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Abstract. Finite-size systems of the one-dimensional attractive Hubbard model with random
potential are studied as an effective model for doped semiconductor nanotubes. We calculate
the binding energy of Cooper pairs and pair correlation function by the density-matrix
renormalization group method. We show that, when the scattering potential is strong, there
appears the ground state where Cooper pairs are formed but are localized spatially, with a decay
length of pair correlation smaller than the system size. Experimental relevance is discussed.

1. Introduction

Superconductivity has been found [1, 2] to occur in boron (B) doped diamond where carbon (C)
ions in the diamond structure are substituted randomly by B ions. The effects of disorder in this
system are reported to be so strong that the dimensionless characteristic parameter Fpr ~ 1
where Fp is the Fermi energy and 7 is the lifetime of electrons [3]. In such a situation, Bloch-
like coherent electron conduction does not occur and Fermi surface is no longer well defined in
momentum space [4]. The effects of disorder on superconductivity in such systems have been
examined based on the coherent potential approximation (CPA) [5] and the superconducting
critical temperature T, is found to be strongly suppressed by disorder. Regarding the nature of
the ground state as a function of doping rate, the electronical resistivity at low temperatures
[6] appears to indicate that there exists a superconductor-to-insurator transition, which cannot
be treated by CPA. We therefore want to consider the issue “Anderson localization versus
superconductivity” at T'= 0 K in the present paper.

In the case of boron-nitride (BN) nanotubes, the electric resistance is reduced strongly by
doping of fluorine (F) ions, resulting in a highly metallic conduction comparable with that of
heavily doped semiconductors [7]. It is well known that pure BN nanotubes are insulating with
a band gap of ~ 5 eV [8, 9], irrespective of their chirality. The first-principles local-density-
approximation (LDA) band calculation suggests that, upon doping of F ions, the impurity
state appears above the top of the valence band and hole carriers are introduced into the
system, so that the system becomes a p-type semiconductor [10]. One may then expect that
superconductivity with appreciable T, should be realized because the hole carriers are introduced
near the top of the valence band with high density of states due to the one-dimensionality.
However, occurence of superconductivity has not so far been reported. We suppose that the
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absence of superconductivity in F-doped BN nanotubes may be due to the presence of strong
impurity scattering of carriers in spite of the presence of strong attractive interaction.

In this paper, the competition of the formation of Cooper pairs and Anderson localization is
studied by finite-size clusters of the one-dimensional attractive Hubbard model for simulating
BN nanotubes, where we numerically calculate the binding energy of Cooper pairs and pair
correlation function by the density-matrix renormalization group (DMRG) method.

2. Model and method
The one-dimensional negative-UU Hubbard model with random potential A is defined by the
Hamiltonian

H= tZ (C:»r_l_lgcig + H.C.) - A Z n; + UZ NNy, (1)
1o 1€imp. 7

f
10
Ny = c;rgcig is the density operator, and n; = n;4 + n;. t is the hopping integral and A is the
strength of the scattering potential at the impurity sites distributed randomly in the system. U
is the attractive interaction (U < 0) between carriers, which may come from the electron-phonon
coupling, though we do not specify its origin explicitly. We assume that the number of impurity
sites is equal to the number of carriers and we take the impurity concentration to be 10%. From
the tight-binding band structure calculation, we choose the value of ¢ so as to reproduce the
effective mass of the top of the valence band. Because the difference in energy between the
impurity state and the top of the valence band is given in our model as AFE = v4t2 + A% — 2t
in the dilute limit, we can estimate the impurity potential A from the results of the band
calculation [10]. We thus have the values ¢t = 0.25 eV and A/t ~ 0.3. In the following, we take
t = 1 as the unit of energy.

We employ the DMRG method to calculate the energies and physical quantities in the
ground state, where we use the finite-size clusters with both open-end (OBC) and periodic
(PBC) boundary conditions. We keep up to m ~ 1200 density-matrix eigenstates in the
DMRG procedure; thus, the discarded weights are typically of the order 10~® and the ground-
state energy is obtained in the accuracy of ~ (107% — 107*)¢. All the calculated energies are
extrapolated to the limit m — oo. We use 100 samples for the distribution of the random
potential and take the average for obtaining the physical quantities; no significant changes occur
even if we use more samples.

where ¢/ (¢;;) is the creation (annihilation) operator of a hole with spin o (=%,]) at site ¢,

3. Results of calculation

We first estimate the localization length & defined from the scaling relation In D(L) =
A — L/&oc, where A is a constant and D(L) is the Drude weight calculated for the system
of size L. At U = 0, we find the power-low dependence &, ~ A72. We may say that, if
the localization length is larger (smaller) than the system size, the system should be metallic
(insulating). In actual BN nanotubes, the system size is from 200 nm to 1 gm, which corresponds
to the system of size L = 500 — 2500 in our model. In the following, we assume the system of
L = 100 for simplicity. In this case, we find that the system should be metallic if A is less than
A, ~ 0.24 at which &4 ~ L.

To find consequences of the pairing interaction, we calculate the binding energy between two
holes defined by Ep = (1/2)[Fo(N +2)+ Eg(N) —2Fs(N +1)], where Eg(N) is the ground-state
energy of the system with N = 10 holes. The contour plot of the calculated binding energy
is shown in Fig. 1. We find that, if we increase the strength of U, |Ep| is increased, and if A
becomes larger, |Fp| also becomes larger for fixed U. We thus understand that, if the Cooper
pairs are more localized, the holes feel the attractive interaction more strongly.
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Figure 1. Contour map of the binding energy Ep in the |UJ-A plane at L = 100 with the
impurity concentration of 10%.
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Figure 2. (a) Pair correlation function calculated for different values of A at U = —1 and

L = 100 with the impurity concentration of 10%. The results obtained with PBC and OBC
are shown. (b) Contour map of the exponent K in |U|-A plane at L = 100 with the impurity
concentration of 10%.

In order to see the degree of coherence of superconductivity, we calculate the pair correlation
function P(r) defined by P(r) = (1/N)3; (o] A(r 4+ 9)TA() [tho) with A7) = e¢ipe;p. The
calculated results are shown in Fig. 2 (a). We find the power-like decay of P(r), ie.,
P(r) ~ =YX if the impurity potential is sufficiently small A < A. ~ 0.2 (a boundary effect is
little because the results with OBC are close to the results with PBC as shown in Fig. 2 (a)),
where K corresponds to the Tomonaga-Luttinger-liquid parameter K, in the weak-coupling
theory. The estimated values of K are shown in Fig. 2 (b). We find the enhancement of K in
the weak-coupling regime and suppression of K in the strong-coupling regime (see the values
of K along the U-axis). The suppression of K in the strong-coupling regime would indicate
that the effects of disorder have much influence on the pairs with shorter coherence length. If
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the impurity potential is strong (A > 0.3), we find the exponential decay of P(r) as shown in
Fig. 2 (a). Then, the system can not be superconducting. In this situation, however, there
are Cooper pairs in the system because Fp < 0. We may conclude that the Cooper pairs are
formed but they are localized by the effects of disorder and the superconductivity is not observed
macroscopically in this parameter region.

4. Summary and discussion

Our results may be summarised as follows. If A is sufficiently small, the pair correlation extends
over the system size and the superconductivity may occur if a bundle of such finite-size nanotubes
is made in experimant. As for the issue ”Anderson localization versus superconductivity” at
T = 0 K, we may say the following: If A becomes larger, the binding energy becomes larger. The
pair correlation is however suppressed and for sufficiently large values of A, the pair correlation
decays exponentially, so that the superconductivity does not occur. This is the case for both
weak-coupling and strong-coupling regimes. In the strong-coupling regime, we note that, if
|U| becomes larger for fixed A, the pair correlation is suppressed more strongly because the
coherence length becomes shorter.

The finite-temperature behavior of our system may be inferred from our results; i.e., if we
assume that the binding energy corresponds to the temperature 7, at which the pairs begin
to form and that the pair correlation corresponds to the temperature 7, at which the system
begins to be superconducting, our results suggest that there appears the difference between T,
and T, for A > 0, indicating the existence of the preformed pairs at 7. <T' < T),. Note that, if
A becomes larger, T, increases and T, decreases.

We may therefore suggest that the absence of superconductivity in F-doped BN nanotubes
should be due to the presence of strong impurity scattering of carriers. We may also suggest
that, in B-doped diamond, the Cooper pairs are formed even in the temperature T" > T, but
they are localized by the effects of disorder as in the case of Anderson localization.
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