→∞−→ tq Γ ⇒ P

|t|→∞−→ Π = Γ 1
Γ†Γ

Γ† (13.6)

with a constant n×r matrix Γ, so that

lim
t→±∞

Φm =
(

1− (1−µm

µ̄m
)Πm

)

· · ·
(

1− (1−µ2

µ̄2
)Π2

)(

1− (1−µ1

µ̄1
)Π1

)

. (13.7)

If the kth lump is static, Πk must be replaced by Pk. The important message here is that

lim
t→+∞

Φm = lim
t→−∞

Φm , (13.8)

which proves that the individual lumps in these multi-soliton configurations do not feel each
other at all, but keep moving along their straight trajectories with constant velocities in
the Moyal plane. When two lumps’ velocities coincide, however, the situation changes. In
the limit of vanishing relative velocities a new time dependence is known to emerge for the
non-supersymmetric Ward solitons, giving rise to breather-type and to nonabelian scattering
configurations [5, 12]. I expect this feature to carry over to the models considered here.

Finally, one may ask why I have deformed only the bosonic coordinates but not also the
fermionic ones. The reason was merely a practical one; the more general case of Moyal-deforming
the whole R

2,1|2N superspace is an obvious next step. Of special interest may be the other
extreme, a purely fermionic deformation. It should lead to non-anticommuting solitons based
on the Clifford algebra

{ηα
i , η

β
j } = C

αβ
ij . (13.9)

I foresee the corresponding BPS solutions to break part of the supersymmetry and perhaps carry
additional structure interpretable as spin.
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