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Abstract. Tripleset interlinking is one of the main principles of Linked
Data. However, the discovery of existing triplesets relevant to be linked
with a new tripleset is a non-trivial task in the publishing process. With-
out prior knowledge about the entire Web of Data, a data publisher
must perform an exploratory search, which demands substantial effort
and may become impracticable, with the growth and dissemination of
Linked Data. Aiming at alleviating this problem, this paper proposes
a recommendation approach for this scenario, using a Social Network
perspective. The experimental results show that the proposed approach
obtains high levels of recall and reduces in up to 90% the number of
triplesets to be further inspected for establishing appropriate links.
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1 Introduction

One of the design principles of Linked Data is to include URIs linkages [1], or
simply links, which allow the “navigation” among triplesets and the discovery
of related resources and additional data [2]. Therefore, an important task in the
publishing process of a tripleset t involves the selection of triplesets for which
one may define links with t.

However, this is a non-trivial task. Indeed, a fully manual process requires
considerable effort from the data publisher and will become impractical as the
number of triplesets grows. According to Nikolov et al. [3], the selection of a
tripleset u for which one may define links with t can be influenced by three fac-
tors: (i) degree of overlap - the number of resources of u related to resources of
t; (ii) additional information provided by the tripleset - the amount of additional
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information u can provide for the resources of t; and (iii) popularity of the triple-
set - how easy it will be for t to be discovered because it has links to popular
triplesets.

We refer to the problem of the discovery and selection of triplesets for which
one may define links with a given tripleset as the tripleset recommendation
problem.

In this paper, we propose to address the tripleset recommendation problem
using strategies borrowed from Social Networks. We introduce a procedure that
receives as input a tripleset t and a set of triplesets S, and returns a ranked list
of triplesets u ∈ S such that links from t to u are more likely to be defined for
the triplesets in the beginning of the list. Therefore, the effort of creating links
from t to triplesets in S would be reduce, since one would have to analyze just
the first few triplesets in the ranking. The procedure we propose could be used as
an initial filtering phase to other more costly recommendation techniques based,
for example, on schema and ontology matching, which might be applied only to
the better ranked triplesets.

To generate the ranked list, the procedure uses a recommendation function
adapted from link prediction measures used in Social Networks. Informally, we
say that a tripleset t is connected to another tripleset u iff there are at least
one link between resources from t to resources in u. Basically, to adapt the
link prediction measures, we interpreted the connections between triplesets as
relational ties and the triplesets as the actors. In the paper, we evaluate the
performance of two link prediction measures, using data obtained from the Data
Hub catalogue.

In general, recommendation systems [4] alleviate problems associated with
information overload [5]. Recommendation systems aim at suggesting items to
users based on their interests, i.e., from the analysis of their profiles. Currently,
many e-commerce Web sites use this type of system to rank suggestions of their
products to potential buyers [6]. It is noteworthy that such systems not only
gained prominence in e-commerce [7], but also in several application areas. In-
deed, such systems have been applied to different domains such as recommenda-
tion of books [8], restaurants [9], movies [10], news [11] and social networks [12].
In particular, in the context of Social Networks, measures based on analysis of
the relational ties between actors have been used to recommend links between
actors [13–15].

The remainder of this paper is organized as follows. Section 2 presents related
work. Section 3 details our recommendation approach. Section 4 shows an ex-
perimental evaluation and discusses the results obtained. Section 5 presents the
conclusions and suggests further work.

2 Related Work

Recommendation of triplesets to be interlinked in the Linked Data domain is
a research area in expansion. However, there are still few approaches developed
specifically for this purpose. In this section, we briefly review the research more
closely related to ours.



Nikolov et al. [3, 16] propose an approach to identify relevant triplesets for
data linking. Their approach establishes two main steps: (i) searching for poten-
tially relevant resources in other triplesets using as keywords a subset of labels in
the new published tripleset; and (ii) filtering out irrelevant triplesets by measur-
ing semantic similarities applying ontology matching techniques. In the filtering
step, they consider only the triplesets with higher degrees of semantic similarity,
discarding the others.

The following two references [17, 18] aim at recommending triplesets relevant
to answer queries expressing the user requirements. Lóscio et al. [17] propose
the recommendation of relevant triplesets that contribute for answering queries
posed to an application. The authors argue that a tripleset may contribute to an-
swer queries of an application, but the returned response may not meet the user
requirements. Thus, they propose to discover triplesets relevant for applications
in a specific domain using information quality (IQ) as multidimensional crite-
ria. Their recommendation function estimates a degree of relevance of a given
tripleset based on the following IQ criteria: correctness, schema completeness
and data completeness.

Oliveira et al. [18] use application queries and user feedback to discover rele-
vant triplesets in Linked Data. The application queries help filter triplesets that
are potentially strong candidates to be relevant and the user feedback helps
analyze the relevance of such candidates. They argue that the consideration of
both queries and user feedback helps recommending triplesets related to the user
requirements.

To summarize, all previous works perform an analysis at the instance or
schema levels, using techniques such as filtering by keyword-based searches,
schema and ontology matching, user feedback and information quality.

Our proposed approach differs from these since it considers the links among
triplesets as a “high” level information and it does not require an analysis at the
instance or schema levels.

Our recommendation function aims at recommending candidate triplesets
u ∈ S to a tripleset t, such that t could possibly be interlinked with u. The
inputs of our approach are the previous links among the candidate triplesets
and some known triplesets that t can be interlinked with. For the generation
of the recommendation ranking, we propose to apply link prediction measures
adopted in Social Networks to the Linked Data context. To the best of our
knowledge there is no previous work that takes this approach.

3 A Recommendation Approach

3.1 Recommendation Procedure

Briefly, recall that an RDF triple is a triple of the form (s, p, o), where s is
the subject of the triple, which is an RDF URI reference or a blank node, p is
the predicate or property of the triple, which is an RDF URI reference, and o
is the object, which is an RDF URI reference, a literal or a blank node.
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Fig. 1. Schematic description of the recommendation procedure

A tripleset t is a set of RDF triples. A resource identified by an RDF URI
reference s is defined in t iff s occurs as the subject of a triple in t.

Let t and u be two triplesets. A link from t to u is a triple of the form (s, p, o),
where s is an RDF URI reference identifying a resource defined in t and o is
an RDF URI reference identifying a resource defined in u; we say that (s, p, o)
interlinks s and o. We also say that t can be interlinked with u iff it is possible
to define links from t to u.

A Linked Data network is a graph G = (S,C) such that S is a set of triplesets
and C contains edges (t, u), called connection from t to u, iff there is at least one
link from t to u; we also say that t points at or references u. Note that there can be
only one edge from t to u, even when there are multiple distinct links from t to u.

Let G = (S,C) be a Linked Data network. The context of a tripleset u ∈ S,
denoted Cu, is the set of all v ∈ S such that (u, v) ∈ C; and the inverse context
of u ∈ S, denoted C ′

u, is the set of all v ∈ S such that (v, u) ∈ C.
Our recommendation procedure analyzes a Linked Data network much in the

same way as a Social Network. The inputs of our recommendation procedure are
(see Figure 1):

– a Linked Data network G = (S,C)
– a target tripleset t not in S (intuitively the user wishes to define links from

t to the triplesets in S)
– a target context Ct for t consisting of one (or more) triplesets u in S (intu-

itively the user knows that t can be interlinked with u).

The procedure outputs a list L of triplesets in S, called a ranking. Intuitively,
the triplesets in the initial positions of the ranking have a higher probability
that resources in t can be interlinked with their resources.

The procedure adds a tripleset u ∈ S to the ranking L iff Ct∩Cu is not empty,
where, we recall, Ct is the context of t (given as input to the procedure) and Cu

is the context of u ∈ S (defined from the Linked Data graph).
To order the triplesets in L, the procedure estimates score values between t

and the triplesets u in L: the higher the score of a tripleset u, the topmost u will
be in the ranking. Intuitively, the score of a tripleset u is a predicted value of
the relevance of u with respect to the probability of defining links from t to u.
As stated before, to estimate the scores, the procedure applies measures used for



link prediction in Social Networks, detailed in Section 3.2, to the Linked Data
network G = (S,C).

Finally, we remark that the recommendation procedure may be used itera-
tively, considering user feedback. The user indicates a first context for a target
tripleset t. The procedure then outputs a ranking of triplesets such as t could
possibly be interlinked with them. The user inspects the content of the top-
most ranked triplesets and includes new links in t. Then, using the connections
induced by the new links, the procedure outputs a new ranking, and so on.

3.2 Adapted Measures

Among the traditional measures originated from graph theory, we chose the
Jaccard and the Adamic-Adar coefficients. We selected such measures because
the results reported by Liben-Nowell and Kleinberg [13], which analyze co-
authorship social networks, indicate that these two measures achieve good per-
formance. Furthermore, they estimate non-zero score values only between nodes
with two degrees of separation in the graph.

In what follows, let G = (S,C), t and Ct respectively be the Linked Data
network, the target tripleset and the target context given as input to the recom-
mendation procedure. Let u be a tripleset in S. Recall that the context Cu of
u ∈ S is the set of all v ∈ S such that (u, v) ∈ C, and that the inverse context
C′

w of w ∈ S is the set of all v ∈ S such that (v, w) ∈ C.

Jaccard Coefficient. Intuitively, the larger the cardinality of the intersection
of the contexts of t and u, the greater the likelihood that the two triplesets can
be connected. This effect can be measured by the Jaccard coefficient, defined as
follows.

jc(t, u) =
|Ct ∩ Cu|
|Ct ∪ Cu| (1)

where:

– |Ct ∩ Cu| is the cardinality of the intersection of the contexts of t and u

– |Ct ∪ Cu| is the cardinality of the union of the contexts of t and u.

Adamic-Adar Coefficient. Intuitively, if two triplesets t and u point to the
same tripleset w and w is also pointed by many other triplesets, then w must be a
generic tripleset and, therefore, it does not necessarily suggest any possible con-
nection between t and u. On the other hand, if there is no tripleset other than t
and u which points at w, then this might be a strong indication that w is a very
particular tripleset for both t and u and, therefore, a connection between t and u
could as well be defined. Thus, the strength of the belief in the existence of connec-
tions between t and u increases inversely proportional to the number of triplesets,
other than t and u, which points at w, i.e., depends on the popularity of w.

The Adamic-Adar coefficient aa computes a measure of belief in the connec-
tion between t and u as a summation of the inverse of the logarithm of the
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Fig. 2. Example of (a) the inputs and the outputs of the recommendation procedure
and (b) the values of the coefficients

popularity of the triplesets in the intersection of the contexts of t and u and is
define as follows.

aa(t, u) =
∑

w∈Ct∩Cu

1

log |C′
w|

(2)

where:

– |C ′
w| is the cardinality of the inverse context of w (the popularity of w).

3.3 Example

Figure 2 shows an schematic example of the computation of the coefficients,
indicating: (a) the inputs and the outputs of the recommendation procedure;
and (b) the values of the coefficients (using log2). In the example depicted, the
inputs are:

– The Linked Data network composed of the triplesets B, C, D, E and F and
their connections, represented by solid lines

– The target tripleset A for which new connections must be recommended
– The context for A, pointed by thicker lines, consist of the triplesets B and

C, which the user indicates that he can define connections from A to them.

The output of the procedure is a ranking of recommended triplesets, repre-
sented by dashed lines connecting the target to them (the number preceded by
# indicates the ranking position of each recommended tripleset). Discarding the
triplesets in the context of A, the recommendation technique has to rank the
remainder triplesets D, E and F according to the chance of defining links from
resources in A to resources in D, E and F . Adopting the Jaccard or the Adamic-
Adar coefficient, the procedure will return E in the first position (#1) and D in
the second (#2).



The tripleset F will not be recommended because there are no connections
from F to triplesets pointed by A. Thus the score values of the Jaccard and
Adamic-Adar coefficients between A and F are zero.

In this example, E points at two triplesets, B and C, which are pointed by
A, whereas D points at just at one, B.

For the Jaccard coefficient, the number of triplesets in the intersection of the
contexts of A and E with respect to the total number of triplesets in the union
of their contexts is greater than that for the contexts of A and D.

For the Adamic-Adar coefficient between E and A, among the triplesets in
the intersection of the contexts of A and E, the tripleset C is considered more
important than B (just A and E points at C, while B is also pointed by D).

3.4 Interpretation of the Measures Application

The principle of our approach is that one can infer that t can be connected to
u, i.e., t contains URIs that can be linked with URIs of u, iff the context of t
overlaps the context of u. However, such analogy must be analyzed in order to
better ground its validity.

If the two triplesets t and u share a connection to a tripleset w
through the property rdfs:sameAs, then there would be triples of the form
(s1, rdfs:sameAs, o1), where s1 ∈ t and o1 ∈ w, and (s2, rdfs:sameAs, o2), where
s2 ∈ u and o2 ∈ w. Now, recall that rdfs:sameAs is reflexive and transitive.
Thus, if o1 ≡ o2 holds then (s1, rdfs:sameAs, s2) will also hold. That is, there
will be a link from t to u.

On the other hand, if the interlinking property was not rdfs:sameAs but, for
instance, hasAuthor and wasAttendedBy, the probability that t and u share
a connection would be lower, but still possible. Indeed, assume that there
are triples of the form (s1, hasAuthor, o1), where s1 ∈ t and o1 ∈ w, and
(s2,wasAttendedBy, o2), where s2 ∈ u and o2 ∈ w. Furthermore, assume that
o1 ≡ o2. Then, we might understand s1 as a paper presented in event s2 and,
therefore, a triple of the form (s1,wasPresentedIn, s2) could be added to t to link
t and u, provided that wasPresentedIn could be added to the vocabulary of t.

To sum up, in the second case one cannot say that the analogy holds in all
situations in the context of Linked Data. However, as indicated in the literature
[19], the prevalence of links of type rdfs:sameAs in the Web of Data justifies the
use of the link prediction measures for the recommendation of triplesets based
on their connections.

4 Experimental Evaluation

4.1 Description of the Data and the Experiment

We tested the recommendation procedure with data available in the Data Hub
catalogue1, a repository of metadata of open triplesets, in the style of Wikipedia.

1 http://datahub.io

http://datahub.io


It is openly editable and is running a data cataloguing software (CKAN)2 main-
tained by the Open Knowledge Foundation3.

The description of each tripleset includes a multivalued property, called rela-
tionships, exposed by the REST API4 of the catalogue, whose range is the com-
plete set of catalogued triplesets. This property permits asserting that a tripleset
t points at a tripleset u by adding the assertions t[relationships] = node and
node[object] = u to the catalogue data. We used the property relationships to
extract the connections between triplesets in the Data Hub catalogue. Data was
gathered at the end of the 2012, adding to 797 triplesets and 15,012 connections
among them. This data therefore induced a Linked Data graph G = (S,C).

To evaluate the technique, we adopted the 10-fold cross validation approach.
We split the Linked Data graph G = (S,C) into recommendation partitions and
testing partitions in ten different ways, and defined target contexts as follows:

– A recommendation partition is a subgraph Gi = (Si, Ci) of G = (S,C) such
that Si is a set of triplesets to be considered for recommendation and Ci is
the set of connections among the triplesets in Si induced by the relationships
property

– A testing partition is a pair Tpi = (Ti, aCi) such that Ti is the set of triplesets
in S, but not in Si, called recommendation targets, and aCi is a set of sets
such that, for each t ∈ Ti, aCi contains the set aCt of all triplesets u in Si

such that there is a connection from t to u in C

– For each recommendation target t ∈ Ti, a target context Ct consists of some
chosen triplesets in aCt.

Additionally, for each different recommendation partition Gi = (Si, Ci), test-
ing partition Tpi = (Ti, aCi), recommendation target t ∈ Ti, with target context
Ct ∈ aCi, we define:

– the gold standard for t and is defined as the set Gst = aCt−Ct and represents
the triplesets that must be recommended

– a relevant tripleset to be recommended for t is a tripleset in Gst
– a candidate tripleset to be recommended for t is a tripleset in Si − Ct.

Unlike the traditional cross-validation approach, where partitions are used as
training sets, the recommendation partitions were used as recommendation sub-
graphs only, since the proposed technique does not require a training step. The
overall performance is taken as the average of the performances in the testing
partitions.

In the experiments, the results were evaluated using traditional Information
Retrieval measures [20, 21], Recall and Mean Average Precision (MAP). The
overall Recall is the mean of the recall of each testing partition. The recall of a

2 http://ckan.org
3 http://okfn.org
4 http://datahub.io/api/rest/tripleset/[triplesetid]

http://ckan.org
http://okfn.org
http://datahub.io/api/rest/tripleset/[tripleset id]


testing partition Tpi is defined as the average of the recall values of each tripleset
tj ∈ Ti:

Recall(Tpi) =

|Ti|∑

j=1

Recall(tj)

|Ti| (3)

where:

– Recall(tj) is defined as the ratio between the number of relevant triplesets
that are recommended for tj and the total number of triplesets that must
be recommended |Gstj |.

The overall MAP is defined as the mean of the MAP of each testing partition.
The MAP of a testing partition Tpi is in turn defined as the mean of the average
precision scores of each tripleset tj ∈ Ti:

MAP (Tpi) =

|Ti|∑

j=1

AveP (tj)

|Ti| (4)

where:

– AveP (tj) is the average precision in the ranking of the tripleset tj . It is
computed as a average of the precision values obtained for each relevant
tripleset. For this calculation, the position k in which a relevant tripleset was
ranked is considered. Each precision value in position k, only the triplesets
whose positions are lower or equal to k are considered, i.e., precision will
be the ratio between the number of relevant triplesets recommended until
the position k and this position number k. For instance, if in the tenth
position was ranked the fifth relevant tripleset from a complete set of twenty
relevant then the precision in p10 would be p = 5/10. For each relevant not
recommend, the precision value used to calculate the AveP is zero.

4.2 Evaluation and Results

To better understand the available data, Figure 3 presents the total number of
triplesets calculated in function of a minimum number of connections (number
of triplesets pointed by them). Figure 3 shows that most of the triplesets in the
Data Hub catalogue has very few connections. The average of the number of
connections per tripleset in the Data Hub catalogue was approximately 18.83.

In the experiments, we evaluated the ranking recommendations generated
using the measures presented in Section 3.2. As the measures depend on both
t and a tripleset s that points to at least one tripleset u which is also pointed
by t, they estimate a score different from zero for the same triplesets in the
recommendation partition. The overall recall was calculated as a function of the
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Fig. 3. Number of triplesets vs. minimum number of connections

cardinality of the target context (remember that the target context consists of
some chosen triplesets pointed by t). Recall is used to analyze the coverage of
the recommendation procedure. We considered all triplesets for which the score
values are greater than zero. The results obtained showed that:

– For small target contexts, the overall recall is relatively high, being on the
average greater than 75%

– For context sizes greater than 4 triplesets, the overall recall is higher than
90%.

These results show evidences that it is possible to recommend many relevant
triplesets, even knowing just a few connections from the target tripleset. This is
very important to validate the practical applicability of these Social Networks
measures (that consider only the direct neighbors) to recommend triplesets in a
Linked Data environment.

After these analyses, we evaluated the ordering of the recommendations in
the rankings. For this purpose, we used the overall Mean Average Precision
(MAP) to verify the accuracy of the generated ranking. Remember that the
overall MAP estimation considers the gold standard induced by the choice of the
context Ct, i.e., it is not defined by users. The results are presented in Figure 4
and show that the overall MAP values for Adamic-Adar are higher than those
for the Jaccard coefficient, for context sizes smaller than 36, which means that,
on average, for the same recall, the Adamic-Adar is more precise than Jaccard
coefficient. This probably happens because the Adamic-Adar coefficient better
differentiates the importance of the common triplesets pointed by the target
and the candidate triplesets which tends to require less knowledge, or known
triplesets in the context of the target.

In addition, we also calculated the average position of the last relevant tripleset
in the ranking. These results were divided by the total number of triplesets in the
corresponding recommendation partition. This analysis estimates the average
percentage of the top of the ranking that needs to be verified to discover all
the relevant triplesets that were recommended. Figure 5 presents these results.
To better understand the results, we also calculated what would be, on the
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ranking vs. context size

average, the maximum reduction possible (finding all relevant triplesets at the
top positions of the ranking, for all triplesets) using a context size equal to 1.
We obtained a maximum reduction value of 3.85%.

The worst performance of the Jaccard and Adamic-Adar coefficients indicates
that one needs to examine, on the average, respectively, 25% and 18% of the top
ranking triplesets to find all the relevant recommended triplesets. The best result,
obtained using the Adamic-Adar coefficient considering only one connection in
the context, indicates that one needs, on the average, to examine only 10% of
the ranking to find all the relevant recommended triplesets. It shows evidences
that the Adamic-Adar coefficient is more appropriate to rank the results in this
scenario than the Jaccard coefficient. This also shows that is not necessary to
know many triplesets in the context of target (what would otherwise invalidate
the practical application of the procedure) to obtain suitable rankings.

5 Final Remarks

In this paper we proposed the use of link prediction measures to address what
we called the tripleset recommendation problem in the Linked Data domain.



Our approach generates a ranking of triplesets to be linked with a tripleset
t to be published. The ranking can be used to reduce the candidates that t
can be interlinked with, thereby reducing the set of triplesets to be further
inspected by other more costly techniques, if necessary. The experiments tested
two different link prediction measures. The results show that such measures
obtain good results, even when few triplesets in the context of t are available.
Specifically, the results show that the approach can reduce up to 90% of the
search space for the interlinking candidates.

We have defined the tripleset network as an unweighted graph G = (S,C),
thus disregarding the number of links between triplesets. This assumption fa-
vors triplesets from related information domains and penalizes generic ones. For
instance, DBpedia is frequently referenced by many triplesets because it is a
generic repository. Therefore, most likely, the weight of the connections to DB-
pedia would be very high, which would end up influencing the ranking in favour
of DBpedia. However, the tripleset to be published would neither get more vis-
ibility nor unveil more hidden information from other more specific triplesets,
because it is connected to DBpedia.

As further work, we plan to test other score measures for ranking generation
and to perform experiments using other catalogues of triplesets. We will also
consider using domain information to improve the results.
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