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ABSTRACT: 
 
In this paper we present an automatic approach for coastline detection from images which is based on parametric active contours 
(snakes). Snakes require the definition of an energy functional that reflects the underlying coastline model. As for Antarctica, our 
application domain, the coastline appearance in the used optical images is heterogeneous. Therefore, a single model does not work 
equally well in all situations. On the basis of an up-to-date Landsat mosaic three different models are formulated that match a large part 
of the Antarctic coastline, i.e. the transition from ice shelf to water, from ice shelf to sea ice and from rocky terrain to water. For each of 
the three different cases the energy terms are optimized based on the radiometric properties of the adjacent regions as well as the 
curvature and the potential change-rate of the coastline itself. A supervised classification for the three classes ice, water and rocky terrain 
controls the whole process by choosing the most applicable model for a certain image region. With a view to the practical application the 
developed approach was integrated into a semiautomatic system, where the human operator supervises the optimization process of the 
contour and interactively corrects the results if the system fails. 
 
 

1. INTRODUCTION 
 
1.1 Motivation 
 
The location and shape of the Antarctic coastline is sensitive to 
climatic conditions. Therefore, several works, e.g. (Williams and 
Hall, 1993 and Scambos et al., 2000) refer to the retreat of the ice 
sheet as a strong indication of global climate change. New climate 
models are being generated that lean on the extension of the ice 
shelves described by the coastline (Bamber and Bindschadler, 
1997). The monotone floating of ice shelves and ruptures of ice 
shelf fronts make the shape of the Antarctic coastline change 
quickly over time and thus, monitoring requires frequent updates 
(Vaughan and Doake, 1997). Capturing and updating the coastline 
is a comprehensive task and is usually carried out by manual 
exploitation of satellite imagery. In general, image availability for 
polar regions has increased in recent years due to a larger number 
of related missions, e.g. Radarsat-1, Landsat ETM+ or MODIS 
onboard Aqua/Terra. An expert group of the Scientific Committee 
on Antarctic Research (SCAR) works on a homogeneous 
international bathymetric chart of the Southern Ocean (IBCSO), 
where the most relevant topographic data of Antarctica and the 
Southern Ocean is collected for storage in a common GIS, the 
Southern Ocean GIS (SOGIS), that includes cartographic 
representations of the Antarctic coastline (Ott and Schenke, 
2007).  
 
Manually mapping and updating the coastline is very time 
consuming, as with respect to its fractal nature the length of the 
coastline as detected in modern satellite imagery reaches almost 
the size of the earth's equator. This is the basic motivation for 

trying to automate the task. In the following, we describe a 
strategy for updating the Antarctic coastline with a reduced 
manual effort that makes more frequent update cycles possible. 
 
1.2 Related Work 
 
In the last two decades a couple of approaches were developed 
that automate the coastline extraction based on satellite imagery 
with respect to the Antarctic context.  
 
Ryan et al. (1991) applied a texture classification to scanned 
aerial photographs based on a neural network approach. The 
coastline is defined as the boundary between different 
homogeneous regions. Templates for the calculation of the 
neighbourhood information of the selected texture features lead to 
smoothing the boundaries and thus to a reduced geometric 
accuracy of the coastline. Liu and Jezek (2004) classify regions 
adjacent to the coastline based on intensity values in 
RADARSAT-1 images, which usually provide better contrast 
than available optical sensors for the Antarctic context. The 
classification strategy assumes the bimodal character of the SAR 
image histogram in coastal regions. Locally adaptive contrast 
ratio thresholds are determined to separate image regions. After 
the classification step several shape descriptors are employed to 
generate plausible regions, whose boundaries are the basis for the 
coastline extraction. This approach proofed its practicability when 
the complete Antarctic coastline was extracted from a SAR image 
mosaic of 25 m and 100 m resolution with a relative precision of 
one pixel.  
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In contrast to these region-based classification strategies a second 
group of approaches is based on edge detection. For updating 
Fischler and Bolles (1981) generate profiles orthogonal to the 
given line elements. The updated line points are then determined 
by maximising the gradient along each of the profiles. This 
strategy provides stable results for low resolution imagery. For 
the more complex situations in higher resolution imagery with 
e.g. shadow effects, rifts on the object surface and a structured 
shape the algorithm fails. In (Lee and Jurkevich, 1990) a coastline 
is extracted from a Sobel filtered SAR image. Gaps are bridged 
by extending the extracted edges, a final grouping leads to a 
solution for the coastline. A major problem of such a strategy is to 
handle ambiguities during the grouping process. 
 
To overcome the problems of the former approaches Mason and 
Davenport (1996) presented a hierarchical strategy that combines 
a region-based classification and an edge-based strategy. In a first 
step a SAR image of reduced resolution is used to detect an 
approximate position of the coastline by classification of the 
adjacent regions. Subsequently, an active contour model (Kass et 
al. 1987) is applied to find a geometrically accurate solution in the 
image of original resolution. A further development of this idea is 
described in (Della Rocca et al., 2004). Here the initial contour is 
derived from the output of a wavelet operation. 
 
1.3 Data 
 
Images for the present work are taken from the Landsat Image 
Mosaic of Antarctica LIMA (Bindschadler et al., 2008). This 
dataset includes more than 1000 single Landsat images re-
sampled to a geometric resolution of 240m and combined into a 
RGB and IRRG mosaic that covers Antarctica up to southern 
latitude of 82.5°. Additionally, a coastline derived from the 
MODIS Image Mosaic Of Antarctica MOA is used as 
approximate position to be refined with the presented approach. 
This coastline has a geometric accuracy of about 250 m (Scambos 
et al, 2007), the temporal difference to the LIMA imagery 
amounts to about 2 years. With respect to LIMA the potential 
geometric accuracy of the presented approach is assumed to be 
about one pixel or 240 m. 
 
 

2. METHOD 
 
From the literature one can conclude that the incorporation of a 
sufficiently good approximation is of major importance to find a 
accurate and reliable final solution. Another aspect is that region-
based methods that operate more globally provide reliable results 
while the more locally operating edge-based methods show a 
better geometric accuracy. We follow the thoughts of Mason and 
Davenport (1996) and present a method which uses parametric 
active contours (snakes) as the core algorithm. The required 
initialisation is derived from the MOA coastline. We make use of 
optical instead of SAR images and define a new coastline model 
consisting of three individual and different snake models. For this 
purpose representative regions on both sides of the initial 
coastlines are classified so that the appropriate model can be 
chosen automatically. The related snake algorithm then improves 
the position of the coastline. A graphical user interface is 
provided for supervising the extraction. The human operator can 
accept the result by confirming it with a simple click, alternatively 

he can interactively digitise coastline points and thus refine or 
correct the automatically obtained result. 
 
In the following the underlying model, the strategy for realising 
the model within a snake algorithm and the graphical user 
interface are described in detail. 
 
2.1 Model Definition 
 
The spectral and geometric characteristics of the Antarctic 
coastline in optical imagery are heterogeneous, so that no single 
model can reflect the different appearances equally well. On the 
basis of the Landsat mosaic three different models are formulated 
that match a large part of the Antarctic coastline, i.e. the transition 
from ice shelf to water, from ice shelf to sea ice and from rocky 
terrain to water (Figure 1), where “ice shelf” includes grounded as 
well as floating ice shelf, and “sea-ice” is not older than one year, 
and is frequently covered by snow, which makes it hard to 
distinguish it from ice shelf. The fourth model in this row would 
be the transition from rocky terrain to sea-ice. This model, 
however, is not regarded further, since it appears only very 
seldom in the available imagery. 
 

 
(a) 

 
(b) 

 
 (c) 

Figure 1: LIMA subsets with instances of the transitions from; 
a) ice shelf to water; b) ice shelf to sea-ice (the coastline is 

marked by red arrows); and c) rocky surface to water 
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The following describes the three models: 
 
Ice shelf to water 
 

•  always clear contrast 
•  largest contrast in the blue channel of LIMA RGB 
•  shape of the coastline mostly smooth except for rifts 
•  infrequent preloaded annual ice (ice floes) 
•  temporal changes of up to 1 km/a (Brunt et al, 2010) 
•  homogeneous adjacent regions 

 

Ice shelf to sea ice 
 

•  small difference in intensity, colour and texture 
•  change of slope and illumination effects can result in a 

dark (shadow) or a bright line 
•  shape of the coastline mostly smooth 
•  high temporal changes of up to 1 km/a 

Rocky terrain to water 
 

•  partly low contrast between water and rocky surface 
•  high contrast between rocks and ice 
•  static coastline, only inaccuracies of the initialisation 

are expected 
•  curvy coastline due to rifts 

 
2.2 Strategy 
 
Pre-processing: Due to the heterogeneous coastline 
characteristics as well as the immense data volume it is not 
reasonable to process the complete Antarctic coastline 
simultaneously. Instead, the Landsat mosaic is segmented into a 
number of tiles of equal size (here: 460 tiles of 240² km2 each), 
and an active contour is placed over each tile containing a section 
of the given coastline. The relevant image tiles are automatically 
selected by a point-in-polygon test with the points of the given 
coastline as input for the polygon. Hence, our method makes use 
of open piece-wise linear curves for the coastline detection. The 
geometric model of the coastline is a polygonal curve supported 
by the discrete 2D pixel coordinates of the underlying image. 
 

Model Selection: An automated analysis is carried out for each 
image tile to find the best-matching model. For that purpose the 
adjacent regions of the expected coastline are classified by a 
supervised k-nearest-neighbour algorithm based on training 
samples selected manually for the three classes: ice (ice shelf or 
sea-ice), water and rocky terrain. For the classification we select 
two features: the intensity mean and standard deviation. The test 
segments to be classified are taken from either side of the initial 
coastline. The segments are generated parallel to its central 
section, shifted off- and onshore (see Figure 2). The size of the 
shift is set with respect to the upper bound of the expected 
maximum offset between the given coastline and its potential 
current position in the image. Subsequently, the classification 
results for the segments on either side of the given coastline are 
combined and from the result, the correct model is selected. 
  

Parameterisation of snakes: Snakes require the definition of an 
energy functional that reflects the underlying coastline model. For 
each of the three different models the energy terms and related 
parameters are optimized based on the radiometric properties of 
the adjacent regions as well as the curvature and the potential 
change-rate of the underlying coastal region. Traditionally, a 

snake is considered as a curve v(s) = (x(s),y(s)) parameterised 
with the arc length s ∈[0,1], that iteratively moves in the image 
domain I(x,y) until it minimizes the energy functional of the curve 
(Kass et al. 1987):   
 

 
Figure 2: Classification of regions adjacent to the approximate 

coastline (in red): water (yellow) and ice (blue) 
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The internal energy Eint is defined for the description of the shape 
of the snake and thus varies with every deformation of the curve. 
Typically the bending and stretching of v are the considered 
internal snake characteristics, modelled by the first and second 
derivatives of v with respect to s: 
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where E = internal energy 
 v', v'' = derivations of v with respect to s 
 α = elasticity parameter 
 β = rigidity parameter 
 

The elasticity and rigidity parameters act as weighting factors of 
the first and second order term of Equation 2. The first term 
controls the length of the snake. Large values for α stretch the 
coastline more and more but also smooth the effect of local 
disturbances in the image energy. The second term controls the 
curvature of the snake. Therefore, β allows to adapt the shape 
properties of the coastline models, e.g. large values for β lead to a 
straighter coastline while small values allow a high curvature 
coastline. 
 
The constraint energy Econ and the image energy Eimg of Equation 
1 are considered as context dependent external influences that 
affect the snake’s position, being responsible for iterative 
movements and deformations. Constraint energy Econ can make 
the snake move toward or away from fixed points or lines. Such 
points could be of supreme quality, e.g. seed points measured 
interactively by a human operator, GPS measurements or other in-
situ observations. In the current method constraints are not 
considered but could easily be added in future. 
 
The image energy Eimg can be considered as a scalar potential 
energy that is defined for each pixel as a function of the grey 
levels I(x,y). It hence can be calculated once in advance before 
starting the iterative optimisation procedure. Principally, the 
image energy can be defined in various ways. For the present 
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approach two energy definitions that both attract the snake to 
edges in the image are selected. The first simply regards the 
squared magnitude of the gradient image: 
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(a) 

 
(b) 

Figure 3: Vector field of image depicted in Figure 1a (transition 
from shelf ice to water); a) standard vector field with vectors 

pointing toward the edges; b) GVF field, the snake can be 
initialized anywhere in the GVF field for being pulled toward 

an edge 
 

As can be also seen in Figure 3a the range of the image energy 
field is limited with respect to the width of the template of the 
gradient operator. As soon as the distance to the initialisation is 
only slightly higher the calculated energy field does not affect the 
snake at all. Thus, we make use of a modified energy field EGVF, 
if the initial coastline is expected to be out of range. Xu and 
Prince (1997) define that Gradient Vector Flow (GVF) field as a 
diffusion of the gradient vectors defined in Equation 3. The GVF 
increases significantly the capture range of the snake and also 
enables the snake to progress into concave parts of the boundary 
(Figure 3b). Further adjustment of the image energy term is 
achieved by model specific pre-processed input image functions, 
like Median and Sobel filter or HSI transformation. A complete 
list of the applied pre-processors is given in Table 1 while their 
effects are displayed in sections 3.1 - 3.3. 
 
In order to minimize the snake energy E* the related Euler 
equation must be solved: 
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which leads to: 
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where t = time 
 A = design matrix 
 γ = step size (viscosity factor) 
 I = identity matrix 
 κ = weight factor for external energy 
 fv = gradient values from image energy 
 

In Equation 5 the snake is made dynamic by describing v as a 
function of time. The matrix A+γI is a pentadiagonal banded 
matrix and γ is a step size that influences the viscosity of the 
snake. κ denotes the strength of the external energy and f the 

gradient values of the image energy (for details of snake 
optimisation see Kass et al. 1987). 
 

User Interaction: The presented method already considers three 
different models but obviously unexpected situations can occur 
nevertheless. To guarantee an optimal quality of the final result 
the two sub-algorithms model selection and snake algorithm are 
supervised by a human operator. To this end a graphical user 
interface was implemented to monitor the whole process. The 
graphical user interface consists of two windows in which the 
initial and the refined data are displayed. It allows manipulating 
all snake parameters and restarting the process. 
 

 

Figure 4: IBCSO with MOA coastline as red curve and 
processed coastline section as green curve, superimposed to the 

polar stereographic projection of LIMA and the General 
Bathymetric Chart of the Oceans (GEBCO) seabed topography. 
 
 

3. EXPERIMENTS AND RESULTS 
 
Until now, approximately 5000 km or 12% of the Antarctic 
coastline have been processed with our approach around the 
Weddell Sea. The part marked in green in Figure 4 illustrates the 
scope of the experiments. The pre-processing step generated 16 
image-tiles of 240 km² each. For each image-tile a coastline 
model was selected automatically. The applied default snake 
parameter settings are displayed in Table 1. 
 
The test scenario consists of 8 tiles that show “ice shelf to water” 
situations, 7 tiles that show “ice shelf to sea ice” and one contains 
a significant part of a rocky coastline. For all image tiles the 
automatic model selection results in the best fitted model. 
 

3.1 Ice shelf to water 
 
Figure 5 shows an example of a subset of a LIMA considered as 
ice shelf to water where the red line in Figure 5a marks the initial 
MOA coastline. For the displayed example the initial line differs 
by up to 4 pixels (1km) from the position indicated by the image. 
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The input image is pre-processed by a Sobel operator, a threshold 
that filters weak edges like small ice rifts and morphological 
operators that lead to thin edges. The resulting edge image (Figure 
5b) is further processed yielding the GVF field (Figure 5c). The 
snake optimisation results in the green line, drawn in Figure 5d. 
We applied the default parameters specified in Table 1: a 
relatively large value for β and a small value for κ that both lead 
to a relatively straight coastline. Thus, small rifts and similar 
structures do not affect the result. The optimisation term is 
parameterised by a relatively large value for γ (step size) that 
leads to a fast convergence of the snake (low number of required 
iterations).  

 
(a) 

 
(b) 

 
(c) 

 
 (d) 

Figure 5: Ice shelf to water model a) a 24*24 km² subset of 
LIMA showing floating ice shelf next to open water with the 

corresponding MOA coastline as red curve b) result after edge 
detection, thresholding and thinning c) GVF field representing 

the vector force field that affects the snake d) result of the 
coastline detection (green)  

 

Due to the high intensity contrast between water and shelf ice the 
refined coastline reflects the image content for the major amount 
of the tested tiles rather well. Disturbances like preloaded ice 
floes or structures within the ice-shelf usually do not affect the 
result. The predefined parameter settings did not need to be 
adapted while running the test scenario.  
 
3.2 Ice shelf to sea ice  
 
Figure 6 shows a typical constellation of annual ice around an ice 
shelf on the lower right side of the red marked coastline. The 
initial coastline in Figure 6a differs by up to 5 pixels (1.25 km) 
from the image content, the coastline is characterised by a bright 
and a dark line. The dark line in the lower left results from a 
shadow of the shelf itself. The bright line results from the directly 
illuminated shelf. Figure 6b shows the pre-processed image, 
where a Sobel filter, a threshold and a thinning operation were 
applied. Here we use a standard vector field as image energy 
(Figure 6c). 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6: ice shelf to sea-ice model a) a 18*18 km² subset of 
LIMA showing ice shelf next to sea ice with the corresponding 

MOA coastline as red curve b) result after edge detection, 
thresholding and thinning c) standard vector field d) resulting 

coastline (green)  
 
The main reason for the standard VF is that the offshore water-to-
sea ice borderline is potentially very near. Due to its high contrast 
compared to the targeted coastline the GVF field might therefore 
lead to a wrong result. The internal energy is parameterised by a 
large β and κ that result in smaller curvature for the coastline but 
also strengthen the effect of the image energy compared to the 
internal energy. 
 
Compared to the ice shelf to water model, ice shelf to sea ice 
situations often required manual interaction during the test 
scenario. The changes in the default parameter set (Table 1) are 
mainly related to the interchange between GVF and standard VF, 
which was necessary if the initial MOA coastline was too far 
away. 
 
3.3 Rocky terrain to water 
 
Especially the peak of the Antarctic Peninsula is characterised by 
rocky terrain, as can be seen in Figure 7. For the major part of the 
rocky terrain the initial MOA coastline lies nearby the image 
content. Nevertheless, the example in Figure 7a shows partly 
differences of up to 3 pixels (0.75 km), which could be removed 
by our method (Figure 7d).  As the dark rocks only show a weak 
contrast to the water in the intensity channel we used the 
saturation channel of the HSI transformed RGB image instead. In 
Figure 7b the blue water shows a relatively large saturation while 
rocks and ice show nearly no colour. The saturation image is 
further processed by Median and, Sobel filter, thresholding and 
thinning. Due to the small difference between the initial MOA 
coastline and the image content a standard vector field (Figure 7c) 
and small values for γ are sufficient. Due to its potentially high 
curvature we selected a small value for β. 
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For the major part the resulting coastline equals the initial MOA 
coastline, only for a minor part some enhancement could be 
achieved as shown in (Figure 7). 
 

 
(a) 

 
(b) 

 
(c) 

 
 (d) 

Figure 7.  rocky-terrain to water model a) a 22*22 km² subset of 
LIMA showing the transition of rocky terrain to water with the 

corresponding MOA coastline as red curve b) saturation channel 
c) standard vector field d) result of the coastline detection 

(green) 
 
 

 
 
3.4 Quantitative evaluation of the results 

For the evaluation of the proposed method, a reference dataset 
was extracted manually from the LIMA imagery for the coastline 
segment, highlighted in Figure 4. 
 
For the processed coastline quality criteria as correctness and 
completeness are calculated in accordance with Heipke et al. 
(1997) using the reference dataset. For that purpose, the required 
geometrical accuracy for the processed coastline was set to 240 m 
and the geometrical accuracy of the reference dataset was 
estimated to be 120 m. According to these values the quality 
criteria result in a completeness of 86.8 % and a correctness ratio 
of 84.0 %. In other words 13.2 % of the manual reference cannot 
be detected by the approach (false negative) and 16.0 % of the 
obtained result is detected wrongly (false positives). Thus, a 
manual post processing is still necessary, but the manual efforts 
are drastically reduced compared to a complete manual 
digitisation of the coastline. 
 
The main issue leading to wrong solutions are adjacent local 
minima in the image energy related to ambiguities in the edge 
image. Additionally, different models might occur within one 
image tile so that there is actually no guaranty that the detected 
snake model fits equally well for the entire scene. 
 

4. CONCLUSIONS 
 
The developed approach is capable of extracting the Antarctic 
coastline in its most specific formations with a high degree of 
automation. Satisfying quality values can be achieved if the set of 
free parameters is optimised for each employed model. The 
implemented GUI provides a practical solution to adapt the most 
sensitive parameters during the process. Thus, the method can be 
utilized as a tool for an automated change analysis for climate 
studies or similar tasks. 
 
To increase the correctness and completeness ratios, future work 
will need to consider enhanced model selection in order to 
prevent different models being present in one tile. For that 
purpose additional data sources like the Antarctic Digital 
Database (ADD), which contains coastline and land cover 
information, that can be utilized to support the classification 
algorithm. 
 
Principally, the transition of shelf ice to sea ice is considered as 
the most limiting issue leading to false extractions. We plan to 
investigate if a replacement of the used edge oriented definition 
by a line oriented one yields better results. 
 
For the rocky terrain to water model an additional force field that 
pushes the snake away from the onshore part could be added to 
prevent the detection of inland edges so that the capture range of 
the snake can be extended without drawback.  
 
Furthermore a rocky terrain to ice model will be added to the 
method to cover all potential transitions on the Antarctic 
continent. 
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Parameter   Ice shelf to water Ice shelf to sea ice Rocky terrain to water 

Internal Energy: - α 0.01 0.01 0.01 
 - β 0.1 0.2 0.001 

- image pre-processing Sobel filter (3*3) 
 

Sobel filter (3*3) 
 

HSI transformation 
Median filter (5*5) 
Sobel filter (3*3) 

Image Energy: 

- vector field GVF Standard VF Standard VF 
Optimization Term: - γ 1 0.1 0.1 
 - κ 1 10 10 
 - iterations 20 40 40 

Table 1. Parameter settings for the different coastline models 
 


