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Quenching and tempering of precision forged components using their forging heat leads to reduced process energy and shortens
the usual process chains. To design such a process, neither the isothermal transformation diagrams (TTT) nor the continuous
cooling transformation (CCT) diagrams from literature can be used to predict microstructural transformations during quenching
since the latter diagrams are significantly influenced by previous deformations and process-related high austenitising temperatures.
For this reason, deformation CCT diagrams for several tempering steels from previous works have been investigated taking into
consideration the process conditions of precision forging. Within the scope of the present work, these diagrams are used as
input data for predicting microstructural transformations by means of artificial neural networks. Several artificial neural network
structures have been examined using the commercial software MATLAB. Predictors have been established with satisfactory
capabilities for predicting CCT diagrams for different degrees of deformation within the analyzed range of data.

Copyright © 2009 Florian Nürnberger et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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1. Introduction

Precision forging is a technology for the production of
components with near-net-shape geometry such as automo-
tive gears. High precision forging of the geometry enables
the overall process chain to be reduced since machining
before heat treatment is no longer necessary. This provides
the possibility of heat treating directly from the forging
heat, so-called integrated heat treatment. The latter is being
thoroughly investigated within the collaborative research
center CRC 489 “Process Chain for the Production of
precision-forged High Performance Components” at the
Leibniz University of Hannover, Germany [1, 2].

Microstructural transformations during integrated heat
treatment are influenced not only by high austenitising
temperatures of about 1200◦C but also by plastic deforma-

tions due to the forging process. Thus, neither the usual
isothermal transformation diagrams nor continuous cool-
ing transformation diagrams from literature, for example,
[3, 4], nor deformation diagrams investigated for rolling
processes [5, 6] are suitable for predicting microstructural
transformations during tempering from such hot-forming
temperatures. On account of this, the deformation CCT
diagrams for the tempering steels 34CrMo4 (SAE 4135),
42CrMo4 (SAE 4140), 50CrMo4 (SAE 4150), 51CrV4 (SAE
6150), and 34CrNiMo6 (1.6582) were determined in a
previous work [7] according to the standards SEP 1680 [8],
SEP 1681 [9], and PN-68/H-04500 [10], respectively. Since
such physical experiments are time-consuming and costly,
the capabilities of artificial neural networks were investigated
for predicting deformation CCT diagrams with regard to the
particular processing in precision forging.
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Table 1: Chemical composition of the investigated melts in mass
%.

Melt 34CrMo4 42CrMo4 50CrMo4 51CrV4 34CrNiMo6

C 0.325 0.410 0.491 0.467 0.326

Si 0.289 0.336 0.212 0.223 0.263

Mn 0.577 0.701 0.647 0.845 0.588

P 0.007 0.011 0.005 0.006 0.001

S 0.003 0.025 0.004 0.017 0.004

Cr 0.945 0.998 1.039 1.015 1.433

Cu 0.286 0.380 0.219 0.223 0.260

Mo 0.132 0.171 0.133 0.013 0.126

Ni 0.098 0.191 0.092 0.083 1.469

Al 0.025 0.029 0.024 0.018 0.023

Nb 0.019 0.019 0.020 0.002 0.020

So far, several authors have reported on the successful
predictions of CCT or TTT diagrams as a function of
chemical composition; however, the influence of deforma-
tion conditions, due to precision forging, has yet to be
considered. An overview of the different fields of applications
for neural networks in materials science is given by [11].
Malinov et al. used a back-propagation, multilayer feed-
forward network to predict titanium alloy TTT diagrams
from their chemical compositions [12, 13]. Calculations of
the initial temperatures of bainite and martensite transfor-
mations for a huge number of steels have been carried out
by Garcia-Mateo et al. [14]. Using multilayer perceptrons,
the austenite decomposition based on a large data base of
TTT and CCT diagrams was computed by Doktorowski [15].
Based on a hierarchical feed-forward network using back-
propagation, Wang et al. [16] have shown the influence of
carbon concentration on the transformation characteristics
of steels. The capabilities for designing new steels using
neural networks have been demonstrated by Trzaska and
Dobrzański [17–19].

2. Deformation-Dependent Microstructural
Transformations

To physically simulate the precision forging process, speci-
mens of the investigated melts (see Table 1) were heated to
an austenitising temperature of 1200◦C within 30 seconds.

Following isothermal holding for 600 seconds at this
temperature, the specimens were deformed by 30% and 60%,
respectively (strain rate 1 s−1). Subsequently these were lin-
early cooled to room temperature using cooling rates within
the range of 80 Ks−1 to 0.02 Ks−1. As a reference, continuous
cooling transformation diagrams without deformation were
also determined (see Figure 1). Measurements were carried
out using a dilatometer DIL 805 A/D made by the company
Baehr Thermoanalyse GmbH.

Initiating the cooling from temperatures higher than
Ac3, the steels’ microstructure is austenitic or face-centred-
cubic (fcc). As the temperature slowly decreases below this
value, austenite will then transform into body-centred-cubic

(bcc) ferrite containing low concentrations of carbon. As
a result of this transformation, the remaining austenite’s
carbon content is enriched, and the austenite therefore
transforms into bcc pearlite following completion of the
ferrite formation. With increasing cooling rates, diffusion
decreases due to the falling temperatures, and bainitic
structures are formed. With further increase in cooling
rates, the diffusionless transformation of austenite into
tetragonal distorted martensite occurs. This microstructure
typically features very high strength and hardness at the
expense of reduced ductility. The aim of the integrated
heat treatment of precision forged components, as in many
other heat treatments, is to create a martensitic surface
layer that will significantly increase wear resistance of
highly stressed parts while the core of such components
is to simultaneously possess bainitic or ferritic/pearlitic
structures to increase the part’s fatigue limit. Knowledge
of microstructural transformations as a function of cooling
rates thus enables one to realise the aim of an efficient process
design.

3. Modeling and Implementation of
Artificial Neural Networks

In the following, we consider the task of predicting contin-
uous cooling transformation diagrams as an approximation
problem. For this reason, we describe each curve, which
indicates the initiation or completion of a microstructural
transformation, with a single-valued functional dependence

T = Fi(d, time), i = 1,n, (1)

where n is the number of phase transformations, time is
the time of initiation or completion of a microstructural
transformation, T is the temperature, and d the degree
of deformation in percent. Predicting the transformation
curves can then be seen as a task of approximating n
functions. For the solution to this problem, splines, wavelets,
and fuzzy-logic methods, and so forth, can be used.

The curves for the initiation and completion of
microstructural transformations are nontrivial for classical
parametric approximation methods. We therefore use feed-
forward neural networks (FNN) as universal approximators.
As shown in [20–22], artificial neural networks with two-
layers—where one is a single sigmoidal hidden layer—
can approximate any continuous or discontinuous function
from Rn. Leshno et al. obtained a generalization of these
results for neural networks with arbitrarily limited piecewise
continuous activation functions [23]. According to [23],
multilayer perceptrons have the capacity to approximate any
continuous function to a prescribed accuracy. Similar results
were achieved by Huang et al. [24] using artificial neural
networks with radial-based functions (RBF). Analysis of the
approximation possibilities of artificial neural networks is
a common, though challenging task. Figure 2 depicts the
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Figure 1: Continuous cooling transformation diagrams of tempering steel 50CrMo4 for deformation of 30%, 60%, and 0%, respectively
[7].
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Figure 2: Schematic of the model of a feed-forward neural network
used for predicting the transformation curves for deformation
dependent continuous cooling transformation diagrams.

model of the feed-forward neural network used in this work,
with a single hidden layer for approximating curves for the
initiation or completion of microstructural transformations
for deformation dependent CCT diagrams.

A general schematic of the applied approach for solving
the approximation task is given in Figure 3.

4. Data Extension

Every curve of the continuous cooling transformation dia-
grams, which have different percentages of deformation, has
its own time interval. Usually these intervals overlap each
other (see Figure 4). We used smooth padding (spd) in order
to extend the data to the common argument range. The

procedure spd [25] is a linear extension fit to the first two
and last two values (see what follows).

For equidistant time steps h, a pair of variate times
Timei and temperatures Ti, where i = 0,n; new values are
calculated using the following scheme:

ΔTleft =T1 − T0,

Time−1 =Time0 − h, T−1 = T0 − ΔTleft,

Time−2 =Time−1 − h, T−2 = T−1 − ΔTleft,

ΔTright =Tn − Tn−1,

Timen+1 =Timen + h, Tn+1 = Tn + ΔTright.

(2)

This method works well for the approximation of equidistant
signals [22]. For this purpose the function wextend from the
Matlab Wavelet toolbox was used.

From physical experiments, curves were known for three
degrees of deformation for each microstructural transforma-
tion of one melt. This data is to be approximated for other
degrees of deformation in order to generate a generalization.
Since the cooling trajectory is linear and starts at an initial
temperature of 1200◦C, we transferred the data into a
new coordinate system (α, time), where α is the cooling
rate. For this purpose, we approximated every curve of
a microstructural transformation with a cubic spline and
determined the intersection of the spline and the cooling
trajectory (see Figure 5).

Figure 6(a) shows the curves of martensite initiation
temperatures for different degrees of deformation in the new
coordinate system. Furthermore, T∗ is a new point for 40%
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Figure 3: Scheme of the approach for predicting CCT diagrams.

deformation which was calculated according to the linear
scheme (see Figure 6(b)). The values for the intermediate
points; 10%, 20%, 50%, 70%, 80%, and 90% deformation
were analogously calculated.

Data inputs and outputs were normalized by a mean shift
followed by a decorrelation and a covariance adjustment so
that the neural network can learn more accurately.

5. Training Algorithm Selection and
Determination of the Optimal Neural
Network Architecture

Two categories of algorithms have been used. The methods
of the first are based on a heuristic analysis of the behavior
of the quickest descent algorithms. This category consists
of variable learning rates, back-propagation, and resilient
back-propagation. The second category of fast algorithms
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Figure 4: Data extrapolation to the common interval of
microstructural transformations for different degrees of deforma-
tion d using smooth padding.
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Figure 5: Scheme of data transformation into the (α, time)
coordinate system.

uses methods of numerical optimization. From this category,
we chose three optimization methods for network learning:
Powell-Beale conjugate-gradient method, Broyden-Fletcher-
Goldfarb-Shanno quasi-Newton, and Levenberg-Marquardt.
All the algorithms mentioned work in batch mode. The
algorithm Levenberg-Marquardt showed a good balance
between convergence rate and generalization quality. For
this reason, all further studies were carried out with this
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Figure 6: (a) Curves of martensite initiation temperature in the (α, time) coordinate system. (b) Scheme of linear data extension.

algorithm. Design and learning of artificial neural networks
were implemented in MATLAB using the Neural Network
Toolbox.

The number of neurons in the single hidden layer was
varied within the range of two to fifteen in order to determine
an appropriate network architecture. Ten separate training
runs were carried out, and the correlation between outputs
of the net and values from training sets were calculated for
all the curves of microstructural transformations. Figure 7
shows the results for the bainite initiation temperatures
for the tempering steel 42CrMo4 with 30% deformation.
The red polylineal curve depicts the maximum values of
correlation, and the points represent the mean correlation
with standard deviations calculated from ten training epochs.

This graph reveals an acceptable correlation rate of about
0.95 for nine neurons in the hidden layer. It can be seen that
this correlation does not significantly increase with higher
numbers of neurons. It should also be noted that the spread
of data decreases at this number of neurons.

Similar results were obtained for other transformations
and alloys. Thus, we used feed-forward neural networks
with two inputs (degree of deformation in percent and
time), one hidden layer with nine nodes and one node
for output (temperature). We also used individual neural
networks for each of the tempering steels and for every
transformation curve. Hence, to predict the overall CCT
diagram of 50CrMo4, seven neural networks are necessary.
In total, the training set of every single neural network
consists of 1350 to 2700 triplets (time, deformation, and
temperature). The learning process was terminated when the
improvement of the mean square error after 100 consecutive
epochs fell below 0.01. The best net was then selected from
the ten different trained networks.
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Figure 7: Mean correlation values for upper bainite with 30%
deformation and varied number of neurons in the hidden layer.

6. Results

Figure 8 depicts the dynamics of microstructural transfor-
mations for the steel 50CrMo4. In the graphs on the left of
this figure, the black curves are the network outputs, and
the red curves depict the physically measured diagrams. In
the graphs on the right, the transformation diagrams for
unknown degrees of deformation are shown.

Figure 9 shows the correlation between measured dia-
grams and the net outputs.

Figures 10, 11, 12, and 13 demonstrate the neural
networks’ performances for other types of investigated steels.
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Figure 8: Dynamics of the microstructural transformations of the tempering steel 50CrMo4.
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Figure 9: Efficiency of the neural networks for the tempering steel 50CrMo4.
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Figure 10: Results for tempering steel 42CrMo4 with a deformation of 0%.

Results show that the artificial neural networks used here are
capable of predicting the microstructural transformations
within the range of the investigated degrees of deformation.

For most of the CCT diagrams, a high correlation
coefficient can be achieved between the networks’ output
data and the experimental data.

An extrapolation beyond strains of 60% is possible;
however, with further increases of deformation, the trans-
formation lines depicting the completion of ferrite and the
initiation of pearlite then begin to cross each other. This is
due to the approach used where every net represents one
transformation curve of a CCT diagram separated from the
others. Interactions between the nets are not considered and,

as a result, the overlaying effect of the curves may be observed
for higher (>80%) degrees of deformation.

7. Further Research

(1) The next stage of our research will be concerned
with the prediction of microstructural transformations of
tempering steels with lower austenitising temperatures. This
will increase the data base for numerically simulating the
processes of precision forging and integrated heat treatment.

Furthermore, artificial neural networks will be used
for the prediction of continuous cooling transformation
diagrams, not only for specified strains but also for strain
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Figure 11: Results for tempering steel 34CrMo4 with a deformation of 0%.
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Figure 12: Results for tempering steel 34CrNiMo6 with a deformation of 0%.

rates. Investigations of the CCT diagrams’ strain rate depen-
dence for the tempering steel 42CrMo4 are also planned for
the future. These experiments may require changes in the
architecture of the neural networks used.

(2) In addition to this, a certain interest lies in an
alternative data handling scheme for the CCT diagrams’
transformation curves to reduce the amount of data used in
the training set. Therefore an approach similar to [13] will
be implemented. However, we propose an application of the
curves’ critical points (extrema, inflections, and endpoints)
of microstructural transformations.

(3) In order to avoid overfitting effects, we propose
applying smoothness criteria to the predicted transformation
curves. This should increase the generalization properties of
the networks.

(4) The method of data extension of the current work
is not applicable for processes with nonlinear cooling. For
a universal approach of the diagrams generalization, it
is necessary to develop an appropriate method of data
extension based on other principles. Such a principle might
be an algebraic method suitable for smoothed nonlinear
approximated functions.
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Figure 13: Results for tempering steel 51CrV4 with a deformation of 0%.

8. Summary

Curves in CCT diagrams for the initiation and the com-
pletion of microstructural transformations were used as
training sets for artificial neural networks. Diagrams with
different deformations were utilized with regard to the
process conditions of precision forging with integrated heat
treatment. Predictions could be made within the range of
the investigated deformation conditions. An extrapolation
beyond deformations of 80% leads to inaccuracies.
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