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1. Introduction and Results

A convenient way of describing solutions to a wide class of field equations has been
developed using twistor geometry [1–3]. In this picture, solutions to nonlinear field equations
are mapped bijectively via the Penrose-Ward transform to holomorphic structures on vector
bundles over an appropriate twistor space. Such twistor spaces are well known for many
theories including self-dual Yang-Mills (SDYM) theory and its supersymmetric extensions
as well as N-extended full super-Yang-Mills (SYM) theories. In three dimensions, there are
twistor spaces suited for describing the Bogomolny equations and their supersymmetric
variants. The purpose of this paper is to fill the gaps for three-dimensional N = 8 super-
Yang-Mills theory as well as for three-dimensional Yang-Mills-Higgs theory; the cases for
intermediate N follow trivially. The idea we follow in this paper has partly been presented
in [4].

Recall that the supertwistor space describingN = 3 SDYM theory is the open subset
P 3|3 := CP 3|3 \ CP 1|3; its anti-self-dual counterpart is P 3|3

∗ ∼= P 3|3, where the parity
assignment of the appearing coordinates is simply inverted. Furthermore, we denote by P 2|3
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the mini-supertwistor space obtained by dimensional reduction from P 3|3 and used in the
description of the supersymmetric Bogomolny equations in three dimensions.

For N = 4 SYM theory, the appropriate twistor space L 5|6 is now obtained from the
product P 3|3 × P 3|3

∗ upon imposing a quadric condition reducing the bosonic dimensions by
one (in fact, the field theory described byL 5|6 isN = 3 SYM theory in four dimensions, which
is equivalent toN = 4 SYM theory on the level of equations of motion; in three dimensions,
the same relation holds betweenN = 6 andN = 8 SYM theories). We perform an analogous
construction for N = 8 SYM theory by starting from the product P 2|3 × P 2|3

∗ of two mini-
supertwistor spaces. The dimensional reduction turning the super-self-duality equations in
four dimensions into the super-Bogomolny equations in three dimensions translates into a
reduction of the quadric condition, which yields a constraint only to be imposed on the
diagonal CP 1

Δ = diag(CP 1×CP 1
∗ ) in the base of the vector bundleP 2|3×P 2|3

∗ → CP 1×CP 1
∗ .

Thus, the resulting space L 4|6 is not a vector bundle but only a fibration, and the sections of
this fibration form a torsion sheaf, as we will see. More explicitly, the bosonic partsof the
fibers of L 4|6 over CP 1 × CP 1

∗ are isomorphic to C
2 at generic points, but over the diagonal

CP 1
Δ , they are isomorphic to C.

As expected, we find a twistor correspondence between points in C
3|12 and holomor-

phic sections of L 4|6 as well as between points in L 4|6 and certain sub-supermanifolds in
C

3|12. After introducing a real structure on L 4|6, one finds a nice interpretation of the spaces
involved in the twistor correspondence in terms of lines with marked points in R

3, which
resembles the appearance of flag manifolds in the well-established twistor correspondences.
Recalling that L 5|6 is a Calabi-Yau supermanifold (the essential prerequisite for being the
target space of a topological B-model), we are led to examine an analogous question for L 4|6.
The Calabi-Yau property essentially amounts to a vanishing of the first Chern class of TL 5|6,
which in turn encodes information about the degeneracy locus of a certain set of sections of
the vector bundle L 5|6 → CP 1 × CP 1

∗ . We find that the degeneracy loci of L 5|6 and L 4|6 are
equivalent (identical up to a principal divisor).

A Penrose-Ward transform for N = 8 SYM theory can now be conveniently
established. To define the analogue of a holomorphic vector bundle over the space L 4|6, we
have to remember that in the Čech description, a holomorphic vector bundle is completely
characterized by its transition functions, which in turn form a group-valued Čech 1-cocycle.
These objects are still well defined onL 4|6 and we will use such a 1-cocycle to define what we
will call a pseudobundle over L 4|6. In performing the transition between these pseudobun-
dles and solutions to the N = 8 SYM equations, care must be taken when discussing these
bundles over the subset L 4|6|CP 1

Δ
of their base. Eventually, however, one obtains a bijection

between gauge equivalence classes of solutions to theN = 8 SYM equations and equivalence
classes of holomorphic pseudobundles over L 4|6, which turn into holomorphically trivial
vector bundles upon restriction to any holomorphic submanifold CP 1 × CP 1

∗ ↪→ L 4|6.

Considering the reduction of L 5|6 ⊂ P 3|3 × P 3|3
∗ to the bodies of the involved spaces

(i.e., putting the fermionic coordinates on all the spaces to zero), it is possible to find a
twistor correspondence for certain formal neighborhoods of L 5|0 ⊂ P 3|0 × P 3|0

∗ on which
a Penrose-Ward transform for purely bosonic Yang-Mills theory in four dimensions can be
built. To improve our understanding of the mini-superambitwistor space, it is also helpful to
discuss the analogous construction with L 4|0. We find that a third-order subthickening, (i.e.,
a thickening of the fibers which are only of dimension one) inside of P 2|0 × P 2|0

∗ must be
considered to describe solutions to the Yang-Mills-Higgs equations in three dimensions by
using pseudobundles over L 4|0.
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To clarify the role of the space L 4|6 in detail, it would be interesting to establish
a dimensionally reduced version of the construction considered by Movshev in [5]. In
this paper, the author constructs a “Chern-Simons triple” consisting of a differential
graded algebra (A,d) and a d-closed trace functional on a certain space ST related to the
superambitwistor space. This Chern-Simons triple on ST is then conjectured to be equivalent
toN = 4 SYM theory in four dimensions. The way the construction is performed suggests a
quite straightforward dimensional reduction to the case of the mini-superambitwistor space.
Besides delivering a Chern-Simons triple for N = 8 SYM theory in three dimensions, this
construction would possibly shed more light on the unusual properties of the fibration L 4|6.

Following Witten’s seminal paper [6], there has been growing interest in different
supertwistor spaces suited as target spaces for the topological B-model (see e.g. [4, 7–14]).
Although it is not clear what the topological B-model on L 4|6 looks like exactly (we will
present some speculations in Section 3.7), the mini-superambitwistor space might also prove
to be interesting from the topological string theory point of view. In particular, the mini-
superambitwistor space L 4|6 is probably the mirror of the mini-supertwistor space P 2|4.
Maybe even the extension of infinite dimensional symmetry algebras [12] from the self-dual
to the full case is easier to study in three dimensions due to the greater similarity of self-dual
and full theory and the smaller number of conformal generators.

Note that we are not describing the space of null geodesics in three dimensions; this
space has been constructed in [13].

The outline of this paper is as follows. In Section 2, we review the construction of
the supertwistor spaces for SDYM theory and SYM theory. Furthermore, we present the
dimensional reduction yielding the mini-supertwistor space used for capturing solutions to
the super-Bogomolny equations. Section 3, the main part, is then devoted to deriving the
mini-superambitwistor space in several ways and discussing in detail the associated twistor
correspondence and its geometry. Moreover, we comment on a topological B-model on this
space. In Section 4, the Penrose-Ward transform for three-dimensionalN = 8 SYM theory is
presented. First, we review both the transform forN = 4 SYM theory in four dimensions and
aspects of N = 8 SYM theory in three dimensions. Then, we introduce the pseudobundles
over L 4|6, which take over the role of vector bundles over the space L 4|6. Eventually, we
present the actual Penrose-Ward transform in detail. In the last section, we discuss the third-
order subthickenings of L 4|0 in P 2|0 × P 2|0

∗ , which are used in the Penrose-Ward transform
for purely bosonic Yang-Mills-Higgs theory.

2. Review of Supertwistor Spaces

We will briefly review some elementary facts on supertwistor spaces and fix our conventions
in this section. For a broader discussion of supertwistor and superambitwistor spaces in
conventions close to the ones employed here, see [15]. For more details on the mini-
supertwistor spaces, we refer to [4, 14].

2.1. Supertwistor Spaces

The supertwistor space of C
4|2N is defined as the rank 2|N holomorphic supervector bundle

P 3|N := C
2 ⊗ O(1) ⊕ C

N ⊗ΠO(1) (2.1)
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over the Riemann sphere CP 1. Here, Π is the parity changing operator which inverts the
parity of the fiber coordinates. The base space of this bundle is covered by the two patches
U± on which we have the standard coordinates λ± ∈ U± ∼= C with λ+ = (λ−)

−1 on U+ ∩ U−.
Over U±, we introduce furthermore the bosonic fiber coordinates z α

± with α = 1, 2 and the
fermionic fiber coordinates η ±i with i = 1, . . . ,N. On the intersection U+ ∩U−, we thus have

z α
+ =

1
z 3
−
z α
− , η +

i =
1
z 3
−
η −i with z 3

± = λ±. (2.2)

The supermanifold P 3|N as a whole is covered by the two patches U± := P 3|N|U± with local
coordinates (z 1

± , z
2
± , z

3
± , η

±
1 , . . . , η

±
N).

Global holomorphic sections of the vector bundle P 3|N → CP 1 are given by
polynomials of degree one, which are parameterized by moduli (x αα̇, η α̇

i ) ∈ C
4|2N via

z α
± = x αα̇λ ±α̇ , η ±i = η α̇

i λ
±
α̇ , (2.3)

where we introduced the simplifying spinorial notation

(
λ +
α̇

)
:=

(
1
λ+

)
,

(
λ −α̇

)
:=

(
λ−
1

)
. (2.4)

Equations (2.3), the so-called incidence relations, define a twistor correspondence
between the spaces P 3|N and C

4|2N, which can be depicted in the double fibration

F5|2N

P3|N C4|2N

π2 π1
(2.5)

Here, F 5|2N ∼= C
4|2N × CP 1 and the projections are defined as

π1

(
x αα̇, η α̇

i , λ
±
α̇

)
:=

(
x αα̇, η α̇

i

)
,

π2

(
x αα̇, η α̇

i , λ
±
α̇

)
:=

(
x αα̇λ ±α̇ , λ±, η

α̇
i λ

±
α̇

)
.

(2.6)

We can now read off the following correspondences:

{
projective lines CP 1

x,η in P 3|N}←→
{

points (x, η) in C
4|2N},

{
points p in P 3|N}←→

{
null (β−) superplanes C

2|2N
p in C

4|2N}.
(2.7)
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While the first correspondence is rather evident, the second one deserves a brief remark.
Suppose (x̂ αα̇, η̂ α̇

i ) is a solution to the incidence relations (2.3) for a fixed point p ∈ P 3|N.
Then, the set of all solutions is given by

{(
x αα̇, η α̇

i

)}
with x αα̇ = x̂ αα̇ + μ αλ α̇

± , η α̇
i = η̂ α̇

i + εiλ α̇
± , (2.8)

where μ α is an arbitrary commuting 2-spinor and εi is an arbitrary vector with Graßmann-
odd entries. The coordinates λ α̇

± are defined by (2.4) and λ α̇
± := ε α̇β̇λ ±

β̇
with ε 1̇2̇ = −ε 2̇1̇ = 1.

One can choose to work on any patch containing p. The sets defined in (2.8) are then called
null or β-superplanes.

The double fibration (2.5) is the foundation of the Penrose-Ward transform between
equivalence classes of certain holomorphic vector bundles over P 3|N and gauge equivalence
classes of solutions to theN-extended supersymmetric self-dual Yang-Mills equations on C

4

(see e.g. [15]).
The tangent spaces to the leaves of the projection π2 are spanned by the vector fields

V ±
α := λ α̇

±
∂

∂x αα̇
, V i

± := λ α̇
±

∂

∂η α̇
i

. (2.9)

Note furthermore thatP 3|4 is a Calabi-Yau supermanifold. The bosonic fibers contribute each
+1 to the first Chern class and the fermionic ones −1 (this is related to the fact that Berezin
integration amounts to differentiating with respect to a Graßmann variable). Together with
the contribution from the tangent bundle of the base space, we have in total a trivial first
Chern class. This space is thus suited as the target space for a topological B-model [6].

2.2. The Superambitwistor Space

The idea leading naturally to a superambitwistor space is to “glue together” both the
self-dual and anti-self-dual subsectors of N = 3 SYM theory to the full theory. For this,
we obviously need a twistor space P 3|3 with coordinates (z α

± , z
3
± , η

±
i ) together with a

“dual” copy (the word “dual” refers to the spinor indices and not to the line bundles
underlying P 3|3) P 3|3

∗ with coordinates (u α̇
± , u

3
± , θ

i
±). The dual twistor space is considered

as a holomorphic supervector bundle over the Riemann sphere CP 1
∗ covered by the patches

U ∗
± with the standard local coordinates μ± = u 3

± . For convenience, we again introduce the
spinorial notation (μ +

α ) = (1, μ+)
T and (μ −α ) = (μ−, 1)

T . The two patches covering P 3|3
∗ will

be denoted byU ∗± := P 3|3
∗ |U ∗

± , and the product spaceP 3|3×P 3|3
∗ of the two supertwistor spaces

is thus covered by the four patches

U(1) := U+ × U ∗+ , U(2) := U− × U ∗+ , U(3) := U+ × U ∗− , U(4) := U− × U ∗− , (2.10)

on which we have the coordinates (z α
(a), z

3
(a), η

(a)
i ;u α̇

(a), u
3
(a), θ

i
(a)). This space is furthermore a

rank 4|6 supervector bundle over the space CP 1 ×CP 1
∗ . The global sections of this bundle are

parameterized by elements of C
4|6 × C

4|6
∗ in the following way:

z α
(a) = x

αα̇λ
(a)
α̇ , η

(a)
i = η α̇

i λ
(a)
α̇ ; u α̇

(a) = x
αα̇
∗ μ

(a)
α , θ i

(a) = θ
αiμ

(a)
α . (2.11)
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The superambitwistor space is now the subspace L 5|6 ⊂ P 3|3 ×P 3|3
∗ obtained from the

quadric condition (the “gluing condition”)

κ(a) := z α
(a)μ

(a)
α − u α̇

(a)λ
(a)
α̇ + 2θ i

(a)η
(a)
i = 0. (2.12)

In what follows, we will denote the restrictions of U(a) to L 5|6 by Û(a).
Because of the quadric condition (2.12), the bosonic moduli are not independent

of L 5|6, but one rather has the relation

x αα̇ = x αα̇
0 − θ αiη α̇

i , x αα̇
∗ = x αα̇

0 + θ αiη α̇
i . (2.13)

The moduli (x αα̇) and (x αα̇
∗ ) are, therefore, indeed antichiral and chiral coordinates on the

(complex) superspace C
4|12 and with this identification, one can establish the following

double fibration using (2.11):

L5|6

F6|12

C
4|12

π2 π1

(2.14)

where F 6|12 ∼= C
4|12 × CP 1 × CP 1

∗ and π1 is the trivial projection. Thus, one has the
correspondences

{
subspaces

(
CP 1 × CP 1

∗
)
x0,η,θ

in L 5|6}←→
{

points
(
x0, η, θ

)
in C

4|12},

{
points p in L 5|6}←→

{
null superlines in C

4|12}.
(2.15)

The above-mentioned null superlines are intersections of β-superplanes and dual α-
superplanes. Given a solution (x̂ αα̇

0 , η̂ α̇
i , θ̂

αi) to the incidence relations (2.11) for a fixed point
p in L 5|6, the set of points on such a null superline takes the form

{(
x αα̇

0 , η α̇
i , θ

αi)} with x αα̇
0 = x̂ αα̇

0 + tμ α
(a)λ

α̇
(a), η α̇

i = η̂ α̇
i + εiλ α̇

(a), θ αi = θ̂ αi + ε̃ iμ α
(a).

(2.16)

Here, t is an arbitrary complex number and εi and ε̃ i are both 3-vectors with Graßmann-odd
components. The coordinates λ α̇

(a) and μ α
(a) are chosen from arbitrary patches on which they

are both well defined. Note that these null superlines are in fact of dimension 1|6.
The space F 6|12 is covered by four patches Ũ(a) := π −1

2 (Û(a)) and the tangent spaces to
the 1|6-dimensional leaves of the fibration π2 : F 6|12 → L 5|6 from (2.14) are spanned by the
holomorphic vector fields

W (a) := μ α
(a)λ

α̇
(a)∂αα̇, D i

(a) = λ
α̇
(a)D

i
α̇ , D

(a)
i = μ α

(a)Dαi, (2.17)



Advances in Mathematical Physics 7

where Dαi and D i
α̇ are the superderivatives defined by

Dαi :=
∂

∂θ αi
+ η α̇

i

∂

∂x αα̇
0

, D i
α̇ :=

∂

∂η α̇
i

+ θ αi ∂

∂x αα̇
0

. (2.18)

Just as the space P 3|4, the superambitwistor spaceL 5|6 is a Calabi-Yau supermanifold.
To prove this, note that we can count first Chern numbers with respect to the base CP 1×CP 1

∗
of L 5|6. In particular, we define the line bundle O(m,n) to have first Chern numbers m and n
with respect to the two CP 1s in the base. The (unconstrained) fermionic part of L 5|6 which
is given by C

3 ⊗ΠO(1, 0) ⊕ C
3 ⊗ΠO(0, 1) contributes (−3,−3) in this counting, which has to

be cancelled by the body L 5 of L 5|6. Consider, therefore, the map

κ :
(
z α
(a), λ

(a)
α̇ , u α̇

(a), μ
(a)
α

)
�−→

(
κ(a)

∣
∣
η=θ=0, λ

(a)
α̇ , μ

(a)
α

)
, (2.19)

where κ(a) has been defined in (2.12). This map is a vector bundle morphism and gives rise
to the short exact sequence

0 −→ L 5 −→ C
2 ⊗ O(1, 0) ⊕ C

2 ⊗ O(0, 1) κ−→ O(1, 1) −→ 0. (2.20)

The first Chern classes of the bundles in this sequence are elements of H 2(CP 1 × CP 1,Z) ∼=
Z × Z, which we denote by α1h1 + α2h2 with α1, α2 ∈ Z. Then, the short exact sequence (2.20)
together with the Whitney product formula yields

(
1 + h1

)(
1 + h1

)(
1 + h2

)(
1 + h2

)
=
(
1 + α1h1 + α2h2 + · · ·

)(
1 + h1 + h2

)
, (2.21)

where (α1, α2) label the first Chern class of L 5 considered as a holomorphic vector bundle
over CP 1 × CP 1

∗ . It follows that c1 = (1, 1), and taking into account the contribution of the
tangent space to the base (recall that T 1,0

CP 1 ∼= O(2)) CP 1 × CP 1
∗ , we conclude that the

contribution of the tangent space to L 5 to the first Chern class of L 5|6 is cancelled by the
contribution of the fermionic fibers.

Since L 5|6 is a Calabi-Yau supermanifold, this space can be used as a target space for
the topological B-model. However, it is still unclear what the corresponding gauge theory
action will look like. The most obvious guess would be some holomorphic BF-type theory
[16–18] with B a “Lagrange multiplier (0, 3)-form.”

2.3. Reality Conditions on the Superambitwistor Space

On the supertwistor spaces P 3|N, one can define a real structure which leads to Kleinian
signature on the body of the moduli space R

4|2N of real holomorphic sections of the fibration
π2 in (2.5). Furthermore, ifN is even, one can can impose a symplectic Majorana condition
which amounts to a second real structure which yields Euclidean signature. We saw above
that the superambitwistor space L 5|6 originates from two copies of P 3|3 and, therefore, we
cannot straightforwardly impose the Euclidean reality condition. However, besides the real
structure leading to Kleinian signature, one can additionally define a reality condition by
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relating spinors of opposite helicities to each other. In this way, we obtain a Minkowski metric
on the body of R

4|12. In the following, we will focus on the latter.
Consider the antilinear involution τM which acts on the coordinates of L 5|6 according

to

τM
(
zα± , λ

±
α̇ , η

±
i ;uα̇, μ±α , θ

i
±
)

:=
(
uα̇
± , μ

±
α , θ

i
±; z

α
± , λ

±
α̇ , η

±
i

)
. (2.22)

Sections of the bundle L 5|6 → CP 1 × CP 1
∗ which are τM-real are thus parameterized by the

moduli

xαβ̇ = x β̇α, η α̇i = θ αi. (2.23)

We extract furthermore the contained real coordinates via the identification

x 11̇ = x 0 + x 1, x 12̇ = x 2 − ix 3,

x 21̇ = x 2 + ix 3, x 22̇ = x 0 − x 1,
(2.24)

and obtain a metric of signature (1, 3) on R
4 from ds 2 := det(dxαα̇). Note that we can also

make the identification (2.24) in the complex case (xμ) ∈ C
4, and then even on P 3|N. In the

subsequent discussion, we will always employ (2.24) which is consistent, because we will not
be interested in the real version of P 3|N.

2.4. The Mini-Supertwistor Spaces

To capture the situation obtained by a dimensional reduction C
4|2N → C

3|2N, one uses the
so-called mini-supertwistor spaces. Note that the vector field

T3 :=
∂

∂x 3
= i

(
∂

∂x 21̇
− ∂

∂x 12̇

)

(2.25)

considered on F 5|2N from diagram (2.5) can be split into a holomorphic and an
antiholomorphic part when restricted from F 5|2N to P 3|N:

T3
∣∣
P 3|N = T +T, T+ = i

(
∂

∂z 2
+
− z 3

+
∂

∂z 1
+

)

, T− = i

(

z 3
−
∂

∂z 2
−
− ∂

∂z 1
−

)

. (2.26)

Let G be the abelian group generated by T. Then, the orbit space P 3|N/G is given by the
holomorphic supervector bundle

P 2|N := O(2) ⊕ C
N ⊗ΠO(1) (2.27)
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over CP 1, and we call P 2|N a mini-supertwistor space. We denote the patches covering P 2|N by
V± := U± ∩ P 2|N. The coordinates of the base and the fermionic fibers of P 2|N are the same as
those of P 3|N. For the bosonic fibers, we define

w 1
+ := z 1

+ + z 3
+z

2
+ on V+, w 1

− := z 2
− + z

3
−z

1
− on V−, (2.28)

and introduce additionally w 2
± := z 3

± = λ± for convenience. On the intersection V+ ∩ V−, we
thus have the relation w 1

+ = (w 2
−)
−2w 1

− . This implies that w 1
± describes global sections of the

line bundle O(2). We parameterize these sections according to

w 1
± = y α̇β̇λ±α̇ λ

±
β̇

with y α̇β̇ = y (α̇β̇) ∈ C
3, (2.29)

and the new moduli y α̇β̇ are identified with the previous ones xαβ̇ by the equation y α̇β̇ = x (α̇β̇).
The incidence relation (2.29) allows us to establish a double fibration

L5|6

F6|12

C4|12

π2 π1
(2.30)

whereK 4|2N ∼= C
3|2N × CP 1. We again obtain a twistor correspondence

{
projective lines CP 1

x,η in P 2|N}←→
{

points (y, η) in C
3|2N},

{
points p in P 2|N}←→

{
2|N-dimensional superplanes in C

3|2N}.
(2.31)

The 2|N-dimensional superplanes in C
3|2N are given by the set

{(
y α̇β̇, η α̇i

)}
with y α̇β̇ = ŷ α̇β̇ + κ (α̇λ

β̇)
± , η α̇i = η̂ α̇i + εiλ α̇± , (2.32)

where κα̇ and εi are an arbitrary complex 2-spinor and a vector with Graßmann-odd
components, respectively. The point (ŷ α̇β̇, η̂ α̇i ) ∈ C

3|2N is again an initial solution to the
incidence relations (2.29) for a fixed point p ∈ P 2|N. Note that although these superplanes
arise from null superplanes in four dimensions via dimensional reduction, they themselves
are not null.

The vector fields along the projection ν2 are now spanned by

V ±α̇ := λ β̇±∂(α̇β̇), V i
± := λ α̇±

∂

∂η α̇i
(2.33)

with

∂1̇1̇ :=
∂

∂y 1̇1̇
, ∂2̇2̇ :=

∂

∂y 2̇2̇
, ∂(1̇2̇) = ∂(2̇1̇) :=

1
2

∂

∂y 1̇2̇
. (2.34)
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The mini-supertwistor space P 2|4 is again a Calabi-Yau supermanifold, and the gauge
theory equivalent to the topological B-model on this space is a holomorphic BF theory [4].

3. The Mini-Superambitwistor Space

In this section, we define and examine the mini-superambitwistor space L 4|6, which we will
use to build a Penrose-Ward transform involving solutions to N = 8 SYM theory in three
dimensions. We will first give an abstract definition of L 4|6 by a short exact sequence, and
present more heuristic ways of obtaining the mini-superambitwistor space later.

3.1. Abstract Definition of the Mini-Superambitwistor Space

The starting point is the product spaceP 2|3×P 2|3
∗ of two copies of theN = 3 mini-supertwistor

space. In analogy to the space P 3|3 × P 3|3
∗ , we have coordinates

(
w 1

(a), w
2
(a) = λ(a), η

(a)
i ; v 1

(a), v
2
(a) = μ(a), θ

i
(a)

)
(3.1)

on the patches V(a) which are Cartesian products of V± and V∗± :

V(1) := V+ × V∗+ , V(2) := V− × V∗+ , V(3) := V+ × V∗− , V(4) := V− × V∗− . (3.2)

For convenience, let us introduce the subspace CP 1
Δ of the base of the fibration P 2|3 ×

P 2|3
∗ → CP 1 × CP 1

∗ as

CP 1
Δ := diag

(
CP 1 × CP 1

∗
)
=
{(
μ±, λ±

)
∈ CP 1 × CP 1

∗ | μ± = λ±
}
. (3.3)

Consider now the map ξ : P 2|3 × P 2|3
∗ → OCP 1

Δ
(2) which is defined by

ξ :
(
w 1

(a), w
2
(a), η

(a)
i ;v 1

(a), v
2
(a), θ

i
(a)

)
�−→

⎧
⎨

⎩

(
w 1
± − v 1

± + 2θ i±η
±
i , w

2
±
)

for w 2
± = v 2

±
(

0, w 2
(a)

)
else,

(3.4)

where OCP 1
Δ
(2) is the line bundle O(2) over CP 1

Δ . In this definition, we used the fact that a
point for which w 2

± = v 2
± is at least on one of the patches V(1) and V(4). Note, in particular,

that the map ξ is a morphism of vector bundles. Therefore, we can define a space L 4|6 via the
short exact sequence

0 −→ L 4|6 −→ P 2|3 × P 2|3
∗

ξ−→ OCP 1
Δ
(2) −→ 0 (3.5)

(cf. (2.20)). We will call this space the mini-superambitwistor space. Analogously to above, we
will denote the pull-back of the patches V(a) to L 4|6 by V̂(a). Obviously, the space L 4|6 is a
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fibration, and we can switch to the corresponding short exact sequence of sheaves of local
sections:

0 −→ L 4|6 −→ P 2|3 ×P 2|3
∗

ξ−→ OCP 1
Δ
(2) −→ 0. (3.6)

Note the difference in notation: (3.5) is a sequence of vector bundles, while (3.6) is a sequence
of sheaves. To analyze the geometry of the spaceL 4|6 in more detail, we will restrict ourselves
to the body of this space and put the fermionic coordinates to zero. Similarly to the case of the
superambitwistor space, this is possible as the map ξ does not affect the fermionic dimensions
in the exact sequence (3.5); this will become clearer in the discussion in Section 3.2.

Inspired by the sequence defining the skyscraper sheaf (a sheaf with sections
supported only at the point p) 0 → O(−1) → O → Op → 0, we introduce the following
short exact sequence:

0 −→ O(1,−1) ⊕O(−1, 1)
ζ−→ O(2, 0) ⊕O(0, 2) −→ OCP 1

Δ
(2) ⊕OCP 1

Δ
(2) −→ 0. (3.7)

Here, we defined ζ : (a, b) �→ (aε α̇β̇λα̇μβ̇, bε α̇β̇λα̇μβ̇), where λα̇ and μα̇ are the usual
homogeneous coordinates on the base space CP 1 ×CP 1

∗ . The sheaf OCP 1
Δ
(2) is a torsion sheaf

(sometimes sloppily referred to as a skyscraper sheaf) with sections supported only over
CP 1

Δ . Finally, we trivially have the short exact sequence

0 −→ OCP 1
Δ
(2) α1−→ OCP 1

Δ
(2) ⊕OCP 1

Δ
(2) α2−→ OCP 1

Δ
(2) −→ 0, (3.8)

where α1 : (a) �→ (a, a) and α2 : (a, b) �→ (a − b).
Using the short exact sequences (3.6), (3.7), and (3.8) as well as the nine lemma, we

can establish the following diagram:

0 0 0⏐
�

⏐
�

⏐
�

0 −→ O(1,−1) ⊕O(−1, 1)
ζ−→ L4 −→ OCP 1

Δ
(2) −→ 0

⏐
�id

⏐
�

⏐
�α1

0 −→ O(1,−1) ⊕O(−1, 1)
ζ−→ O(2, 0) ⊕O(0, 2) −→ OCP 1

Δ
(2) ⊕OCP 1

Δ
(2) −→ 0⏐

�
⏐
�

⏐
�α2

0 −→ 0 −→ OCP 1
Δ
(2) id−→ OCP 1

Δ
(2) −→ 0.

⏐
�

⏐
�

⏐
�

0 0 0

(3.9)

From the horizontal lines of this diagram and the five lemma, we conclude that
L 4 ⊕ OCP 1

Δ
(2) = O(2, 0) ⊕ O(0, 2). Thus, L 4 is not a locally free sheaf (a more sophisticated

argumentation would use the common properties of the torsion functor to establish that L 4

is a torsion sheaf; furthermore, one can write down a further diagram using the nine lemma
which shows that L 4 is a coherent sheaf) but a torsion sheaf, whose stalks over CP 1

Δ are
isomorphic to the stalks of OCP 1

Δ
(2), while the stalks over (CP 1 × CP 1

∗ ) \ CP 1
Δ are isomorphic
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to the stalks of O(2, 0) ⊕ O(0, 2). Therefore, L 4 is not a vector bundle, but a fibration (the
homotopy lifting property typically included in the definition of a fibration is readily derived
from the definition of L 4) with fibers C

2 over generic points and fibers C over CP 1
Δ . In

particular, the total space of L 4 is not a manifold.
The fact that the total space of the bundle L 4|6 is neither a supermanifold nor a

supervector bundle over CP 1×CP 1
∗ seems at first slightly disturbing. However, we will show

that once one is aware of this new aspect, it does not cause any deep difficulties as far as the
twistor correspondence and the Penrose-Ward transform are concerned.

3.2. The Mini-Superambitwistor Space by Dimensional Reduction

In the following, we will motivate the abstract definition more concretely by considering
explicitly the dimensional reduction of the space L 5|6, we will also fix our notation in terms
of coordinates and moduli of sections. For this, we will first reduce the product space P 3|3 ×
P 3|3
∗ and then impose the appropriate reduced quadric condition. In a first step, we want to

eliminate in both P 3|3 and P 3|3
∗ the dependence on the bosonic modulus x 3. Thus, we should

factorize by

T(a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂z 2
+
− z 3

+
∂

∂z 1
+

on U(1)

z 3
−
∂

∂z 2
−
− ∂

∂z 1
−

on U(2)

∂

∂z 2
+
− z 3

+
∂

∂z 1
+

on U(3)

z 3
−
∂

∂z 2
−
− ∂

∂z 1
−

on U(4)

, T∗(a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂u 2̇
+

− u 3
+
∂

∂u 1̇
+

on U(1)

∂

∂u 2̇
+

− u 3
+
∂

∂u 1̇
+

on U(2)

u 3
−
∂

∂u 2̇
−
− ∂

∂u 1̇
−

on U(3)

u 3
−
∂

∂u 2̇
−
− ∂

∂u 1̇
−

on U(4),

(3.10)

which leads us to the orbit space

P 2|3 × P 2|3
∗ =

(
P 3|3/G

)
×
(
P 3|3
∗ /G∗

)
, (3.11)

where G and G∗ are the abelian groups generated by T and T∗, respectively. Recall that the
coordinates we use on this space have been defined in (3.1). The global sections of the bundle
P 2|4 × P 2|4

∗ → CP 1 × CP 1
∗ are captured by the parameterization

w 1
(a) = y

α̇β̇λ
(a)
α̇ λ

(a)
β̇
, v 1

(a) = y
α̇β̇
∗ μ

(a)
α̇ μ

(a)
β̇
, θ i(a) = θ

α̇iμ
(a)
α̇ , η

(a)
i = η α̇i λ

(a)
α̇ , (3.12)

where we relabel the indices of μ (a)
α → μ

(a)
α̇ and the moduli yαβ

∗ → y
α̇β̇
∗ , θ iα → θ iα̇, since

there is no distinction between left- and right-handed spinors on R
3 or its complexification

C
3.
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The next step is obviously to impose the quadric condition, gluing together the self-
dual and anti-self-dual parts. Note that when acting with T and T∗ on κ(a) as given in (2.12),
we obtain

T(1)κ(1) = T∗(1)κ(1) =
(
μ+ − λ+

)
, T(2)κ(2) = T∗(2)κ(2) =

(
λ−μ+ − 1

)
,

T(3)κ(3) = T∗(3)κ(3) =
(
1 − λ+μ−

)
, T(4)κ(4) = T∗(4)κ(4) =

(
λ− − μ−

)
.

(3.13)

This implies that the orbits generated by T and T∗ become orthogonal to the orbits of ∂/∂κ
only at μ± = λ±. We can, therefore, safely impose the condition

(
w 1
± − v 1

± + 2θ i±η
±
i

)∣∣
λ±=μ±

= 0, (3.14)

and the subset of P 2|3 × P 2|3
∗ which satisfies this condition is obviously identical to the mini-

superambitwistor space L 4|6 defined above.
The condition (3.14) naturally fixes the parametrization of global sections of the

fibration L 4|6 by giving a relation between the moduli used in (3.12). This relation is
completely analogous to (2.13) and reads

y α̇β̇ = y α̇β̇

0 − θ
(α̇iη

β̇)
i , y

α̇β̇
∗ = y α̇β̇

0 + θ (α̇iη
β̇)
i . (3.15)

We clearly see that this parameterization arises from (2.13) by dimensional reduction from
C

4 → C
3. Furthermore, even with this identification, w 1

± and v 1
± are independent of λ± /=μ±.

Thus, indeed, imposing the condition (3.14) only at λ± = μ± is the dimensionally reduced
analogue of imposing the condition (2.12) on P 3|3 × P 3|3

∗ .

3.3. Comments on Further Ways of Constructing L 4|6

Although the construction presented above seems most natural, one can imagine other
approaches of defining the space L 4|6. Completely evident is a second way, which uses the
description of L 5|6 in terms of coordinates on F 6|12. Here, one factorizes the correspondence
space F 6|12 by the groups generated by the vector field T3 = T∗3 and obtains the
correspondence space K 5|12 ∼= C

3|12 × CP 1 × CP 1
∗ together with (3.15). A subsequent

projection π2 from the dimensionally reduced correspondence space K 5|12 then yields the
mini-superambitwistor space L 4|6 as defined above.

Furthermore, one can factorize P 3|3 × P 3|3
∗ only by G to eliminate the dependence on

one modulus. This will lead to P 2|3 × P 3|3
∗ and following the above discussion of imposing

the quadric condition on the appropriate subspace, one arrives again at (3.14) and the space
L 4|6. Here, the quadric condition already implies the remaining factorization of P 2|3 ×P 3|3

∗ by
G∗.

Eventually, one could anticipate the identification of moduli in (3.15) and, therefore,
want to factorize by the group generated by the combination T+T∗. Acting with this sum on
κ(a) will produce the sum of the results given in (3.13), and the subsequent discussion of the
quadric condition follows the one presented above.
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3.4. Double Fibration

Knowing the parameterization of global sections of the mini-superambitwistor space fibered
over CP 1 × CP 1

∗ as defined in (3.15), we can establish a double fibration, similarly to all the
other twistor spaces we encountered so far. Even more instructive is the following diagram,
in which the dimensional reduction of the involved spaces becomes evident:

F6|12

L5|6 C4|12

π2 π1

K5|12

C3|12L4|6

ν2 ν1

(3.16)

The upper half is just the double fibration for the quadric (2.14), while the lower half
corresponds to the dimensionally reduced case. The reduction of C

4|12 to C
3|12 is obviously

done by factoring out the group generated by T3. The same is true for the reduction of
F 6|12 ∼= C

4|12 × CP 1 × CP 1
∗ to K 5|12 ∼= C

3|12 × CP 1 × CP 1
∗ . The reduction from L 5|6 to L 4|6

was given above and the projection ν2 from K 5|12 onto L 4|6 is defined by (3.12). The four
patches covering F 6|12 will be denoted by Ṽ(a) := ν −1

2 (V̂(a)).
The double fibration defined by the projections ν1 and ν2 yields the following twistor

correspondences:

{
subspaces

(
CP 1 × CP 1)

y0,η,θ
in L 4|6}←→

{
points (y0, η, θ) in C

3|12},

{
generic points p in L 4|6}←→

{
superlines in C

3|12},
{

points p in L 4|6 with λ± = μ±
}
←→

{
superplanes in C

3|12}.

(3.17)

The superlines and the superplanes in C
3|12 are defined as the sets

{(
y α̇β̇, η α̇i , θ

α̇i
)}

with y α̇β̇ = ŷ α̇β̇ + tλ (α̇
(a)μ

β̇)
(a), η α̇i = η̂ α̇i + εiλ α̇(a), θ α̇i = θ̂ α̇i + ε̃ iμ α̇

(a),

{(
y α̇β̇, η α̇i , θ

α̇i
)}

with y α̇β̇ = ŷ α̇β̇ + κ (α̇λ
β̇)
(a), η α̇i = η̂ α̇i + εiλ α̇(a), θ α̇i = θ̂ α̇i + ε̃ iλ α̇(a),

(3.18)

where t, κα̇, εi, and ε̃ i are an arbitrary complex number, a complex commuting 2-spinor,
and two 3-vectors with Graßmann-odd components, respectively. Note that in the last line,
λ α̇± = μα̇

± , and we could also have written

{(
y α̇β̇, η α̇i , θ

α̇i)} with y α̇β̇ = ŷ α̇β̇ + κ (α̇μ
β̇)
(a), η α̇i = η̂ α̇i + εiμ α̇

(a), θ α̇i = θ̂ α̇i + ε̃ iμ α̇
(a). (3.19)
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The vector fields spanning the tangent spaces to the leaves of the fibration ν2 are for
generic values of μ± and λ± given by

W (a) := μα̇
(a)λ

β̇

(a)∂(α̇β̇),

D̃ i
(a) := λ β̇(a)D̃

i
β̇

:= λ β̇(a)

(
∂

∂η
β̇

i

+ θ α̇i∂(α̇β̇)

)

,

D
(a)
i := μα̇

(a)Dα̇i := μα̇
(a)

(
∂

∂θ α̇i
+ η β̇i ∂(α̇β̇)

)
,

(3.20)

where the derivatives ∂(α̇β̇) have been defined in (2.34). At μ± = λ±, however, the fibers of the
fibration L 4|6 over CP 1 ×CP 1

∗ loose one bosonic dimension. As the spaceK 5|12 is a manifold,
this means that this dimension has to become tangent to the projection ν2. In fact, one finds
that over CP 1

Δ besides the vector fields given in (3.20), also the vector fields

W̃ ±
β̇

= μα̇
±∂(α̇β̇) = λ

α̇
±∂(α̇β̇) (3.21)

annihilate the coordinates on L 4|6. Therefore, the leaves to the projection ν2 :K 5|12→L 4|6 are
of dimension 2|6 for μ± = λ± and of dimension 1|6 everywhere else.

3.5. Real Structure on L 4|6

Quite evidently, a real structure on L 4|6 is inherited from the one on L 5|6, and we obtain
directly from (2.22) the action of τM on P 2|4 × P 2|4

∗ , which is given by

τM
(
w 1
± , λ

±
α̇ , η

±
i ;v 1

± , μ
±
α̇ , θ

i
±
)

:=
(
v 1
± , μ

±
α̇ , θ

i
±;w

1
± , λ

±
α̇ , η

±
i

)
. (3.22)

This action descends in an obvious manner to L 4|6, which leads to a real structure on the
moduli space C

3|12 via the double fibration (3.16). Thus, we have as the resulting reality
condition

y
α̇β̇

0 = y β̇α̇

0 , η α̇i = θ α̇i, (3.23)

and the identification of the bosonic moduli y α̇β̇ with the coordinates on R
3 reads as

y 1̇1̇
0 = x 0

0 + x 1
0 , y 1̇2̇

0 = y 2̇1̇
0 = x 2

0 , y 2̇2̇
0 = x 0

0 − x
1
0 . (3.24)

The reality condition τM(·) = · is indeed fully compatible with the condition (3.14)
which reduces P 2|4×P 2|4

∗ toL 4|6. The base space CP 1×CP 1
∗ of the fibrationL 4|6 is reduced to

a single sphere S 2 with real coordinates (1/2)(λ± +μ±) = (1/2)(λ± +λ±) and (1/2i)(λ± −μ±) =
(1/2i)(λ± − λ±), while the diagonal CP 1

Δ is reduced to a circle S 1
Δ parameterized by the real

coordinates (1/2)(λ± + λ±). The τM-real sections of L 4|6 have to satisfy w 1
± = τM(w 1

±) = v 1
± .
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Thus, the fibers of the fibrationL 4|6 → CP 1 ×CP 1
∗ , which are of complex dimension 2|6 over

generic points in the base and complex dimension 1|6 over CP 1
Δ , are reduced to fibers of real

dimension 2|6 and 1|6, respectively. In particular, note that θ i±η
±
i = η ±i θ

i

± = −θ
i

±η
±
i is purely

imaginary and, therefore, the quadric condition (3.14) together with the real structure τM

implies that w 1
± = v 1

± = w 1
± + 2θ

i

±η
±
i for λ± = μ± = λ±. Thus, the body

◦
w

1

± of w 1
± is purely real

and we have w 1
± =

◦
w

1

± − θ i±η ±i and v 1
± =

◦
w

1

± + θ
i
±η
±
i on the diagonal S 1

Δ.

3.6. Interpretation of the Involved Real Geometries

For the best-known twistor correspondences (i.e., the correspondence (2.5)) (more precisely,
the compactified version thereof) its dual, and the correspondence (2.14), there is a nice
description in terms of flag manifolds (see e.g., [3]). For the spaces involved in the twistor
correspondences including minitwistor spaces, one has a similarly nice interpretation after
restricting to the real situation. For simplicity, we reduce our considerations to the bodies (i.e.,
drop the fermionic directions) of the involved geometries, as the extension to corresponding
supermanifolds is quite straightforward.

Let us first discuss the double fibration (2.30), and assume that we have imposed a
suitable reality condition on the fiber coordinates, the details of which are not important. We
follow again the usual discussion of the real case and leave the coordinates on the sphere
complex. As correspondence space on top of the double fibration, we have thus the space
R

3 × S 2, which we can understand as the set of oriented lines (not only the ones through
the origin) in R

3 with one marked point. Clearly, the point of such a line is given by an
element of R

3, and the direction of this line in R
3 is parameterized by a point on S 2. The

minitwistor space P 2 ∼= O(2) now is simply the space of all lines in R
3 [19]. Similarly to

the case of flag manifolds, the projections ν1 and ν2 in (2.30) become, therefore, obvious.
For ν1, simply drop the line and keep the marked point. For ν2, drop the marked point and
keep the line. Equivalently, we can understand ν2 as moving the marked point on the line
to its shortest possible distance from the origin. This leads to the space TS 2 ∼= O(2), where
the S 2 parameterizes again the direction of the line, which can subsequently be still moved
orthogonally to this direction, and this freedom is parameterized by the tangent planes to S 2

which are isomorphic to R
2.

Now in the case of the fibration included in (3.16), we impose the reality condition
(3.22) on the fiber coordinates of L 4. In the real case, the correspondence spaceK 5 becomes
the space R

3 × S 2 × S 2 and this is the space of two oriented lines in R
3 intersecting in a

point. More precisely, this is the space of two oriented lines in R
3 each with one marked

point, for which the two marked points coincide. The projections ν1 and ν2 in (3.16) are then
interpreted as follows. For ν1, simply drop the two lines and keep the marked point. For ν2,
fix one line and move the marked point (the intersection point) together with the second line
to its shortest distance to the origin. Thus, the space L 4 is the space of configurations in R

3,
in which a line has a common point with another line at its shortest distance to the origin.

Let us summarize all the above findings in Table 1.

3.7. Remarks Concerning a Topological B-Model on L 4|6

The space L 4|6 is not well suited as a target space for a topological B-model since it is not a
(Calabi-Yau) manifold. However, one clearly expects that it is possible to define an analogous
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Table 1

Space Relation to R 3

R 3 marked points in R 3

R 3 × S 2 oriented lines with a marked point in R 3

P 2 ∼= O(2) oriented lines in R 3 (with a marked point at shortest distance to the origin.)

R 3×S 2×S 2 two oriented lines with a common marked point in R 3

L 4 two oriented lines with a common marked point at shortest distance from one of
the lines to the origin in R 3

model since, if we assume that the conjecture in [20, 21] is correct, such a model should
simply be the mirror of the minitwistor string theory considered in [14]. This model would
furthermore yield some holomorphic Chern-Simons type equations of motion. The latter
equations would then define holomorphic pseudobundles over L 4|6 by an analogue of a
holomorphic structure. These bundles will be introduced in Section 4.3 and in our discussion,
they substitute the holomorphic vector bundles.

Interestingly, the space L 4|6 has a property which comes close to vanishing of a first
Chern class. Recall that for any complex vector bundle, its Chern classes are Poincaré dual
to the degeneracy cycles of certain sets of sections (this is a Gauß-Bonnet formula). More
precisely, to calculate the first Chern class of a rank r vector bundle, one considers r generic
sections and arranges them into an r × r matrix L. The degeneracy loci on the base space are
then given by the zero locus of det(L). Clearly, this calculation can be translated directly to
L 4|6.

We will now show that L 4|6 and L 5|6 have equivalent degeneracy loci (i.e., they are
equal up to a principal divisor) which, speaking about ordinary vector bundles, would not
affect the first Chern class. Our discussion simplifies considerably if we restrict our attention
to the bodies of the two supertwistor spaces and put all the fermionic coordinates to zero.
Note that this will not affect the result, as the quadric conditions defining L 5|6 and L 4|6 do
not affect the fermionic dimensions: the fermionic parts of the fibrations L 5|6 and L 4|6 are
identical, which is easily seen by considering the global sections generating the total spaces
of the fibrations. Instead of the ambitwistor spaces, it is also easier to consider the vector
bundles P 3 ×P 3

∗ and P 2 ×P 2
∗ over CP 1 ×CP 1

∗ , respectively, with the appropriately restricted
sets of sections. Furthermore, we will stick to our inhomogeneous coordinates and perform
the calculation only on the patchU(1), but all this directly translates into homogeneous, patch-
independent coordinates. The matrices to be considered are

LL 5 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

x 1α̇
1 λ+

α̇ x 1α̇
2 λ+

α̇ x 1α̇
3 λ+

α̇ x 1α̇
4 λ+

α̇

x 2α̇
1 λ+

α̇ x 2α̇
2 λ+

α̇ x 2α̇
3 λ+

α̇ x 2α̇
4 λ+

α̇

x α1
1 μ+

α xα1
2 μ+

α xα1
3 μ+

α xα1
4 μ+

α

xα2
1 μ+

α xα2
2 μ+

α xα2
3 μ+

α xα2
4 μ+

α

⎞

⎟⎟⎟⎟⎟⎟
⎠

, LL 4 =

⎛

⎝
y
α̇β̇

1 λ+
α̇ λ

+
β̇

y
α̇β̇

2 λ+
α̇ λ

+
β̇

y
α̇β̇

1 μ+
α̇ μ

+
β̇
y
α̇β̇

2 μ+
α̇ μ

+
β̇

⎞

⎠ , (3.25)

and one computes the degeneracy loci for generic moduli to be given by the equations

(
λ+ − μ+

) 2 = 0,
(
λ+ − μ+

)(
λ+ − �+

)
= 0 (3.26)
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on the bases of L 5 and L 4, respectively. Here, �+ is a rational function of μ+ and, therefore, it
is obvious that both degeneracy cycles are equivalent.

When dealing with degenerated twistor spaces, one usually retreats to the correspon-
dence space endowed with some additional symmetry conditions [22]. It is conceivable that
a similar procedure will help to define the topological B-model in our case. Also, defining
a suitable blowup of L 4|6 over CP 1

Δ could be the starting point for finding an appropriate
action.

4. The Penrose-Ward Transform for the Mini-Superambitwistor Space

4.1. Review of the Penrose-Ward Transform on the Superambitwistor Space

Let E be a topologically trivial holomorphic vector bundle of rank n overL 5|6 which becomes
holomorphically trivial when restricted to any subspace (CP 1 × CP 1)x0,η,θ ↪→ L

5|6. Due to the
equivalence of the Čech and the Dolbeault descriptions of holomorphic vector bundles, we
can describe E either by holomorphic transition functions {fab} or by a holomorphic structure
∂Â = ∂ + Â. Starting from a transition function fab, there is a splitting

fab = ψ̂ −1
a ψ̂b, (4.1)

where the ψ̂a are smooth GL(n,C)-valued functions (in fact, the collection {ψ̂a} forms a Čech
0-cochain) on U(a) since the bundle E is topologically trivial. This splitting allows us to
switch to the holomorphic structure ∂ + Â with Â = ψ̂∂ψ̂ −1, which describes a trivial vector
bundle Ê ∼= E. Note that the additional condition of holomorphic triviality of E on subspaces
(CP 1 × CP 1)x0,η,θ will restrict the explicit form of Â.

Back at the bundle E, consider its pull-back π ∗2 E with transition functions {π ∗2 fab},
which are constant along the fibers of π2 : F 6|12→L 5|6:

W (a)π ∗2 fab = D
i
(a)π

∗
2 fab = D

(a)
i π ∗2 fab = 0. (4.2)

The additional assumption of holomorphic triviality upon reduction onto a subspace allows
for a splitting

π ∗2 fab = ψ
−1
a ψb (4.3)

into GL(n,C)-valued functions {ψa} which are holomorphic on Ũ(a). Evidently, there is such
a splitting holomorphic in the coordinates λ(a) and μ(a) on (CP 1 × CP 1)x0,η,θ since E becomes
holomorphically trivial when restricted to these spaces. Furthermore, these subspaces are
holomorphically parameterized by the moduli (xαα̇

0 , η α̇i , θ
αi), and thus the splitting (4.3) is
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holomorphic in all the coordinates of F 6|12. Due to (4.2), we have on the intersections Ũ(a) ∩
Ũ(b):

ψaD
i
(a)ψ

−1
a = ψbD i

(a)ψ
−1
b =: λ α̇(a)A

i
α̇,

ψaD
(a)
i ψ −1

a = ψbD
(a)
i ψ −1

b =: μα
(a)Aαi,

ψaW
(a)ψ −1

a = ψbW (a)ψ −1
b =: μα

(a)λ
α̇
(a)Aαα̇,

(4.4)

where A i
α̇, Aαi, and Aαα̇ are independent of μ(a) and λ(a). The introduced components of the

supergauge potentialA fit into the linear system

μα
(a)λ

α̇
(a)

(
∂αα̇ +Aαα̇

)
ψa = 0,

λ α̇(a)
(
Di
α̇ +A i

α̇

)
ψa = 0,

μα
(a)

(
Dαi +Aαi

)
ψa = 0,

(4.5)

whose compatibility conditions are

{
∇ i
α̇,∇

j

β̇

}
+
{
∇ i
β̇
,∇ j

α̇

}
= 0,

{
∇αi,∇βj

}
+
{
∇βi,∇αj

}
= 0,

{
∇αi,∇

j
α̇

}
− 2δ ji ∇αα̇ = 0.

(4.6)

Here, we used the obvious shorthand notations ∇ i
α̇ := Di

α̇ +A i
α̇, ∇αi := Dαi +Aαi, and ∇αα̇ =

∂αα̇+Aαα̇. However, (4.6) are well known to be equivalent to the equations of motion ofN = 3
SYM theory on C

4 [23] (note that most of our considerations concern the complexified case),
and, therefore, also toN = 4 SYM theory on C

4.
We thus showed that there is a correspondence between certain holomorphic

structures on L 5|6, holomorphic vector bundles over L 5|6 which become holomorphically
trivial when restricted to certain subspaces and solutions to the N = 4 SYM equations on
C

4. The redundancy in each set of objects is modded out by considering gauge equivalence
classes and holomorphic equivalence classes of vector bundles, which renders the above
correspondences one-to-one.

4.2.N = 8 SYM Theory in Three Dimension

This theory is obtained by dimensionally reducing N = 1 SYM theory in ten dimensions
to three dimensions, or, equivalently, by dimensionally reducing four-dimensional N = 4
SYM theory to three dimensions. As a result, the 16 real supercharges are rearranged in the
latter case from four spinors transforming as a 2C of Spin(3, 1) ∼= SL(2,C) into eight spinors
transforming as a 2R of Spin(2, 1) ∼= SL(2,R).

The automorphism group of the supersymmetry algebra is Spin(8), and the little group
of the remaining Lorentz group SO(2, 1) is trivial. As massless particle content, we, therefore,
expect bosons transforming in the 8v and fermions transforming in the 8c of Spin(8). One of
the bosons will, however, appear as a dual gauge potential on R

3 after dimensional reduction,
and, therefore, only a Spin(7) R-symmetry group is manifest in the action and the equations of
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motion. In the mini-superambitwistor formulation, the manifest subgroup of the R-symmetry
group is only SU(3) × U(1) × SU(3) × U(1). Altogether, we have a gauge potential Aμ with
μ = 1, . . . , 3, seven scalars φ i with i = 1, . . . , 7, and eight spinors χj

α̇ with j = 1, . . . , 8.
Moreover, recall that in four dimensions,N = 3 andN = 4 super-Yang-Mills theories

are equivalent on the level of field content and corresponding equations of motion. The only
difference is found in the manifest R-symmetry groups which are SU(3) × U(1) and SU(4),
respectively. This equivalence obviously carries over to the three-dimensional situation.N =
6 and N = 8 super-Yang-Mills theories are equivalent regarding their field content and the
equations of motion. Therefore, it is sufficient to construct a twistor correspondence forN = 6
SYM theory to describe solutions to theN = 8 SYM equations.

4.3. Pseudobundles over L 4|6

Because the mini-superambitwistor space is only a fibration and not a manifold, there is no
notion of holomorphic vector bundles over L 4|6. However, our space is close enough to a
manifold to translate all the necessary terms in a simple manner.

Let us fix the covering U of the total space of the fibration L 4|6 to be given by the
patches V(a) introduced above. Furthermore, define S to be the sheaf of smooth GL(n,C)-
valued functions on L 4|6 and H to be its subsheaf consisting of holomorphic GL(n,C)-
valued functions on L 4|6, i.e. smooth and holomorphic functions which depend only on the
coordinates given in (3.12) and λ(a), μ(a).

We define a complex pseudo-bundle over L 4|6 of rank n by a Čech 1-cocycle {fab} ∈
Ž

1
(U,S) onL 4|6 in full analogy with transition functions defining ordinary vector bundles. If

the 1-cocycle is an element of Ž
1
(U,H), we speak of a holomorphic pseudo-bundle overL 4|6. Two

pseudo-bundles given by Čech 1-cocycles {fab} and {f ′
ab
} are called topologically equivalent

(holomorphically equivalent), if there is a Čech 0-cochain {ψa} ∈ Č
0
(U,S) (a Čech 0-cochain

{ψa} ∈ Č
0
(U,H)) such that fab = ψ −1

a f ′
ab
ψb. A pseudo-bundle is called trivial (holomorphically

trivial), if it is topologically equivalent (holomorphically equivalent) to the trivial pseudo-
bundle given by {fab} = {�ab}.

In the corresponding discussion of Čech cohomology on ordinary manifolds, one can
achieve independence of the covering if the patches of the covering are all Stein manifolds.
An analogous argument should also be applicable here, but for our purposes, it is enough to
restrict to the covering U.

Besides the Čech description, it is also possible to introduce an equivalent Dolbeault
description, which will, however, demand an extended notion of Dolbeault cohomology
classes.

4.4. The Penrose-Ward Transform Using the Mini-Superambitwistor Space

With the double fibration contained in (3.16), it is not hard to establish the corresponding
Penrose-Ward transform, which is essentially a dimensional reduction of the four-
dimensional case presented in Section 4.1.

On L 4|6, we start from a trivial rank n holomorphic pseudo-bundle over L 4|6 defined
by a 1-cocycle {fab} which becomes a holomorphically trivial vector bundle upon restriction
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to any subspace (CP 1 × CP 1)y0,η,θ ↪→ L 4|6. The pull-back of the pseudo-bundle over L 4|6

along ν2 is the vector bundle Ẽ with transition functions {ν ∗2 fab} satisfying by definition

W (a)ν ∗2 fab = D̃
i
(a)ν

∗
2 fab = D

(a)
i ν ∗2 fab = 0, (4.7)

at generic points of L 4|6 and for λ± = μ±, we have

W̃
(a)
α̇ ν ∗2 fab = D̃

i
(a)ν

∗
2 fab = D

(a)
i ν ∗2 fab = 0. (4.8)

Restricting the bundle Ẽ to a subspace (CP 1 × CP 1)y0,η,θ ↪→ L
4|6 ⊂ F 5|12 yields a splitting of

the transition function ν ∗2 fab

ν ∗2 fab = ψ
−1
a ψb, (4.9)

where {ψa} are again GL(n,C)-valued functions on Ṽ(a) which are holomorphic. From this
splitting together with (4.7), one obtains that

ψaD̃
i
(a)ψ

−1
a = ψbD̃ i

(a)ψ
−1
b =: λ α̇(a)Ã

i
α̇,

ψaD
(a)
i ψ −1

a = ψbD
(a)
i ψ −1

b =: μα̇
(a)Aα̇i,

ψaW
(a)ψ −1

a = ψbW (a)ψ −1
b =: μα̇

(a)λ
β̇

(a)Bα̇β̇ for λ/=μ,

ψaW
(a)
α̇ ψ −1

a = ψbW
(a)
α̇ ψ −1

b =: λ β̇(a)B̃α̇β̇ for λ = μ.

(4.10)

These equations are due to a generalized Liouville theorem, and continuity yields that B̃α̇β̇ =
Bα̇β̇. Furthermore, one immediately notes that a transition function ν ∗2 fab, which satisfies (4.7)
is of the form

fab = fab
(
y α̇β̇λ

(a)
α̇ λ

(a)
β̇
, y α̇β̇μ

(a)
α̇ μ

(a)
β̇
, λ

(a)
α̇ , μ

(a)
α̇

)
, (4.11)

and thus condition (4.8) is obviously fulfilled at points with λ± = μ±. Altogether, since we
neither loose any information on the gauge potential nor do we loose any constraints on it,
we can restrict our discussion to generic points with λ/=μ, which simplifies the presentation.

The superfield Bα̇β̇ decomposes into a gauge potential and a Higgs field Φ:

Bα̇β̇ := A(α̇β̇) +
i
2
εα̇β̇Φ. (4.12)

The zeroth-order component in the superfield expansion of Φ will be the seventh real scalar
joining the six scalars ofN = 4 SYM in four dimensions, which are the zeroth component of
the superfield Φij defined in

{
Dα̇i +Aα̇i, Dβ̇j +Aβ̇j

}
=: −2εα̇β̇Φij . (4.13)
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Thus, as mentioned above, the Spin(7) R-symmetry group of N = 8 SYM theory in three
dimensions will not be manifest in this description.

Equations (4.10) are equivalent to the linear system

μα̇
(a)λ

β̇

(a)

(
∂(α̇β̇) + Bα̇β̇

)
ψa = 0,

λ α̇(a)
(
D̃ i
α̇ + Ã i

α̇

)
ψa = 0,

μ α̇
(a)

(
Dα̇i +Aα̇i

)
ψa = 0.

(4.14)

To discuss the corresponding compatibility conditions, we introduce the following differen-
tial operators:

∇̃ i
α̇ := D̃ i

α̇ + Ã i
α̇, ∇α̇i := Dα̇i +Aα̇i, ∇α̇β̇ := ∂(α̇β̇) + Bα̇β̇. (4.15)

We thus arrive at

{
∇̃ i
α̇, ∇̃

j

β̇

}
+
{
∇̃ i
β̇
, ∇̃ j

α̇

}
= 0,

{
∇α̇i,∇β̇j

}
+
{
∇β̇i,∇α̇j

}
= 0,

{
∇α̇i, ∇̃

j

β̇

}
− 2δ ji ∇α̇β̇ = 0,

(4.16)

and one clearly sees that (4.16) are indeed (4.6) after a dimensional reduction C
4→C

3 and
defining Φ := A4. As it is well known, the supersymmetry (and the R-symmetry) of N = 4
SYM theory are enlarged by this dimensional reduction, and we, therefore, obtained indeed
N = 8 SYM theory on C

3.
To sum up, we obtained a correspondence between holomorphic pseudobundles over

L 4|6 which become holomorphically trivial vector bundles upon reduction to any subspace
(CP 1 × CP 1)y0,η,θ ↪→ L 4|6 and solutions to the three-dimensional N = 8 SYM equations.
As this correspondence arises by a dimensional reduction of a correspondence which is
one-to-one, it is rather evident that also in this case, we have a bijection between both the
holomorphic pseudobundles over L 4|6 and the solutions after factoring out holomorphic
equivalence and gauge equivalence, respectively.

5. Purely Bosonic Yang-Mills-Higgs Theory from Third-Order
Subneighborhoods

In this section, we want to turn to the purely bosonic situation (in other words, all the
superspaces used up to now loose their Graßmann-odd dimensions) and describe solutions
to the three-dimensional Yang-Mills-Higgs equations using a mini-ambitwistor space (when
speaking about Yang-Mills-Higgs theory, we mean a theory without quartic interaction term).
That is, we will consider the dimensional reduction of the purely bosonic case discussed in
[23, 24] from d = 4 to d = 3. In these papers, it has been shown that solutions to the Yang-Mills
field equations are equivalent to holomorphic vector bundles over a third-order thickening
of the ambitwistor space L 5 in P 3 × P 3

∗ .
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5.1. Thickenings of Complex Manifolds

Given a complex manifold Y of dimension d, a thickening [25, 26] of a submanifold X ⊂ Y
with codimension 1 is an infinitesimal neighborhood of X in Y described by an additional
Graßmann-even but nilpotent coordinate. More precisely, the mth order thickening of X is
denoted by X(m) and defined as the manifold X together with the extended structure sheaf

O(m) =
OY
Im+1

, (5.1)

where OY is the structure sheaf of Y , and I the ideal of functions on Y which vanish
on X. We can choose local coordinates (x 1, . . . , x d−1, y) on Y such that X is given by
y = 0. The mth order thickening X(m), given by the scheme (X,O(m)) is then described
by the coordinates (x 1, . . . , x d−1, y) together with the relation ym+1∼0 (for more details on
infinitesimal neighborhoods, see e.g., [9] and references therein).

Note that it is easily possible to map L 5|6 to a third-order thickening of L 5 ⊂ P 3 × P 3
∗

by identifying the nilpotent even coordinate y with 2θ iηi (cf. [27]). However, we will not
follow this approach for two reasons. First, the situation is more subtle in the case of L 4|6

since L 4 only allows for a nilpotent even direction inside P 2 × P 2
∗ for λ± = μ±. Second,

this description has several drawbacks when the discussion of the Penrose-Ward transform
reaches the correspondence space, where the concepts of thickenings (and the extended
fattenings) are not sufficient (see [27]).

5.2. Third-Order Thickenings and d = 4 Yang-Mills Theory

Consider a vector bundle E over the space C
4 × C

4 with coordinates r αα̇ and sαα̇. On E, we
assume a gauge potential A = Ar

αα̇dr αα̇+As
ββ̇

dsββ̇. Furthermore, we introduce the coordinates

xαα̇ =
1
2
(
r αα̇ + sαα̇

)
, k αα̇ =

1
2
(
r αα̇ − sαα̇

)
(5.2)

on the base of E. We claim that the Yang-Mills equations ∇αα̇Fαα̇ββ̇ = 0 are then equivalent to

[
∇ r
αα̇,∇ r

ββ̇

]
= ∗

[
∇ r
αα̇,∇ r

ββ̇

]
+O

(
k 3),

[
∇ s
αα̇,∇ s

ββ̇

]
= −∗

[
∇ s
αα̇,∇ s

ββ̇

]
+O

(
k 3),

[
∇ r
αα̇,∇ s

ββ̇

]
= O

(
k 3),

(5.3)

where we define ∗F r,s

αα̇ββ̇
:= (1/2)ε r,s

αα̇ββ̇γ γ̇δδ̇
F
γγ̇δδ̇
r,s separately on each C

4(one could also insert an

i into this definition but on C
4, this is not natural).

To understand this statement, note that (5.3) are equivalent to

[
∇x
αα̇,∇x

ββ̇

]
=
[
∇ k
αα̇,∇ k

ββ̇

]
+O

(
k 3),

[
∇ k
αα̇,∇x

ββ̇

]
= ∗

[
∇ k
αα̇,∇ k

ββ̇

]
+O

(
k 3),

(5.4)
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which is easily seen by performing the coordinate change from (r, s) to (x, k). These equations
are solved by the expansion [23, 24]

Ak
αα̇ = −1

2
F x,0
αα̇ββ̇

k ββ̇ − 1
3
k γγ̇∇x,0

γγ̇

(
∗F x,0

αα̇ββ̇

)
k ββ̇,

Ax
αα̇ = Ax,0

αα̇ − ∗F
x,0
αα̇ββ̇

k ββ̇ − 1
2
k γγ̇∇x,0

γγ̇

(
F x,0
αα̇ββ̇

)
k ββ̇,

(5.5)

if and only if ∇αα̇
x,0F

x,0
αα̇ββ̇

= 0 is satisfied. Here, a superscript 0 always denotes an object

evaluated at k αα̇ = 0. Thus, we saw that a solution to the Yang-Mills equations corresponds
to a solution to (5.3) on C

4 × C
4.

As discussed before, the self-dual and anti-self-dual field strengths solving the first
and second equations of (5.3) can be mapped to certain holomorphic vector bundles over
P 3 and P 3

∗ , respectively. On the other hand, the potentials given in (5.5) are now defined on
a second-order infinitesimal neighborhood (not a thickening) of the diagonal in C

4 × C
4 for

whichO(k 3) = 0. In the twistor description, this potential corresponds to a transition function
f+− ∼ψ −1

+ ψ−, where the Čech 0-cochain {ψ±} is a solution to the equations

λ α̇±

(
∂

∂r αα̇
+Ar

αα̇

)
ψ± = O

(
k 4),

μα
±

(
∂

∂sαα̇
+As

αα̇

)
ψ± = O

(
k 4).

(5.6)

Roughly speaking, since the gauge potentials are defined to order k 2 and since ∂/∂r αα̇ and
∂/∂sαα̇ contain derivatives with respect to k, the above equations can indeed be rendered
exact to order k 3. The exact definition of the transition function is given by

f+−,i :=
i∑

j=0

ψ −1
+,j ψ−,i−j , (5.7)

where the additional indices label the order in k. On the twistor space side, a third-order
neighborhood in k corresponds to a third-order thickening in

◦
κ(a) := zα(a)μ

(a)
α − uα̇

(a)λ
(a)
α̇ . (5.8)

Altogether, we see that a solution to the Yang-Mills equations corresponds to a
topologically trivial holomorphic vector bundle over a third-order thickening of L 5 in
P 3 × P 3

∗ , which becomes holomorphically trivial, when restricted to any CP 1 × CP 1
∗ ↪→ L 5.
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5.3. Third-Order Subthickenings and d = 3 Yang-Mills-Higgs Theory

Let us now translate the above discussion to the three-dimensional situation. First of all, the
appropriate Yang-Mills-Higgs equations obtained by dimensional reduction are

∇ (α̇β̇)F(α̇β̇)(γ̇ δ̇) =
[
φ,∇(γ̇ δ̇)φ

]
, Δφ := ∇ (α̇β̇)∇(α̇β̇)φ = 0, (5.9)

while the self-dual and anti-self-dual Yang-Mills equations correspond after the dimensional
reduction to two Bogomolny equations which read as

F(α̇β̇)(γ̇ δ̇) = ε(α̇β̇)(γ̇ δ̇)(ε̇ζ̇)∇ (ε̇ζ̇)φ, F(α̇β̇)(γ̇ δ̇) = −ε(α̇β̇)(γ̇ δ̇)(ε̇ζ̇)∇ (ε̇ζ̇)φ, (5.10)

respectively. Using the decomposition F(α̇β̇)(γ̇ δ̇) = εα̇γ̇ fβ̇δ̇ + εβ̇δ̇fα̇γ̇ , the above two equations can
be simplified to

fα̇β̇ =
i
2
∇(α̇β̇)φ, fα̇β̇ = −

i
2
∇(α̇β̇)φ. (5.11)

Analogously to the four dimensional case, we start from a vector bundle E over the space
C

3 × C
3 with coordinates p (α̇β̇) and q (α̇β̇), additionally we introduce the coordinates

y (α̇β̇) =
1
2
(
p (α̇β̇) + q (α̇β̇)), h (α̇β̇) =

1
2
(
p (α̇β̇) − q (α̇β̇)), (5.12)

and a gauge potential

A = Ap

(α̇β̇)
dp (α̇β̇) +Aq

(α̇β̇)
dq (α̇β̇) = Ay

(α̇β̇)
dy (α̇β̇) +Ah

(α̇β̇)
dh (α̇β̇) (5.13)

on E. The differential operators we will consider in the following are obtained from covariant
derivatives by dimensional reduction and take, for example, the shape

∇y

α̇β̇
=

∂

∂y (α̇β̇)
+
[
A

y

(α̇β̇)
+

i
2
εα̇β̇φ

y, ·
]
. (5.14)

We now claim that the Yang-Mills-Higgs equations (5.9) are equivalent to

[
∇ p

α̇β̇
,∇ p

γ̇δ̇

]
= ∗

[
∇ p

α̇β̇
,∇ p

γ̇δ̇

]
+O

(
h 3),

[
∇ q

α̇β̇
,∇ q

γ̇ δ̇

]
= −∗

[
∇ q

α̇β̇
,∇ q

γ̇ δ̇

]
+O

(
h 3),

[
∇ p

α̇β̇
,∇ q

γ̇ δ̇

]
= O

(
h 3),

(5.15)
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where we can use ∗[∇ p,q

α̇β̇
,∇ p,q

γ̇ δ̇
] = εα̇β̇γ̇ δ̇ε̇ζ̇∇

ε̇ζ̇
p,qφ

p,q. These equations can be simplified in the
coordinates (y, h) to equations similar to (5.3), which are solved by the field expansion

Ah
(α̇β̇)

= −1
2
F
y,0
(α̇β̇)(γ̇ δ̇)

h (γ̇ δ̇) − 1
3
h (γ̇ δ̇)∇y,0

(γ̇ δ̇)
ε(α̇β̇)(ε̇ζ̇)(σ̇τ̇)

(
∇ (σ̇τ̇)
y,0 φ

)
h (ε̇ζ̇),

φ h =
1
2
∇y,0

(γ̇ δ̇)
φy,0h (γ̇ δ̇) +

1
6
h (γ̇ δ̇)∇y,0

(γ̇ δ̇)
ε (α̇β̇)(ε̇ζ̇)(σ̇τ̇)F

y,0
(ε̇ζ̇)(σ̇τ̇)

h(α̇β̇),

A
y

(α̇β̇)
= Ay,0

(α̇β̇)
− ε(α̇β̇)(ε̇ζ̇)(σ̇τ̇)

(
∇ (σ̇τ̇)
y,0 φy,0

)
h (ε̇ζ̇) − 1

2
h (γ̇ δ̇)∇y,0

(γ̇ δ̇)

(
F
y,0
(α̇β̇)(ε̇ζ̇)

)
h (ε̇ζ̇),

φ y = φy,0 +
1
2
ε (α̇β̇)(ε̇ζ̇)(σ̇τ̇)F

y,0
(ε̇ζ̇)(σ̇τ̇)

h(α̇β̇) +
1
2
h (γ̇ δ̇)∇y,0

(γ̇ δ̇)

(
∇(α̇β̇)φ

y,0)h (α̇β̇),

(5.16)

if and only if the Yang-Mills-Higgs equations (5.9) are satisfied.
Thus, solutions to the Yang-Mills-Higgs equations (5.9) correspond to solutions to

(5.15) on C
3 × C

3. Recall that solutions to the first two equations of (5.15) correspond in the
twistor description to holomorphic vector bundles over P 2 ×P 2

∗ . Furthermore, the expansion
of the gauge potential (5.16) is an expansion in a second-order infinitesimal neighborhood
of diag(C 3 × C

3). As we saw in the construction of the mini-superambitwistor space L 4|6,
the diagonal for which h (α̇β̇) = 0 corresponds to L 4 ⊂ P 2 × P 2

∗ . The neighborhoods of this
diagonal will then correspond to subthickenings of L 4 inside P 2 × P 2

∗ , that is, for μ± = λ±, we
have the additional nilpotent coordinate ξ. In other words, the subthickening ofL 4 inP 2×P 2

∗
is obtained by turning one of the fiber coordinates of P 2 × P 2 over CP 1

Δ into a nilpotent even
coordinate (in a suitable basis). Then, we can finally state the following:

Gauge equivalence classes of solutions to the three-dimensional Yang-Mills-Higgs
equations are in one-to-one correspondence with gauge equivalence classes of holomorphic
pseudobundles over a third-order subthickening of L 4, which become holomorphically
trivial vector bundles when restricted to a CP 1 × CP 1 holomorphically embedded into L 4.
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