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1 Introduction

At sufficiently low energies and for small string coupling, perturbative string theory is

well approximated by an effective two-derivative supergravity Lagrangian supplemented

by small corrections coming from a double expansion in the slope parameter α′ and the

string coupling gs. The terms of the α′-expansion are higher derivative corrections to the

supergravity action that account for the extended nature of the strings. They are negligible

if the curvature of the background manifold and derivatives of the fields are small in units

of α′. The terms coming from the gs-expansion are loop corrections due to nontrivial

topologies of the string world sheet, which are negligible in the semi-classical regime when

the string coupling is small.

From a phenomenological point of view, such sub-leading corrections can have impor-

tant consequences, as they may allow for solutions with properties that are forbidden at

the two-derivative supergravity level. A well-known example in type IIB string theory are

the AdS4 solutions at large internal volume [1], where α′-corrections [2] break the no-scale

structure of the leading order Minkowski solutions found in [3] and contribute to a nonzero

cosmological constant. In this example, however, the α′-corrections alone are not sufficient,

and also non-perturbative quantum corrections from localized sources are needed in order

to generate the AdS vacuum.

For the heterotic string, an analogous scenario was investigated in [4], where the au-

thors found that an interplay of the lowest order α′-correction [5] and non-perturbative
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effects could give rise to a similar large volume AdS vacuum in 4D, while the classical

two-derivative supergravity action only admits Minkowski ground states.

In view of these constructions, one might wonder whether there could also be sit-

uations where the perturbative α′-corrections alone already suffice to generate a small

non-vanishing cosmological constant in a controlled compactification scheme. This ques-

tion should be easiest to study for the heterotic string, where D-branes and orientifold

planes are absent, and the leading α′-corrections are completely known and already appear

at order O(α′). Looking at the heterotic effective action at string tree-level, however, one

might quickly conclude that α′-corrections alone can never suffice to generate vacua other

than Minkowski space. The apparent reason is that, in the absence of string loop or non-

perturbative corrections, all terms in the heterotic effective action come from world sheets

with spherical topology so that the action scales uniformly with the dilaton φ:

S =

∫

d10x
√−g e−2φ{. . .} (1.1)

(cf. (2.2)). As a consequence, the four-dimensional effective scalar potential likewise scales

uniformly with the dilaton zero mode, and one would expect the 4D dilaton equation to

be solved either if the potential vanishes on the solution or if there is a runaway to a free

vacuum. It therefore seems obvious that heterotic string theory at string tree level can only

lead to Minkowski solutions, and that a non-vanishing cosmological constant also requires

string loop or non-perturbative quantum corrections. A related argument was employed by

Dine and Seiberg in [6, 7] to suggest that realistic string vacua might be strongly coupled.1

It is the purpose of this paper to re-address this question and in particular the seemingly

trivial counter-argument against non-Minkowski vacua sketched in the previous paragraph.

The reason is that the higher curvature terms among the α′-corrections (e.g. the α′tr|R+|2-
terms in the heterotic string) also lead to contributions to the four-dimensional Einstein

equation and the equations of motion for the moduli that involve higher powers of external

Riemann tensors and hence can not be interpreted as a part of the effective scalar potential.

It is therefore a priori not clear whether the scaling argument sketched above is still valid

or whether nontrivial effects might emerge from such higher order terms.

That these effects exist follows from explicitly known AdS4-compactifications of the

heterotic string when the effective action is truncated after the lowest order α′-corrections

(see e.g. [17, 18]). In these solutions, the 4D cosmological constant turns out large, Λ ∼ 1
α′ ,

so that the effects of even higher α′-corrections are difficult to estimate offhand and would

require more explicit calculations [17].

In an interesting recent paper [19], on the other hand, it was investigated whether the

α′-corrections of the heterotic string could also give rise to a small cosmological constant

Λ ∼ α′C, where C is a 6D integral over fields such as the dilaton or the warp factor with

1A priori, all this also applies to the oriented closed string sector of the type II theories, but the inclusion

of orientifold planes and D-branes leads to terms with a different dilaton scaling already at string tree-level.

It is these different scalings that allow, e.g., for the classical AdS vacua of [8] and that have been exploited

in attempts to construct “classical” de Sitter vacua in type II supergravity with (smeared) orientifold planes

(see e.g. [9–11] for early discussions) that could evade the “no-go” theorems discussed in [12–16].
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four internal derivatives. Intriguingly, the authors found that de Sitter vacua of this type

are excluded, but raised the possibility of warped AdS4 compactifications as an O(α′)-

effect. Proving this requires only some of the 10D field equations, and it was left as an

open problem to check whether really all field equations could be satisfied at the considered

order in the α′-expansion.

In this paper we investigate to what extent the usual scaling analysis of the 4D effective

potential is invalidated by higher curvature terms in the α′-expansion and check whether

this expansion can yield perturbatively small cosmological constants of order O(α′) or

higher. The main result of our analysis is that this is in general not possible at string tree-

level. This follows from the four-dimensional Einstein equation and the dilaton equation,

which can be combined to yield a constraint of the form

Λ =
∑

m,n

cmnα
′mΛn, m, n > 0, (1.2)

where cmn are numerical coefficients containing integrals over internal fields and their

derivatives. Assuming a perturbative α′-expansion for Λ, one then obtains Λ = 0 as the

only solution to all orders in α′, as we will explain in more detail below.

This paper is organized as follows. In section 2.1 we establish our notation and detail

a simple argument (cf. [20]) showing that heterotic supergravity with the first order α′-

corrections does not yield solutions with a nonzero cosmological constant to that order. In

appendix B we investigate the proposed warped AdS solutions of [19] at order O(α′) more

directly, showing explicitly that the given O(α′)-expression for the cosmological constant

is really of higher order and thus could compete with neglected terms in the action. In

section 2.2 we then show how the argument of section 2.1 can be extended to all orders in

the α′-expansion and that it is completely independent of the details of the α′-corrected 4D

scalar potential. We conclude with section 3, where we discuss several ways to circumvent

this “no-go theorem”, its relation to the Dine-Seiberg problem, and possible effects of vio-

lations of the effective potential description. Appendix A collects some useful identities for

the Riemann tensor, and appendix C contains the ten-dimensional version of the argument

of section 2.2.

2 A “no-go theorem”

In this section, we discuss a simple argument showing that tree-level heterotic string theory

with its first order α′-corrections does not have 4D de Sitter or anti-de Sitter vacua with

a perturbatively small cosmological constant at this order [20]. We then show that the

argument can in fact be extended to all orders in the α′-expansion. Our assumptions

throughout the paper are as follows:

• We consider compactifications to four dimensions that respect maximal four-dimen-

sional spacetime symmetry, i.e.:

– The 10D metric is a warped product of a maximally symmetric 4D spacetime

(parameterized by coordinates xµ; µ, ν, . . . = 0, . . . , 3) and a 6D compact mani-
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fold (parameterized by ym; m,n, . . . = 4, . . . , 9),

ds2 = e2Ads24 + ds26, (2.1)

where e2A depends on the 6D coordinates only, and ds24 describes an unwarped

4D Minkowski, de Sitter or anti-de Sitter spacetime.

– All 4D parts of tensor and spinor fields vanish (up to gauge choices) except

for combinations that can be built from the 4D (unwarped) metric, its Rie-

mann tensor or its volume form. This means, in particular, that there are no

spacetime-filling fluxes2 and that all 4D covariant derivatives of all tensor fields,

including the dilaton and the Riemann tensor, can be set to zero on the solu-

tion.3 Furthermore, the Lorentz-Chern-Simons 3-form does not contribute to

the equations of motion in maximally symmetric backgrounds [21].

• String-loop and/or non-perturbative corrections to the action are disregarded.

• α′ is a meaningful expansion parameter in the sense that all field variations are

small over a string length and the α′-corrections can be organized in a perturbative

expansion about the zero-slope limit.4

2.1 Heterotic supergravity with leading α
′-corrections

In string frame, the heterotic supergravity action with leading α′-corrections reads (for

simplicity we set the 10D gravitational coupling κ2 = 1
2)

S =

∫

d10x
√−g e−2φ

{

R+ 4(∂φ)2 − 1

2
|H|2 − α′

4

[

tr|F |2 − tr|R+|2
]

+O(α′2)

}

(2.2)

with |H|2 = 1
6HMNLH

MNL, tr|F |2 = 1
2trFMNFMN and tr|R+|2 = 1

2R
+
MNPQR

+MNPQ.

Here, φ denotes the dilaton, F is the Yang-Mills field strength, and R+
MNP

Q is the Riemann

tensor constructed from the torsionful connection Γ+M
NL = ΓM

NL − 1
2HNL

M . H is the α′-

corrected 3-form field strength of the NS 2-form potential B,

H = dB +
α′

4
(ω3L − ω3Y) , (2.3)

where ω3L and ω3Y denote the Chern-Simons 3-forms formed from the spin connection and

the Yang-Mills gauge field, respectively.

For our argument, it is sufficient to look at the field equations of the dilaton and the

external metric. This can be done either by using a 4D effective action approach or by

2We express everything in terms of the Yang-Mills field strength F and the NS 3-form H, which have a

too small rank to be spacetime-filling in 4D. The Hodge duals of purely 6D fluxes of these fields would of

course generically have spacetime-filling components, but they do not appear explicitly in our formalism.
3Note that for maximally symmetric spaces, the Riemann tensor becomes an algebraic combination of

metric tensors, and therefore its covariant derivative vanishes.
4The α

′-expansion differs from the derivative expansion in that some terms appear at higher orders

than suggested by the number of their derivatives. An example is the term tr|F |2 which, although a two

derivative term, appears at O(α′). It should be noted though that our analysis does not depend on which

of the two expansion schemes is used.

– 4 –



J
H
E
P
0
6
(
2
0
1
2
)
0
2
9

working directly with the 10D field equations. We describe the 4D effective action approach

here and sketch the analogous 10D argument in appendix C.

For the 4D argument, we can restrict our attention to the zero mode, τ , of the dilaton,

which we define by separating off the higher Kaluza-Klein modes,

e−φ = τe−φKK . (2.4)

Here φKK denotes the sum of all remaining KK-modes, which we integrate out by simply

setting them equal to their on-shell values. It does not matter for our argument whether

τ or one of the KK modes has the lowest mass (or whether they even combine with other

degrees of freedom in the low energy EFT as suggested in [22]) as can be seen directly from

the equivalent ten-dimensional analysis in appendix C.

On-shell, all fields in 4D must be covariantly constant by maximal symmetry, so we

can henceforth ignore any xµ-dependence of τ and only need to keep track of τ itself in the

action, but not of its derivatives.

The only other field whose dynamics we need to consider is the external metric gµν .

Switching to four-dimensional Einstein frame, we define a new 4D metric g̃µν by

g̃µν ≡ Vτ2e−2Agµν . (2.5)

Here

V ≡
∫

d6y
√
g6 e

−2φKK+2A, (2.6)

which can again be treated as constant in 4D by maximal symmetry.

Performing this rescaling, we then obtain an effective 4D action for g̃µν and τ of

the form

S =

∫

d4x
√

−g̃4

{

R̃4 − V +W
}

, (2.7)

where we have split the action into the Einstein-Hilbert term and two extra contributions.

V contains all terms that are constructed from fields without external indices, whereas W

contains all terms that include fields with 4D spacetime indices. In the absence of W , V

is just the usual effective potential.

Using (2.2), these two terms are given by

V = −
∫

d6y
√
g6 e

−2φKK+4A 1

τ2V2

×
[

R6 − 20(∂A)2 − 8∇2A+ 4(∂φ)2 − 1

2
|H|2 − α′

4

(

tr|F |2 − |R+
6 |2

)

]

+O(α′2)

(2.8)

and

W =

∫

d6y
√
g6 e

−2φKK

[

α′τ2

4
|R̃µνλ

ρ|2 − α′

2V e2AR̃4(∂A)
2

]

+O(α′2), (2.9)

where we have evaluated the curvature terms R and tr|R+|2 for the tilded metric (2.5)

and expressed them in terms of R̃4 and |R̃µνλ
ρ|2 = 1

2R̃µνλρR̃
µνλρ as well as a term |R+

6 |2
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containing various internal fields. Further details and the definition of |R+
6 |2 can be found

in appendix A.

Using the scaling V ∼ τ−2, one finds the 4D dilaton equation,

2V +
α′τ2

2
|R̃µνλ

ρ|2
∫

d6y
√
g6 e

−2φKK = 0, (2.10)

and the trace of the four-dimensional Einstein equation,

R̃4 − 2V − α′

2V R̃4

∫

d6y
√
g6 e

−2φKK+2A (∂A)2 = 0, (2.11)

where we have neglected the variation with respect to the connection as it would give rise

to covariant derivatives upon partial integration, which vanish due to maximal symmetry.

Combining the two equations such that V cancels out and substituting R̃µνλρ = 2
3Λg̃λ[µg̃ν]ρ

then yields an equation of the form

Λ = α′
(

c11Λ + c12Λ
2
)

+O(α′2), (2.12)

where c11 and c12 are given by

c11 =
1

2V

∫

d6y
√
g6 e

−2φKK+2A (∂A)2, c12 = −τ2

3

∫

d6y
√
g6 e

−2φKK . (2.13)

Given our assumption that we are in the regime of validity of the perturbative α′-

expansion, (2.12) must be solved order by order with an ansatz of the form

Λ = Λ0 + α′Λ1 +O(α′2) (2.14)

for the cosmological constant, where Λ0 denotes the solution of the leading order super-

gravity equations without α′-corrections, α′Λ1 is a correction due to next-to-leading order

terms in the α′-expansion, and so on. It is straightforward to see that plugging this ansatz

into (2.12) yields

Λ = O(α′2) (2.15)

as the only solution. Thus, perturbative heterotic string theory does not yield solutions

with a nonzero cosmological constant up to corrections of order O(α′2).

Let us now compare this to the result of [19], where it was suggested that warped AdS

vacua might be allowed in heterotic string theory as an O(α′)-effect, i.e.,

Λ = −α′C +O(α′2), (2.16)

where C is a non-negative constant which is built from a sum of squares of internal fields

integrated over the internal manifold. At first sight, this seems to contradict the above ar-

gument that solutions with nonzero cosmological constant are not allowed at order O(α′1).

However, one can show directly by means of the supergravity equations of motion that the

terms contained in C actually vanish at the order considered here such that C = O(α′).

The right hand sides of (2.15) and (2.16) are therefore equal up to corrections of order

O(α′2). For convenience, we give the details in appendix B.

– 6 –
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2.2 General argument

Let us now generalize the above argument to the heterotic string with α′-corrections of

arbitrarily high order. The effective action for the massless fields then reads

S =

∫

d10x
√−g e−2φ

{

R+ 4(∂φ)2 − 1

2
|H|2 + α′-corrections

}

, (2.17)

where all terms scale identically with respect to the dilaton if we neglect string loop or

non-perturbative corrections as initially stated.

Rescaling the metric as in (2.5), we obtain the action in four-dimensional Einstein frame

S =

∫

d4x
√

−g̃4

{

R̃4 − V +W
}

. (2.18)

As in the previous section, we have split the action into an Einstein-Hilbert term R̃4, a

term V containing all terms that are constructed from fields without external spacetime

indices, and a term W containing everything else.

In the absence of string loop or non-perturbative corrections, all terms in V scale again

as V ∼ τ−2 such that the dilaton equation yields

2V + τ∂τW = 0. (2.19)

Taking the trace of the four-dimensional Einstein equation, we furthermore find

R̃4 − 2V −W ′ = 0, W ′ ≡ g̃µν√−g̃4

δ

δg̃µν

(
∫

d4x
√

−g̃4W

)

, (2.20)

where, as indicated, W ′ denotes all terms that are due to the variation of W with respect

to the external metric.

Combining the two equations (2.19) and (2.20), we then find

R̃4 = −τ∂τW +W ′. (2.21)

Although an explicit expression for the right hand side of this equation is only known

for the first few orders in the α′-expansion, the general structure is rather simple: it is a

sum of positive powers of the cosmological constant with coefficients built from integrals

over internal fields and their derivatives.

To see this, recall that our assumption of maximal 4D spacetime symmetry implies

that only the metric, the epsilon tensor and the Riemann tensor are nontrivial, all with

vanishing covariant derivative. Considering first the metric variations of W that come

from variations of connections (either within covariant derivatives or curvature tensors or

Lorentz-Chern-Simons forms), one sees that these variations do not contribute to the right

hand side of (2.21), as they would lead to terms with a total 4D covariant derivative,

which vanish by assumption. The only contributions to W ′ are therefore from variations of

metric tensors that appear algebraically in W or in the metric determinant. As there are

no nontrivial contractions of just the epsilon tensor and/or the metric, all these terms must

– 7 –
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contain at least one Riemann tensor.5 Similar remarks also apply to the dilaton variation

of W , so that the right hand side of (2.21) is a sum of terms that each involves at least one

Riemann tensor. Because of R̃µνλρ = 2
3Λg̃λ[µg̃ν]ρ, these then translate into positive powers

of the cosmological constant, as claimed.

Since at leading order the supergravity action does not contain any terms that depend

on the Riemann tensor except for the Einstein-Hilbert term, the terms in W and W ′ are

of order O(α′) or higher. We can therefore schematically rewrite (2.21) as

Λ =
∑

m,n

cmnα
′mΛn, m, n > 0, (2.22)

with some numerical coefficients cmn that in general contain integrals over contractions of

warp factor terms, internal field strengths and curvatures, and so on.

Assuming again the validity of a perturbative α′-expansion, we need to solve (2.22)

order by order with an ansatz of the form

Λ = Λ0 + α′Λ1 + α′2Λ2 + . . . (2.23)

as in section 2.1. This yields

Λ = 0 (2.24)

as the only solution to all orders in the perturbative α′-expansion.6 Hence, heterotic

string theory yields Minkowski spacetime as the only maximally symmetric solution to all

orders in the perturbative α′-expansion, unless one introduces loop and/or non-perturbative

corrections. In particular, we don’t find α′-generated AdS4 vacua with perturbatively small

curvatures to be possible.

3 Discussion

Let us now discuss several implications of our findings. In particular, we will discuss

possibilities to evade our above no-go argument, its relation to the Dine-Seiberg problem

and the violation of the effective potential description due to higher order corrections to

the supergravity action.

3.1 Evading the no-go theorem

In section 2.2, we have shown that heterotic string compactifications at string tree-level

yield 4D Minkowski spacetime as the only maximally symmetric solution to all orders in a

perturbative α′-expansion, unless one violates one of our initial assumptions. Let us now

discuss these possible violations and how they evade our argument.

5Note that there is no constant term in W : a constant has no external spacetime indices and hence

would be part of V , which however cancels out in (2.21).
6We might also try to solve (2.22) without expanding Λ as in (2.23). Assuming that Λ 6= 0, we can then

divide by Λ to get 1 ≤
∑

|cmnα
′mΛn−1|. But this is again a contradiction to the assumption made in the

beginning of section 2.
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Loop and non-perturbative corrections/extended sources. An obvious possibility

to circumvent the argument of section 2.2 is the inclusion of terms that scale differently

with respect to the dilaton than the tree-level terms considered here. Natural candidates

are string loop or non-perturbative corrections e.g. from gaugino condensation [23, 24].

With such terms turned on, the dilaton and Einstein equations read

− τ∂τV + τ∂τW = 0, R̃4 − 2V −W ′ = 0 (3.1)

and can in general not be combined such that V cancels out. The right hand side of (2.22)

may then contain terms which are independent of Λ, making solutions other than Λ = 0

possible. It would be interesting to see whether including the first loop correction at

order O(α′3gs) could allow for purely perturbative solutions with a non-zero cosmological

constant for the heterotic string.

A different dilaton scaling may also be introduced if one includes extended sources

such as the various types of D-branes and orientifold planes in type II string theory. Being

an open string tree-level action, the DBI action scales only with e−φ and so would in

general also invalidate our argument. In fact, in type II string theory, a large number

of compactification scenarios with a nonzero cosmological constant have been proposed

using D-branes and orientifolds as well as non-perturbative quantum corrections starting

with [25]. Heterotic string theory, on the other hand, is much more limited in this respect,

as it does not contain D-branes and O-planes but would require dealing with less common

extended objects.

Spacetime-filling fluxes. Since spacetime-filling fluxes are in general not forbidden by

maximal symmetry, they can be used to invalidate our argument around (2.21), where

we explained that all terms in W are contractions of Riemann tensors and must there-

fore contain factors of the cosmological constant. In heterotic string theory, there are

no spacetime-filling fluxes if spacetime is assumed to be four-dimensional. Compactifying

to three dimensions, however, allows for solutions with a nonzero cosmological constant, if

spacetime components ofH are turned on (see e.g. [26]). In type II string theory, spacetime-

filling RR-fluxes may also be present in compactifications to four dimensions and may lead

to solutions with a nonzero cosmological constant.

Large higher derivative terms. Another way to circumvent our no-go theorem is to

leave the perturbative regime of the α′-expansion and consider solutions for which higher

derivative terms are not small in units of α′. A truncation of the action at a finite order is

then in general not guaranteed to be a good approximation to the full theory, because higher

order terms are not automatically suppressed.7 This problem does of course not apply

when supergravity is studied in its own right instead of being considered the low energy

effective field theory of string theory. In any case, allowing curvature and derivatives of the

fields to be large in units of α′, it is indeed possible to construct solutions with a nonzero

cosmological constant that is large in units of α′. A good example are the heterotic AdS

7This does of course not rule out that the truncated action could still capture the essential features of

a solution or that the higher order terms happen to be small or even vanish in certain cases.
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compactifications studied in [17], which are solutions to the heterotic supergravity action

with linear α′-corrections that feature a curvature of order O( 1
α′ ). By construction, our

argument does not make statements in this regime.

Breaking maximal symmetry. Requiring spacetime to be maximally symmetric im-

plies a very limited field content such that, in the absence of spacetime-filling fluxes, all

terms showing up on the right hand side of (2.21) contain contractions of spacetime com-

ponents of the Riemann tensor. All of these terms can then be rewritten as a power of Λ

times some numerical factor, regardless of how the Riemann tensors are contracted. As

explained earlier, this property ensures that the higher derivative curvature terms on the

right hand side of (2.21) are much smaller than the Ricci scalar on the left hand side,

leading to constraint (2.22) and the conclusion that only Minkowski solutions are possible.

For spacetimes without maximal symmetry, however, this need not be the case. The

presence of various (spacetime) tensor fields then leads to new terms in (2.21) which can be

of the same order as the 4D Ricci scalar and thus generate a nonzero cosmological constant.

Furthermore, it is not guaranteed anymore that higher derivative curvature terms in (2.21)

are negligible, since whether they are much smaller than the 4D Ricci scalar or can compete

with it depends on how they are contracted. This is due to the well-known fact that for

general spaces the magnitude of individual components of the Riemann tensor and the

Ricci scalar need not be the same, so that the Riemann tensor can have large components

even when the Ricci scalar is very small. In heterotic string theory, the Ricci scalar may

then compete, for example, with the α′|R̃µνλ
ρ|2 term and thus become nonzero.

This is also the reason why it is not possible to extend our analysis to make a statement

about the curvature of the internal space. An exception are compactifications on maximally

symmetric spaces such as the six-sphere, which can be ruled out using an argument along

the lines of section 2.2, unless there exist six-form fluxes filling internal space. Since this

only concerns a very restricted class of compactifications, our discussion does unfortunately

not add much to the discussion of [27], where it is suggested that higher derivative correc-

tions (or strong warping, see also [28]) could in principle support an everywhere negative

internal Ricci scalar, which is difficult to realize otherwise.

3.2 The Dine-Seiberg problem

In [6, 7], Dine and Seiberg used the dilaton behavior of the effective 4D scalar potential

in the weak coupling limit to argue that, unless the effective potential is identically zero,

there must in general either be a runaway to the free vacuum or a minimum at strong

coupling. Using an analogous scaling analysis for the universal volume modulus, one may

argue for similar difficulties regarding compactifications at large volume (cf. e.g. [29] for a

recent discussion). Progress in moduli stabilization techniques have since then led to many

interesting scenarios where an interplay of various scalar potential contributions suggest

the existence of weakly coupled minima at controllably large volumes. Still many of the

difficulties and complexities one encounters in these attempts can be traced back to the

issues pointed out in [6, 7].

– 10 –



J
H
E
P
0
6
(
2
0
1
2
)
0
2
9

The argument given in the present paper, although somewhat similar in its conse-

quences, differs from the argument of [6, 7] in several ways. First of all we do not really

use or discuss moduli stabilization. Nor do we trace the dependence of the scalar potential

on the volume modulus. In fact, the detailed form of the scalar potential and its moduli

dependence play no role for our argument (except that we exploit the overall dilaton scal-

ing to eliminate the scalar potential completely from the equation of interest (eq. (2.21))).

Instead, the only terms that matter for our argument are higher order products of 4D

Riemann tensors, which did not play a role for the arguments in [6, 7].

Moreover, it could have been the case that terms that appear to be of lower order in

the α′-expansion compete with terms that are explicitly of higher order in α′ without that

the perturbative α′-expansion breaks down. An example for this are the |H|2 and |F |2
terms appearing in the heterotic supergravity action or gradient terms of the warp factor

or the dilaton. As reviewed in appendix B, they are forced to be zero by the leading order

equations of motion, if our initially stated assumptions hold. Including α′-corrections to

the action, however, the equations of motion are modified such that the above terms can

become nonzero and thus compete with higher order terms in the α′-expansion. This could

have postponed the emergence of a nontrivial cosmological constant to a higher order than

suggested by [19]. Our argument from section 2.2, however, shows that this can not happen

at any order in α′, regardless of the scalar potential.

3.3 Violation of effective scalar potential description

The effective scalar potential description is a standard tool in effective field theory which

is widely used in the moduli stabilization literature. For solutions yielding a maximally

symmetric spacetime, the effective potential is usually expected to fulfill two assumptions:

• The equations of motion are satisfied at a point in moduli space which is an extremum

of V .

• The value of V at this point is proportional to the cosmological constant.

These assumptions are true if the effective action can be written in the form

S =

∫

d4x
√

−g̃4

{

R̃4 − V
}

, (3.2)

where R̃4 is the only term in the Lagrangian that depends on the external metric, and V

is the only term that depends on the moduli.

It is interesting to note that both assumptions are generically violated by higher order

effects in the α′-expansion, unless the cosmological constant is zero. This follows from (3.1)

which on-shell yields

∂τV 6= 0, V 6∼ Λ. (3.3)

Hence, the equations of motion are in general satisfied at a point in moduli space which

is not an extremum of V . Moreover, V is not proportional to the cosmological constant

anymore. This effect is usually completely negligible when the cosmological constant is

small. For inflation scenarios with a very high energy scale, these corrections might be

more sizeable, but when they are, the validity of the perturbative α′-expansion would also

be less obvious.
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A Riemann tensor with warping

Let us compute the components of the Riemann tensor for the warped spacetime

ds2 =
e2A

Vτ2 g̃µνdx
µdxν + ds26. (A.1)

In order to express the full Riemann tensor RMRN
P in terms of the Riemann tensor R̃MRN

P

of the unwarped metric g̃MN , we use the formula

RMRN
P = −∇̃MΓP

RN + ∇̃RΓ
P
MN + ΓS

NMΓP
RS − ΓS

NRΓ
P
MS + R̃MRN

P , (A.2)

where M,N, . . . = 0, . . . , 9 denote 10D spacetime indices, ΓM
NP = 1

2g
MR(∇̃P gRN+∇̃NgRP−

∇̃RgNP ) and ∇̃M is the covariant derivative associated with the unwarped metric g̃MN (see

e.g. [30]). This yields

Rµνλ
ρ = −2

e2A

Vτ2 g̃λ[µδ
ρ

ν](∂A)
2 + R̃µνλ

ρ, Rijk
l = R̃ijk

l,

Rµjλ
l = − e2A

Vτ2 g̃µλ∇j∂
lA− e2A

Vτ2 g̃µλ(∂jA)(∂
lA). (A.3)

Assuming that H has only internal components, it follows from (A.2) that introducing

torsion with ΓM
NL → ΓM

NL− 1
2HNL

M modifies the internal components Rijk
l of the Riemann

tensor and, in case of nontrivial warping, also some of the spacetime components

R+
µνλ

ρ = Rµνλ
ρ, R+

µjλ
l = Rµjλ

l − 1
2Γ

m
µλHjm

l, (A.4)

where Γm
µλ = − e2A

Vτ2
g̃µλ∇mA. We thus find

R = Vτ2e−2AR̃4 + R̃6 − 20(∂A)2 − 8∇2A, (A.5)

tr|R+|2 = V2τ4e−4A|R̃µνλ
ρ|2 − 2Vτ2e−2AR̃4(∂A)

2 + |R+
6 |2, (A.6)

where tr|R+|2 = 1
2R

+
MNPQR

+MNPQ and |R̃µνλ
ρ|2 = 1

2R̃µνλρR̃
µνλρ. For convenience, we

also introduced the shortcut notation |R+
6 |2 = 12

[

(∂A)2
]2
+4|R+

µjλ
l|2+|R+

ikl
m|2 to subsume

all terms which in the tilded frame only depend on internal fields.

B Leading order constraints on heterotic supergravity

In [19], it was suggested that heterotic supergravity with leading α′-corrections could have

solutions with a cosmological constant of the form

Λ = −α′C +O(α′2), (B.1)
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where C is a non-negative constant given by

C =
1

2V ′

∫

d6y
√

g̃6 e
6A−φ

2

{

3
[

(∂ω)2
]2

+ 2|(∂mω)(∂nω)− ∇̃m∂nω − g̃mn(∂ω)
2|2

+
1

2
e−4ω|Hmn

l∂lω|2
}

(B.2)

with V ′ =
∫

d6y
√
g̃6 e

8A and ω = A + φ
4 . We will now show explicitly, using arguments

similar to [31–33], that all terms in C vanish up to higher order α′-corrections due to the

leading order equations of motion. The result of [19] is therefore not in conflict with the

argument given in section 2.1.

To omit confusion, we will stick to the metric conventions of [19] in this appendix,

which differ from those used in the main text of our paper. The unwarped metric is then

defined as g̃MN = e−2AgMN , where gMN is the usual ten-dimensional Einstein frame metric.

In the following, terms are always contracted with the Einstein frame metric, except for

tilded objects and all terms in (B.2), which are contracted with the unwarped metric g̃MN .

The leading order dilaton equation in Einstein frame reads

∇M∂Mφ+
1

2
e−φ|H|2 = O(α′). (B.3)

Assuming that the dilaton only depends on the internal coordinates, we can write

∇M∂Mφ = e−10A∇̃me8Ag̃mn∂nφ and integrate over internal space to find

1

2

∫

d6y
√

g̃6 e
10A−φ|H|2 = O(α′) (B.4)

and hence

e10A−φ|H|2 = O(α′). (B.5)

The traced internal and spacetime components of the leading order Einstein equation

then read

−R4 − 2R6 + (∂φ)2 = O(α′), −3R4 − 2R6 + (∂φ)2 = O(α′). (B.6)

Combining the two equations and rewriting R4 in terms of the unwarped metric yields

R4 = e−2AR̃4 −
1

2
e−10A∇̃2e8A = O(α′). (B.7)

We can now integrate over internal space to find e8AR̃4 = O(α′) which with (B.7) implies

that ∇̃2e8A = O(α′). Hence the warp factor is a constant up to α′-corrections. The dilaton

equation (B.3) then reduces to e−2A∇̃2φ = O(α′) and therefore also φ is a constant up to

α′-corrections.

We have thus shown that two-derivative terms involving the warp factor or the dilaton

are at least of order O(α′), which implies that the four-derivative terms appearing in (B.2)

are of even higher order. It follows that C = O(α′), and hence (B.1) yields

Λ = O(α′2). (B.8)

– 13 –
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C Ten-dimensional argument

The result Λ = 0 can also be derived directly from the ten-dimensional equations of motion.

We write the ten-dimensional action (2.17) in the form

S =

∫

d10x
√−g e−2φL, (C.1)

where L includes all string theory α′-corrections to the ten-dimensional supergravity. We

start by pulling out an overall warp factor gMN = e2ω g̃MN . We will later on relate ω to

the warp factor A used in the main text. Writing the action in terms of the tilded metric

g̃, we get

S =

∫

d10x
√

−g̃ e8ωe−2φL̃, (C.2)

notice the warp factor dependence in the action. The leading order terms of L̃ are

L̃ = R̃− 18(∇̃2ω + 4(∂ω)2) + 4(∂φ)2 − 1

2
e−4ω|H|2 +O(α′). (C.3)

Assuming that L̃ only depends on the derivatives of φ, the dilaton equation is easily derived

up to a total derivative,

0 =
1√−g̃

δS

δφ
= −2e8ωe−2φL̃+ total derivative. (C.4)

Using this, we can simplify the Einstein equation

0 =
1√−g̃

δS

δg̃MN
= e8ωe−2φEMN − 1

2
g̃MNe8ωe−2φL̃

= e8ωe−2φEMN + g̃MN (total derivative). (C.5)

The tensor EMN is simply the variation of the Lagrangian L̃.

Now take the ten-dimensional manifold to be a direct product of a six-dimensional

compact space and maximally symmetric spacetime. We also let ω = φ/4 + A to switch

to the unwarped Einstein frame. Since spacetime is assumed maximally symmetric, all

external covariant derivatives vanish and the total derivative in (C.5) is a total derivative

in internal space. We therefore look at the integrated traced Einstein equation, where the

total derivatives drop out. To complete our analysis it is then enough for us to show that,

when both indices lie in spacetime, Eµν is a sum of terms that contain a positive power of

the external curvature tensor. The only covariant quantities with external indices are the

metric, the curvature tensor and the epsilon tensor. Keeping this in mind, there are only

three possibilities that give a non-vanishing contribution to Eµν :

• Terms where one or both of the free indices are that of a curvature tensor. These

obviously carry a positive power of the Riemann tensor and we are done.

• Second are terms where the free indices are that of a metric, Eµν ∼ gµνB, coming

from the ten-dimensional term gMNB, where B is a ten-dimensional scalar. This

– 14 –
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could be problematic, since B does not have to involve the Riemann tensor. Clearly,

these terms cannot occur as a result of varying the determinant, we already got rid

of those using the dilaton equation. However we could have such terms from varying

curvature tensors or covariant derivatives or more generally the connection. But

varying the connection always gives a total derivative because of the equation

δΓR
MN =

1

2
gRS (∇MδgNS +∇NδgMS −∇SδgMN ) , (C.6)

and we see that B must be a total derivative. Again this reduces to a total derivative

in internal space and upon integration drops out.

• The final possibility are terms where both external indices come from epsilon symbols.

Clearly, an epsilon symbol must have four spacetime indices, and these must contract

with something, the only possibility is a curvature tensor.

Other terms of the tensor EMN will be those, where the free indices are that of derivatives

or fluxes etc. These all vanish in the maximally symmetric external spacetime. We have

thus shown that all terms in the Einstein equation, traced with the external metric and

integrated over internal space, contain a positive power of the Riemann tensor. This

eventually leads to (2.22), and our result follows.
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[20] J. Held, D. Lüst, F. Marchesano and L. Martucci, DWSB in heterotic flux compactifications,

JHEP 06 (2010) 090 [arXiv:1004.0867] [INSPIRE].

[21] B.A. Campbell, M.J. Duncan, N. Kaloper and K.A. Olive, Gravitational dynamics with

Lorentz Chern-Simons terms, Nucl. Phys. B 351 (1991) 778 [INSPIRE].

[22] B. Underwood, A breathing mode for warped compactifications,

Class. Quant. Grav. 28 (2011) 195013 [arXiv:1009.4200] [INSPIRE].
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